Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis, structures and applications of electron-rich polyoxometalates

Abstract

Ever since the discovery and development of polyoxometalates (POMs), it has been known that they can exist in electron-rich reduced forms of different archetypes, structural flexibilities and functionalities. There are now reliable synthetic strategies for electron-rich POMs — materials that have unique and potentially useful catalytic, electronic and magnetic properties. This Review covers the synthesis and applications of these reduced species, and also highlights their differences and advantages relative to fully oxidized POMs. More than 200 reduced POM structures are described in this Review, with emphasis placed on how reduction influences POM structure, function and properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional types of electron-rich polyoxometalates.
Figure 2: Synthetic methods for reduced isopolymolybdates.
Figure 3: Synthetic methods for reduced Keggin anions.

Similar content being viewed by others

References

  1. Pope, M. T. Heteropoly and Isopoly Oxometalates (Springer, 1983).

    Book  Google Scholar 

  2. Wang, S.-S. & Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Lv, H. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Yamase, T. & Pope, M. T. Polyoxometalate Chemistry for Nano-Composite Design (Springer, 2002).

    Book  Google Scholar 

  5. Sarafianos, S. G., Kortz, U., Pope, M. T. & Modak, M. J. Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: an analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft. Biochem. J. 319, 619–626 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 98, 327–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bijelic, A. & Rompel, A. The use of polyoxometalates in protein crystallography — an attempt to widen a well-known bottleneck. Coord. Chem. Rev. 299, 22–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bijelic, A. & Rompel, A. Ten good reasons for the use of the tellurium-centered Anderson–Evans polyoxotungstate in protein crystallography. Acc. Chem. Res. 50, 1441–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Molitor, C., Bijelic, A. & Rompel, A. The potential of hexatungstotellurate(VI) to induce a significant entropic gain during protein crystallization. IUCrJ 4, 734–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadakane, M. & Steckhan, E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem. Rev. 98, 219–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Proust, A., Thouvenot, R. & Gouzerh, P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem. Commun. 1837–1852 (2008).

  12. Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 41, 7464–7478 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Botar, B., Ellern, A., Hermann, R. & Kögerler, P. Electronic control of spin coupling in keplerate-type polyoxomolybdates. Angew. Chem. Int. Ed. 48, 9080–9083 (2009).

    Article  CAS  Google Scholar 

  14. Baker, L. C. W. & Glick, D. C. Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. Chem. Rev. 98, 3–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Müller, A. & Serain, C. Soluble molybdenum blues — “des Pudels Kern”. Acc. Chem. Res. 33, 2–10 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. Müller, A. et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000. Angew. Chem. Int. Ed. 34, 2122–2124 (1995).

    Article  Google Scholar 

  17. Piepgrass, K. & Pope, M. T. Oxygen atom transfer chemistry of heteropolytungstate ‘browns’ in nonaqueous solvents. J. Am. Chem. Soc. 111, 753–754 (1989).

    Article  CAS  Google Scholar 

  18. Piepgrass, K. & Pope, M. T. Heteropoly ‘brown’ as class I mixed valence (W(IV,VI)) complexes. Tungsten-183 NMR of W(IV) trimers. J. Am. Chem. Soc. 109, 1586–1587 (1987).

    Article  CAS  Google Scholar 

  19. Pope, M. T. Heteropoly and isopoly anions as oxo complexes and their reducibility to mixed-valence blues. Inorg. Chem. 11, 1973–1974 (1972). The article proposed the classification of POMs in terms of their ability to accept electrons.

    Article  CAS  Google Scholar 

  20. Nomiya, K. & Miwa, M. Structural stability index of heteropoly- and isopoly-anions — II. Polyhedron 3, 341–346 (1984).

    Article  CAS  Google Scholar 

  21. Yamase, T. Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 98, 307–325 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Yamase, T. Photochemical studies of the alkylammonium molybdates. Part 6. Photoreducible octahedron site of [Mo7O24]6− as determined by electron spin resonance. J. Chem. Soc., Dalton Trans., 1987–1991 (1982).

