Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular machines for catalysis

Abstract

The past few decades have seen tremendous progress in the synthesis and operation of molecular systems capable of controlled mechanical movement. Here, we review the use of molecular machines as catalysts for controlling chemical reactions. We highlight the various catalyst designs with a focus on how mechanical motion is used to control catalysis with varying degrees of success. This Review discusses the current challenges of designing effective catalysts, the scope and limitations of various systems and the future potential and aims for the field. Although it is difficult to predict which concepts will become most important, as much of the work is at the proof-of-concept level, it seems clear that molecular machines have the potential to substantially impact the field of catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-state mechanically switchable catalysts.
Figure 2: Catalyst based on a four-state mechanical switch.
Figure 3: Chiral catalysts and ligands based on light switchable, overcrowded alkene motors.
Figure 4: Allosteric catalysis.
Figure 5: Catalysis by molecular tweezers.
Figure 6: Unifunctional rotaxane-based catalysts.
Figure 7: Bistate bifunctional rotaxane-based catalysts.
Figure 8: Processive catalysis.
Figure 9: Molecular transporter systems and a stereodivergent molecular machine.

Similar content being viewed by others

References

  1. Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  2. Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing, and Computation. (John Wiley & Sons, Inc., 1992).

    Google Scholar 

  3. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Baum, R. Nanotechnology: Drexler and Smalley make the case for and against ‘molecular assemblers’. Chem. Eng. News. 81, 37–42 (2003).

    Google Scholar 

  5. Chang, K. Yes, they can! No, they can't: charges fly in nanobot debate. The New York Times http://www.nytimes.com/2003/12/09/science/yes-they-can-no-they-can-t-charges-fly-in-nanobot-debate.html (2003).

    Google Scholar 

  6. Siegel, J. Inventing the nanomolecular wheel. Science 310, 63–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sauvage, J. P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  11. Stoddart, J. F. Mechanically interlocked molecules (MIMs) — molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  12. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  13. Schummer, J. & Baird, D. Nanotechnology Challenges: Implications for Philosophy, Ethics and Society (World Scientific Publishing, 2006).

    Book  Google Scholar 

  14. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015).

    Article  CAS  Google Scholar 

  18. Vlatkovic, M., Collins, B. S. L. & Feringa, B. L. Dynamic responsive systems for catalytic function. Chem. Eur. J. 22, 17080–17111 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Cacciapaglia, R., Di Stefano, S. & Mandolini, L. The bis-barium complex of a butterfly crown ether as a phototunable supramolecular catalyst. J. Am. Chem. Soc. 125, 2224–2227 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Imahori, T., Yamaguchi, R. & Kurihara, S. Azobenzene-tethered bis(trityl alcohol) as a photoswitchable cooperative acid catalyst for Morita–Baylis–Hillman reactions. Chem. Eur. J. 18, 10802–10807 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Samanta, M., Siva Rama Krishna, V. & Bandyopadhyay, S. A photoresponsive glycosidase mimic. Chem. Commun. 50, 10577–10579 (2014).

    Article  CAS  Google Scholar 

  22. Würthner, F. & Rebek, J. Light-switchable catalysis in synthetic receptors. Angew. Chem. Int. Ed. Engl. 34, 446–448 (1995).

    Article  Google Scholar 

  23. Wurthner, F. & Rebek, J. Photoresponsive synthetic receptors: binding properties and photocontrol of catalytic activity. J. Chem. Soc., Perkin Trans. 2, 1727–1734 (1995).

    Article  Google Scholar 

  24. Conn, M. M., Deslongchamps, G., de Mendoza, J. & Rebek, J. Jr. Convergent functional groups. 13. High-affinity complexation of adenosine derivatives within induced binding pockets. J. Am. Chem. Soc. 115, 3548–3557 (1993).