  23. Aparicio, P. A., Poblet, J. M. & Lõpez, X. Tungsten redox waves in [XMW11O40]n− (X = P, Si, Al and M = W, Mo, V, Nb, Ti) Keggin compounds — effect of localised/delocalised charges. Eur. J. Inorg. Chem., 1910–1916 (2013).

  24. Maeda, K., Katano, H., Osakai, T., Himeno, S. & Saito, A. Charge dependence of one-electron redox potentials of Keggin-type heteropolyoxometalate anions. J. Electroanal. Chem. 389, 167–173 (1995).

    Article  Google Scholar 

  25. Tian, A.-X. et al. A series of polyoxometalate-based compounds including infinite Ag belts and circles constructed by two tolyl-1 H-tetrazole isomers. RSC Adv. 5, 53757–53765 (2015).

    Article  CAS  Google Scholar 

  26. Müller, A. et al. [Mo(V)12O30(μ2-OH)10H2{Ni(II)(H2O)3}4], a highly symmetrical ε-Keggin unit capped with four Ni(II) centers: synthesis and magnetism. Inorg. Chem. 39, 5176–5177 (2000). This article describes the synthesis and structural characterization of the first fully reduced Keggin POMo.

    Article  PubMed  CAS  Google Scholar 

  27. Renneke, R. F., Pasquali, M. & Hill, C. L. Polyoxometalate systems for the catalytic selective production of nonthermodynamic alkenes from alkanes. Nature of excited-state deactivation processes and control of subsequent thermal processes in polyoxometalate photoredox chemistry. J. Am. Chem. Soc. 112, 6585–6594 (1990).

    Article  CAS  Google Scholar 

  28. Papaconstantinou, E. Photochemistry of polyoxometallates of molybdenum and tungsten and/or vanadium. Chem. Soc. Rev. 18, 1–31 (1989).

    Article  CAS  Google Scholar 

  29. Bagherjeri, F. A. et al. Mixed-metal hybrid polyoxometalates with amino acid ligands: electronic versatility and solution properties. Inorg. Chem. 55, 12329–12347 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Poblet, J. M., López, X. & Bo, C. Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates. Chem. Soc. Rev. 32, 297–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Haviv, E., Shimon, L. J. W. & Neumann, R. Photochemical reduction of CO2 with visible light using a polyoxometalate as photoreductant. Chem. Eur. J. 23, 92–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, B., Pignatello, J. J., Qu, D. & Xing, B. Reoxidation of photoreduced polyoxotungstate ([PW12O40]4–) by different oxidants in the presence of a model pollutant. Kinetics and reaction mechanism. J. Phys. Chem. A 119, 1055–1065 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Cao, G. et al. Organic–inorganic heteropoly blue based on Dawson-type molybdosulfate and organic dye and its characterization and application in electrocatalysis. Electrochim. Acta 106, 465–471 (2013).

    Article  CAS  Google Scholar 

  34. Lehmann, J., Gaita-Ariño, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotechnol. 2, 312–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bertaina, S. et al. Quantum oscillations in a molecular magnet. Nature 453, 203–206 (2008). The authors report the observation and analysis of Rabi oscillations of a molecular magnet in a hybrid system, in which discrete and well-separated magnetic VIV15 clusters are embedded in a self-organized non-magnetic environment.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y. & Weinstock, I. A. Polyoxometalate-decorated nanoparticles. Chem. Soc. Rev. 41, 7479–7496 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Yamase, T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem. 15, 4773–4782 (2005).

    Article  CAS  Google Scholar 

  38. Ogata, A. et al. Antitumour effect of polyoxomolybdates: induction of apoptotic cell death and autophagy in in vitro and in vivo models. Br. J. Cancer 98, 399–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, X. et al. A combined crystallographic analysis and ab initio calculations to interpret the reactivity of functionalized hexavanadates and their inhibitor potency toward Na+/K+-ATPase. J. Inorg. Biochem. 161, 27–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, H. et al. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges. J. Am. Chem. Soc. 134, 4918–4924 (2012). The Keggin-type complex [PMo12O40]3− is utilized as a cathode active material, which can uptake electrons to form [PMo12O40]27−.