    Article  CAS  Google Scholar 

  25. Peters, M. V., Stoll, R. S., Kühn, A. & Hecht, S. Photoswitching of basicity. Angew. Chem. Int. Ed. 47, 5968–5972 (2008).

    Article  CAS  Google Scholar 

  26. Stoll, R. S. et al. Photoswitchable catalysts: correlating structure and conformational dynamics with reactivity by a combined experimental and computational approach. J. Am. Chem. Soc. 131, 357–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Osorio-Planes, L., Rodríguez-Escrich, C. & Pericàs, M. A. Photoswitchable thioureas for the external manipulation of catalytic activity. Org. Lett. 16, 1704–1707 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. De Bo, G., Leigh, D. A., McTernan, C. T. & Wang, S. A complementary pair of enantioselective switchable organocatalysts. Chem. Sci. 8, 7077–7081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, Z. et al. ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Res. 39, D663–D669 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Schmittel, M., De, S. & Pramanik, S. Reversible ON/OFF nanoswitch for organocatalysis: mimicking the locking and unlocking operation of CaMKII. Angew. Chem. Int. Ed. 51, 3832–3836 (2012).

    Article  CAS  Google Scholar 

  31. De, S., Pramanik, S. & Schmittel, M. A. Toggle nanoswitch alternately controlling two catalytic reactions. Angew. Chem. Int. Ed. 53, 14255–14259 (2014).

    Article  CAS  Google Scholar 

  32. Schmittel, M., Pramanik, S. & De, S. A reversible nanoswitch as an ON–OFF photocatalyst. Chem. Commun. 48, 11730–11732 (2012).

    Article  CAS  Google Scholar 

  33. Mittal, N., Pramanik, S., Paul, I., De, S. & Schmittel, M. Networking nanoswitches for ON/OFF control of catalysis. J. Am. Chem. Soc. 139, 4270–4273 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Gaikwad, S., Goswami, A., De, S. & Schmittel, M. A. Metalloregulated four-state nanoswitch controls two-step sequential catalysis in an eleven-component system. Angew. Chem. Int. Ed. 55, 10512–10517 (2016).

    Article  CAS  Google Scholar 

  35. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Vlatkovic, M., Bernardi, L., Otten, E. & Feringa, B. L. Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chem. Commun. 50, 7773–7775 (2014).

    Article  CAS  Google Scholar 

  37. Trost, B. M. & Vranken, D. L. V. Flexible strategy to polyfunctional cyclopentanes. a synthesis mannostatin A J. Am. Chem. Soc. 113, 6317–6318 (1991).

    Article  CAS  Google Scholar 

  38. Trost, B. M., Breit, B., Peukert, S., Zambrano, J. & Ziller, J. W. A new platform for designing ligands for asymmetric induction in allylic alkylations. Angew. Chem. Int. Ed. 34, 2386–2388 (1995).

    Article  CAS  Google Scholar 

  39. Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Sud, D., Norsten, T. B. & Branda, N. R. Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. Angew. Chem. Int. Ed. 44, 2019–2021 (2005).

    Article  CAS  Google Scholar 

  41. Traut, T. W. Dissociation of enzyme oligomers: a mechanism for allosteric regulation. Crit. Rev. Biochem. Mol. Biol. 29, 125–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Stang, P. J. & Olenyuk, B. Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra. Acc. Chem. Res. 30, 502–518 (1997).

    Article  CAS  Google Scholar 

  43. Farrell, J. R., Mirkin, C. A., Guzei, I. A., Liable-Sands, L. M. & Rheingold, A. L. The weak-link approach to the synthesis of inorganic macrocycles. Angew. Chem. Int. Ed. 37, 465–467 (1998).