    Article  CAS  PubMed  Google Scholar 

  41. Kortz, U. et al. Polyoxometalates: fascinating structures, unique magnetic properties. Coord. Chem. Rev. 253, 2315–2327 (2009).

    Article  CAS  Google Scholar 

  42. Müller, A. & Roy, S. En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science. Coord. Chem. Rev. 245, 153–166 (2003).

    Article  CAS  Google Scholar 

  43. Müller, A. & Gouzerh, P. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem. Soc. Rev. 41, 7431–7463 (2012).

    Article  PubMed  CAS  Google Scholar 

  44. Hill, C. L. et al. Catalytic photochemical oxidation of organic substrates by polyoxometalates. picosecond spectroscopy, photochemistry, and structural properties of charge-transfer complexes between heteropolytungstic acids and dipolar organic compounds. J. Am. Chem. Soc. 110, 5471–5479 (1988).

    Article  CAS  Google Scholar 

  45. Le Maguerès, P., Hubig, S. M., Lindeman, S. V., Veya, P. & Kochi, J. K. Novel charge-transfer materials via cocrystallization of planar aromatic donors and spherical polyoxometalate acceptors. J. Am. Chem. Soc. 122, 10073–10082 (2000).

    Article  CAS  Google Scholar 

  46. Buckley, R. I. & Clark, R. J. H. Structural and electronic properties of some polymolybdates reducible to molybdenum blues. Coord. Chem. Rev. 65, 167–218 (1985).

    Article  CAS  Google Scholar 

  47. Sanchez, C., Livage, J., Launay, J. P., Fournier, M. & Jeannin, Y. Electron delocalization in mixed-valence molybdenum polyanions. J. Am. Chem. Soc. 104, 3194–3202 (1982).

    Article  CAS  Google Scholar 

  48. Che, M., Fournier, M. & Launay, J. P. The analog of surface molybdenyl ion in Mo/SiO2 supported catalysts: the isopolyanion Mo6O193− studied by EPR and UV-visible spectroscopy. Comparison with other molybdenyl compounds. J. Chem. Phys. 71, 1954–1960 (1979).

    Article  CAS  Google Scholar 

  49. Feng, W.-L. Theoretical investigation of EPR and optical spectra of Mo(V) in [Mo6O19][N(C4H9)4]3 salt. J. Magn. Magn. Mater. 324, 4061–4063 (2012).

    Article  CAS  Google Scholar 

  50. Proust, A., Robert, F., Gouzerh, P., Chen, Q. & Zubieta, J. Reduced nitrosyl polyoxomolybdates with the hitherto unknown decamolybdate Y structure: preparation and crystal and electronic structures of the two-electron reduced [Mo10O25(OMe)6(NO)], and the four-electron reduced [Mo10O24(OMe)7(NO)]2–. J. Am. Chem. Soc. 119, 3523–3535 (1997).

    Article  CAS  Google Scholar 

  51. Wang, L. et al. χ-Octamolybdate [MoV4MoVI4O24]4–: an unusual small polyoxometalate in partially reduced form from nonaqueous solvent reduction. Chem. Eur. J. 17, 4796–4801 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Yamase, T. & Ishikawa, E. Photoreductive self-assembly from [MoVI7O24]6− to anti-tumoral [H2MoV12O28(OH)12(MoVIO3)4]6− in aqueous media. Bull. Chem. Soc. Jpn 81, 983–991 (2008).

    Article  CAS  Google Scholar 

  53. Long, D. L., Kögerler, P., Farrugia, L. J. & Cronin, L. Restraining symmetry in the formation of small polyoxomolybdates: building blocks of unprecedented topology resulting from “shrink-wrapping” [H2Mo16O52]10–-type clusters. Angew. Chem. Int. Ed. 42, 4180–4183 (2003). This work demonstrates that it is possible to redefine the structures of lower-nuclearity electron-rich POMos away from the symmetrical spherical structures.

    Article  CAS  Google Scholar 

  54. Khan, M. I. et al. Cation inclusion within the mixed-valence polyanion cluster [(MoVIO3)4MoV12O28(OH)12]8−: syntheses and structures of (NH4)7[NaMo16(OH)12O40]·4H2O and (Me2NH2)6[H2Mo16(OH)12O40]. Angew. Chem. Int. Ed. 32, 1780–1782 (1993).

    Article  Google Scholar 

  55. Cotton, F. A., Marler, D. O. & Schwotzer, W. New routes to the preparation of the aquomolybdenum(IV) ion by comproportionation reactions. Inorg. Chem. 23, 3671–3673 (1984).

    Article  CAS  Google Scholar 

  56. Chen, W.-P., Sang, R.-L., Wang, Y. & Xu, L. An unprecedented [MoIV3O4]-incorporated polyoxometalate concomitant with MoO2 nucleophilic addition. Chem. Commun. 49, 5883–5885 (2013).

    Article  CAS  Google Scholar 

  57. Launay, J. P. Reduction de l’ion metatungstate: stades eleves de reduction de H2W12O406–, derives de l’ion HW12O407– et discussion generale. J. Inorg. Nucl. Chem. 38, 807–816 (1976).

    Article  CAS  Google Scholar 

  58. Khan, M. I. et al. Hydrothermal synthesis and characterization of mixed-valence hexatungstates: crystal structures of [(C2H5)4N]3[WVW5VIO19]·0.5H2O and [H3N(CH2)2NH3]2 [WVW5VIO19]·[H2N(CH2)2NH2]Cl·8H2O. Inorg. Chim. Acta 277, 69–75 (1998).

    Article  CAS  Google Scholar 

  59. Yang, W. B. et al. Synthesis, structural characterization, and magnetic properties of a new charge-transfer salt composed of polyoxotungstate acceptors [WVWVI5O19]3− and cationic ferrocenyl CpFe+ Cp donors. J. Clust. Sci. 14, 421–430 (2003).

    Article  CAS  Google Scholar 

  60. Kazansky, L. P. & Launay, J. P. X-Ray photoelectron study of mixed valence metatungstate anions. Chem. Phys. Lett. 51, 242–245 (1977).

    Article  CAS  Google Scholar 

  61. Smith, S. P. E. & Christian, J. B. Mechanism of the coupled 24-electron reduction and transformations among the ‘blues’, the ‘browns’ and the ‘reds’ of ammonium metatungstate. Electrochim. Acta 53, 2994–3001 (2008). The complete mechanistic pathway for the 24e redox behaviour of the metatungstate anion is demonstrated through the simulation of cyclic voltammetry data in low pH electrolytes.

    Article  CAS  Google Scholar 

  62. Bond, A. M., Boskovic, C., Sadek, M. & Brownlee, R. T. C. Electrosynthesis and solution structure of six-electron reduced forms of metatungstate, [H2W12O40]6−. J. Chem. Soc., Dalton Trans. 2, 187–196 (2001).

    Google Scholar 

  63. Jeannin, Y., Launay, J. P. & Sedjadi, M. A. S. Crystal molecular structure of the six-electron-reduced form of metatungstate Rb4H8(H2W12O40)(H2O)18 occurrence of a metal-metal bonded subcluster in a heteropolyanion framework. Inorg. Chem. 19, 2933–2935 (1980).

    Article  CAS  Google Scholar 

  64. Dickman, M. H. et al. Polyoxometalates from heteropoly ‘brown’ precursors. A new structural class of mixed valence heteropolytungstates, [(XO4)WIV3WVI17O62Hx]n−. J. Chem. Soc., Dalton Trans., 149–154 (2000).