    Article  CAS  Google Scholar 

  44. Gianneschi, N. C. et al. A supramolecular approach to an allosteric catalyst. J. Am. Chem. Soc. 125, 10508–10509 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Gianneschi, N. C., Nguyen, S. T. & Mirkin, C. A. Signal amplification and detection via a supramolecular allosteric catalyst. J. Am. Chem. Soc. 127, 1644–1645 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Oliveri, C. G. et al. Supramolecular allosteric cofacial porphyrin complexes. J. Am. Chem. Soc. 128, 16286–16296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon, H. J., Heo, J. & Mirkin, C. A. Allosteric regulation of phosphate diester transesterification based upon a dinuclear zinc catalyst assembled via the weak-link approach. J. Am. Chem. Soc. 129, 14182–14183 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Yoon, H. J. & Mirkin, C. A. PCR-like cascade reactions in the context of an allosteric enzyme mimic. J. Am. Chem. Soc. 130, 11590–11591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeon, Y.-M., Heo, J., Brown, A. M. & Mirkin, C. A. Triple-decker complexes formed via the weak link approach. Organometallics 25, 2729–2732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoon, H. J., Kuwabara, J., Kim, J.-H. & Mirkin, C. A. Allosteric supramolecular triple-layer catalysts. Science 330, 66–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. McGuirk, C. M., Mendez-Arroyo, J., Lifschitz, A. M. & Mirkin, C. A. Allosteric regulation of supramolecular oligomerization and catalytic activity via coordination-based control of competitive hydrogen-bonding events. J. Am. Chem. Soc. 136, 16594–16601 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Leighton, J. L. & Jacobsen, E. N. Efficient synthesis of (R)-4-((trimethylsilyl)oxy)-2-cyclopentenone by enantioselective catalytic epoxide ring opening. J. Org. Chem. 61, 389–390 (1995).

    Article  Google Scholar 

  53. Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 33, 421–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hansen, K. B., Leighton, J. L. & Jacobsen, E. N. On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen)CrIII complexes. J. Am. Chem. Soc. 118, 10924–10925 (1996).

    Article  CAS  Google Scholar 

  55. Breinbauer, R. & Jacobsen, E. N. Cooperative asymmetric catalysis with dendrimeric [Co(salen)] complexes. Angew. Chem. Int. Ed. 39, 3604–3607 (2000).

    Article  CAS  Google Scholar 

  56. Gianneschi, N. C., Cho, S.-H., Nguyen, S. T. & Mirkin, C. A. Reversibly addressing an allosteric catalyst in situ: catalytic molecular tweezers. Angew. Chem. Int. Ed. 43, 5503–5507 (2004).

    Article  CAS  Google Scholar 

  57. Ouyang, G.-H., He, Y.-M., Li, Y., Xiang, J.-F. & Fan, Q.-H. Cation-triggered switchable asymmetric catalysis with chiral aza-crownphos. Angew. Chem. Int. Ed. 54, 4334–4337 (2015).

    Article  CAS  Google Scholar 

  58. McGuirk, C. M. et al. A concerted two-prong approach to the in situ allosteric regulation of bifunctional catalysis. Chem. Sci 7, 6674–6683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McGuirk, C. M., Stern, C. L. & Mirkin, C. A. Small molecule regulation of self-association and catalytic activity in a supramolecular coordination complex. J. Am. Chem. Soc. 136, 4689–4696 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Ulmann, P. A. et al. Spontaneous formation of heteroligated PtII complexes with chelating hemilabile ligands. Chem. Eur. J. 13, 4529–4534 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Spokoyny, A. M., Rosen, M. S., Ulmann, P. A., Stern, C. & Mirkin, C. A. Selective formation of heteroligated Pt(II) complexes with bidentate phosphine-thioether (P,S) and phosphine-selenoether (p,se) ligands via the halide-induced ligand rearrangement reaction. Inorg. Chem. 49, 1577–1586 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Rosen, M. S. et al. Chelating effect as a driving force for the selective formation of heteroligated Pt(II) complexes with bidentate phosphino-chalcoether ligands. Inorg. Chem. 50, 1411–1419 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Rosen, M. S., Stern, C. L. & Mirkin, C. A. Heteroligated PtII weak-link approach complexes using hemilabile N-heterocyclic carbene-thioether and phosphino-thioether ligands. Chem. Sci. 4, 4193–4198 (2013).