  65. Christian, J. B., Smith, S. P. E., Whittingham, M. S. & Abruña, H. D. Tungsten based electrocatalyst for fuel cell applications. Electrochem. Commun. 9, 2128–2132 (2007).

    Article  CAS  Google Scholar 

  66. Tanielian, C. Decatungstate Photocatalysis. Coord. Chem. Rev. 178, 1165–1181 (1998).

    Article  Google Scholar 

  67. Fuchs, J., Hartl, H., Schiller, W. & Gerlach, U. Die Kristallstruktur des Tributylammoniumdekawolframats [(C4H9)3NH]4W10O32 . Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 32, 740–749 (1976).

    Article  Google Scholar 

  68. Chemseddine, A., Sanchez, C., Livage, J., Launay, J. P. & Fournier, M. Electrochemical and photochemical reduction of decatungstate: a reinvestigation. Inorg. Chem. 23, 2609–2613 (1984).

    Article  CAS  Google Scholar 

  69. Yamase, T. Involvement of hydrogen-bonding protons in delocalization of the paramagnetic electron in a single crystal of photoreduced decatungstate. J. Chem. Soc., Dalton Trans., 1597–1604 (1987).

  70. Sasaki, Y., Yamase, T., Ohashi, Y. & Sasada, Y. Structural retention of decatungstate upon photoreduction. Bull. Chem. Soc. Jpn 60, 4285–4290 (1987).

    Article  CAS  Google Scholar 

  71. Duncan, D. C. & Hill, C. L. Synthesis and characterization of the mixed-valence diamagnetic two-electron-reduced isopolytungstate [W10O32]6−. Evidence for an asymmetric d-electron distribution over the tungsten sites. Inorg. Chem. 35, 5828–5835 (1996).

    Article  CAS  Google Scholar 

  72. Combs-Walker, L. A. & Hill, C. L. Use of excited-state and ground-state redox properties of polyoxometalates for selective transformation of unactivated carbon-hydrogen centers remote from the functional group in ketones. J. Am. Chem. Soc. 114, 938–946 (1992).

    Article  CAS  Google Scholar 

  73. Sattari, D. & Hill, C. L. Catalytic carbon-halogen bond cleavage chemistry by redox-active polyoxometalates. J. Am. Chem. Soc. 115, 4649–4651 (1993). This article describes the application of reduced decatungstate and phosphotungstic acid as cleavage agents for C–Cl or C–Br bonds.

    Article  CAS  Google Scholar 

  74. Tzirakis, M. D., Lykakis, I. N. & Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev. 38, 2609–2621 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Duncan, D. C. & Fox, M. A. Early events in decatungstate photocatalyzed oxidations: a nanosecond laser transient absorbance reinvestigation. J. Phys. Chem. A 5639, 4559–4567 (1998).

    Article  Google Scholar 

  76. Tanielian, C., Seghrouchni, R. & Schweitzer, C. Decatungstate photocatalyzed electron-transfer reactions of alkenes. Interception of the geminate radical ion pair by oxygen. J. Phys. Chem. A 107, 1102–1111 (2003).

    Article  CAS  Google Scholar 

  77. Khan, M. I. & Zubieta, J. Oxovanadium and oxomolybdenum clusters and solids incorporating oxygen-donor ligands Progr. Inorg. Chem. 43, 1–149 (1995).

    CAS  Google Scholar 

  78. Chen, Q. et al. Coordination-compounds of polyoxovanadates with a hexametalate core - chemical and structural characterization of [VV6O13{(OCH2)3CR}2]2−, [VV6O11(OH)2{(OCH2)3CR}2], [VIV4VV2O9(OH)4{(OCH2)3CR}2]2−, and [VIV6O7(OH)6{(OCH2)3CR}2]2−. J. Am. Chem. Soc. 114, 4667–4681 (1992).

    Article  CAS  Google Scholar 

  79. Khan, M. I. et al. Hydrothermal synthesis and characterization of hexavanadium polyoxo alkoxide anion clusters - crystal-structures of the vanadium(IV) species Ba[V6O7(OH)3{(OCH2)3CCH3)3]·3H2O and Na2[V6O7{(OCH2)3CCH2CH3}4] of the mixed-valence complex (Me3NH)[VIV5VVO7(OH)3{(OCH2)3CCH3}3] and of the fluoro derivative Na[V6O6F(OH)3{(OCH2)3CCH3}3] ·3H2O. Inorg. Chem. 32, 2929–2937 (1993).

    Article  CAS  Google Scholar 

  80. Och, R., Khan, M. I., Chen, Q., Goshom, D. P. & Zubieta, J. Polyoxo Alkoxide clusters of vanadium: structural characterization of the decavanadate core in the “fully reduced” vanadium(IV) species [V10O16{(OCH2)3CCH2CH3}4]4− and [V10O14{(OCH2)3CCH2OH}4]2− and in the mixed-valence clusters [VIV8VV2O16{(OCH2)3CR}4]2− (R = –CH2CH3, –CH3). Inorg. Chem. 32, 672–680 (1993).

    Article  Google Scholar 

  81. Müller, A., Meyer, J., Bögge, H., Stammler & Botar, A. A. Cis-/trans-isomerie bei bis(trisalkoxy)hexavanadaten: cis-Na2[VIV6O7(OH)6{(OCH2)3CCH2OH}2]·8H2O. cis-(CN3H6)3[VIVVV5O13{(OCH2)CCH2OH}2]·4.5H2O und trans-(CN3H6)2[VV6O13{(OCH2)CCH2OH}2]·H2O. Z. Anorg. Allg. Chem. 621, 1818–1831 (1995).

    Article  Google Scholar 

  82. Daniel, C. & Hartl, H. Neutral and cationic VIV/VV mixed-valence alkoxo-polyoxovanadium clusters [V6O7(OR)12]n+ (R = -CH3, -C2H5): Structural, cyclovoltammetric and IR-spectroscopic investigations on mixed valency in a hexanuclear core. J. Am. Chem. Soc. 127, 13978–13987 (2005). The syntheses and structural characterization of the neutral and cationic VIV/VV mixed-valence Lindqvist type species are presented.

    Article  CAS  PubMed  Google Scholar 

  83. Augustyniak-Jablokow, M. A., Daniel, C., Hartl, H., Spandl, J. & Yablokov, Y. V. Exchange interactions and electron delocalization in the mixed-valence cluster VIV4VV2O7(OC2H5)12 . Inorg. Chem. 47, 322–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Spandl, J., Daniel, C., Brüdgam, I. & Hartl, H. Synthesis and structural characterization of redox-active dodecamethoxoheptaoxohexavanadium clusters. Angew. Chem. Int. Ed. 42, 1163–1166 (2003).

    Article  CAS  Google Scholar 

  85. Khan, M. I. et al. Polyoxo alkoxides of vanadium — the structures of the decanuclear vanadium(IV) clusters [V10O16(CH3CH2C(CH2O)3)4]4− and [V10O13(CH3CH2C(CH2O)3)5]. J. Am. Chem. Soc. 114, 3341–3346 (1992).

    Article  CAS  Google Scholar 

  86. Daniel, C. & Hartl, H. A mixed-valence VIV/VV alkoxo-polyoxovanadium cluster series [V6O8(OCH3)11]n+/−: exploring the influence of a μ-oxo ligand in a spin frustrated structure. J. Am. Chem. Soc. 131, 5101–5114 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Aronica, C. et al. A mixed-valence polyoxovanadate(III, IV) cluster with a calixarene cap exhibiting ferromagnetic V(III)-V(IV) interactions. J. Am. Chem. Soc. 130, 2365–2371 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Li, F., Vangelder, L. E., Brennessel, W. W. & Matson, E. M. Self-assembled, iron-functionalized polyoxovanadate alkoxide clusters. Inorg. Chem. 55, 7332–7334 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Li, F. et al. Polyoxovanadate–alkoxide clusters as a redox reservoir for iron. Inorg. Chem. 56, 7065–7080 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Qin, C. & Zubieta, J. Structural investigations of the hexavanadium core {V6O19} in ‘oxidized’, mixed valence and ‘reduced’ clusters of the type [VV6−nVIVnO13−n(OH)n{(OCH2)3CR}2]2−, n = 0, 3 and 6. Inorg. Chim. Acta 198–200, 95–110 (1992).