    Article  CAS  Google Scholar 

  64. Lifschitz, A. M. et al. An allosteric photoredox catalyst inspired by photosynthetic machinery. Nat. Commun. 6, 6541 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Xue, M., Yang, Y., Chi, X., Yan, X. & Huang, F. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115, 7398–7501 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Beswick, J. et al. Selecting reactions and reactants using a switchable rotaxane organocatalyst with two different active sites. Chem. Sci. 6, 140–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Blanco, V., Carlone, A., Hänni, K. D., Leigh, D. A. & Lewandowski, B. A. Rotaxane-based switchable organocatalyst. Angew. Chem. Int. Ed. 51, 5166–5169 (2012).

    Article  CAS  Google Scholar 

  68. Martinez-Cuezva, A. et al. Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis–Hillman reaction. Chem. Sci. 8, 3775–3780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Galli, M., Lewis, J. E. M. & Goldup, S. M. A. Stimuli-responsive rotaxane–gold catalyst: regulation of activity and diastereoselectivity. Angew. Chem. Int. Ed. 54, 13545–13549 (2015).

    Article  CAS  Google Scholar 

  70. Cakmak, Y., Erbas-Cakmak, S. & Leigh, D. A. Asymmetric catalysis with a mechanically point-chiral rotaxane. J. Am. Chem. Soc. 138, 1749–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blanco, V., Leigh, D. A., Marcos, V., Morales-Serna, J. A. & Nussbaumer, A. L. A. Switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. J. Am. Chem. Soc. 136, 4905–4908 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Blanco, V., Leigh, D. A., Lewandowska, U., Lewandowski, B. & Marcos, V. Exploring the activation modes of a rotaxane-based switchable organocatalyst. J. Am. Chem. Soc. 136, 15775–15780 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kwan, C.-S., Chan, A. S. C. & Leung, K. C.-F. A. Fluorescent and switchable rotaxane dual organocatalyst. Org. Lett. 18, 976–979 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Berná, J., Alajarín, M. & Orenes, R.-A. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 132, 10741–10747 (2010).

    Article  PubMed  CAS  Google Scholar 

  75. Lewis, J. E. M., Galli, M. & Goldup, S. M. Properties and emerging applications of mechanically interlocked ligands. Chem. Commun. 53, 298–312 (2017).

    Article  CAS  Google Scholar 

  76. Leigh, D. A., Marcos, V. & Wilson, M. R. Rotaxane catalysts. ACS Catal. 4, 4490–4497 (2014).

    Article  CAS  Google Scholar 

  77. Pan, T. & Liu, J. Catalysts encapsulated in molecular machines. ChemPhysChem 17, 1752–1758 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Eichstaedt, K. et al. Switching between anion-binding catalysis and aminocatalysis with a rotaxane dual-function catalyst. J. Am. Chem. Soc. 139, 9376–9381 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Breyer, W. A. & Matthews, B. W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trakselis, M. A., Alley, S. C., Abel-Santos, E. & Benkovic, S. J. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 98, 8368–8375 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kovall, R. & Matthews, B. W. Toroidal structure of λ-exonuclease. Science 277, 1824–1827 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Coumans, R. G. E., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. Processive enzyme mimic: kinetics and thermodynamics of the threading and sliding process. Proc. Natl Acad. Sci. USA 103, 19647–19651 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Monnereau, C. et al. Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates. J. Am. Chem. Soc. 132, 1529–1531 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Deutman, A. B. C., Cantekin, S., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Designing processive catalytic systems. Threading polymers through flexible macrocycle ring. J. Am. Chem. Soc. 136, 9165–9172 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Hidalgo Ramos, P., Saisaha, P., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Conformational analysis and binding properties of a cavity containing porphyrin catalyst provided with urea functions. Eur. J. Org. Chem., 4487–4495 (2016).