    Article  Google Scholar 

  91. Heitner-Wirguin, C. & Selbin, J. A new mixed valence compound of vanadium. J. Inorg. Nucl. Chem. 30, 3181–3188 (1968).

    Article  CAS  Google Scholar 

  92. Bino, A., Cohen, S. & Heitner-Wirguin, C. Molecular structure of a mixed-valence isopolyvanadate. Inorg. Chem. 21, 429–431 (1982).

    Article  CAS  Google Scholar 

  93. Baxter, S. M. & Wolczanski, P. T. Improved synthesis, redox chemistry, and magnetism of the mixed-valence isopolyanion of vanadate V10O264–. Inorg. Chem. 28, 3263–3264 (1989).

    Article  CAS  Google Scholar 

  94. Hayashi, Y., Miyakoshi, N., Shinguchi, T. & Uehara, A. A stepwise growth of polyoxovanadate by reductive coupling reaction with organometallic palladium complex: formation of [{(η3-C4H7)Pd}2V4O12]2−, [V10O26]4− and [V15O36(Cl)]4−. Chem. Lett. 36, 170–171 (2001).

    Article  Google Scholar 

  95. Forster, J., Rösner, B., Khusniyarov, M. M. & Streb, C. Tuning the light absorption of a molecular vanadium oxide system for enhanced photooxidation performance. Chem. Commun. 47, 3114–3116 (2011).

    Article  CAS  Google Scholar 

  96. Okaya, K., Kobayashi, T., Koyama, Y., Hayashi, Y. & Isobe, K. Formation of VV lacunary polyoxovanadates and interconversion reactions of dodecavanadate species. Eur. J. Inorg. Chem., 5156–5163 (2009).

  97. Kurata, T., Uehara, A., Hayashi, Y. & Isobe, K. Cyclic Polyvanadates incorporating template transition metal cationic species: synthesis and structures of hexavanadate [PdV6O18]4–, octavanadate [Cu2V8O24]4–, and decavanadate [Ni4V10O30(OH)2(H2O)6]4−. Inorg. Chem. 44, 2524–2530 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Scheele, C. W. in Sämtliche Physische und Chemische Werke, Hermstädt, D. S. F. Vol. 1 (ed. Sanding, M. ) 185–200 (reprint: original 1793) (1971).

    Google Scholar 

  99. Berzelius, J. J. Beitrag zur näheren Kenntniss des Molybdäns. Pogged. Ann. Phzs. Chem. 6, 369–392 (1826).

    Article  Google Scholar 

  100. Sun, H.-R., Zhang, S.-Y., Xu, J.-Q., Yang, G.-Y. & Shi, T.-S. Electrochemical and in-situ UV-visible-near-IR and FTIR spectroelectrochemical characterisation of the mixed-valence heteropolyanion PMo12O40n (n = 4, 5, 6, 7) in aprotic media. J. Electroanal. Chem. 455, 57–68 (1998).

    Article  CAS  Google Scholar 

  101. Maksimovskaya, R. I. Molybdophosphate heteropoly blues: electron-transfer reactions in aqueous solutions as studied by NMR. Polyhedron 65, 54–59 (2013).

    Article  CAS  Google Scholar 

  102. Barrows, J. N., Jameson, G. B. & Pope, M. T. T. Structure of a heteropoly blue. The four-electron reduced β-12-molybdophosphate anion. J. Am. Chem. Soc. 107