  87. De Bo, G. et al. Efficient assembly of threaded molecular machines for sequence-specific synthesis. J. Am. Chem. Soc. 136, 5811–5814 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. McGonigal, P. R. & Stoddart, J. F. Interlocked molecules: a molecular production line. Nat. Chem. 5, 260–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Bertran-Vicente, J. & Hackenberger, C. P. R. A. Supramolecular peptide synthesizer. Angew. Chem. Int. Ed. 52, 6140–6142 (2013).

    Article  CAS  Google Scholar 

  91. Wilson, C. M., Gualandi, A. & Cozzi, P. G. A. Rotaxane turing machine for peptides. ChemBioChem 14, 1185–1187 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Miyagawa, N. et al. Successive catalytic reactions specific to Pd-based rotaxane complexes as a result of wheel translation along the axle. Chem. Commun. 46, 1920–1922 (2010).

    Article  CAS  Google Scholar 

  93. Tachibana, Y., Kihara, N. & Takata, T. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field? J. Am. Chem. Soc. 126, 3438–3439 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Xu, K., Nakazono, K. & Takata, T. Design of rotaxane catalyst for O-acylative asymmetric desymmetrization of meso-1,2-diol utilizing the cooperative effect of the components. Chem. Lett. 45, 1274–1276 (2016).

    Article  CAS  Google Scholar 

  95. van Dongen, S. F. M. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nat. Chem. 5, 945–951 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  PubMed  CAS  Google Scholar 

  97. Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Schäfer, C. et al. An artificial molecular transporter. ChemistryOpen 5, 120–124 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, J., Wezenberg, S. J. & Feringa, B. L. Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chem. Commun. 52, 6765–6768 (2016).

    Article  CAS  Google Scholar 

  102. Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Sigma-Aldrich. Privileged ligands. ChemFiles 8 https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Brochure/al_chemfile_v6_n8.pdf (2006).

Download references

Acknowledgements

The authors are grateful to the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) for studentships, generously supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex.

Author information

Authors and Affiliations

Authors

Contributions

L.v.D., M.J.T., R.S., O.A.S. and H.A.P.B. contributed equally to the preparation of the article and are listed in reverse alphabetical order. S.P.F. directed the project.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Molecular machines

Systems in which a stimulus triggers the controlled motion of one molecular or submolecular component relative to another and potentially results in a net task (or work) being done.

Molecular switches

Molecules that can be reversibly shifted between two or more stable states. An important distinction between molecular switches and motors is that when switches return to their original state, any mechanical work is undone.

Allosteric regulation

The regulation of the structure and activity of a catalyst by the binding of a ligand at a site topologically distinct from the catalytically active site.

Chemoselectivity

The preferential reaction of one functional group over another in a chemical reaction.

Stereoselectivity

The preferential formation of one stereoisomer over another in a chemical reaction. If the stereoisomers are enantiomers, enantioselectivity applies (quantified by the enantiomeric excess, e.e., or enantiomeric ratio, e.r.); if they are diastereomers, diastereoselectivity applies (quantified by the diastereomeric ratio, d.r.).

Mechanical bonding

This results from an interlocked molecular architecture. Mechanically interlocked molecules cannot be separated without breaking covalent bonds.

Distributive catalysis

The most common mode of operation for homogeneous and heterogeneous catalysis in which conversion occurs at a single site before dissociation of the catalyst.

Processive catalysis

A process in which a catalyst remains attached to the substrate and performs multiple rounds of catalysis before dissociation.

Stereodivergent synthesis

A synthetic approach capable of selectively producing all the possible stereoisomers of a molecule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dijk, L., Tilby, M., Szpera, R. et al. Molecular machines for catalysis. Nat Rev Chem 2, 0117 (2018). https://doi.org/10.1038/s41570-018-0117

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-018-0117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing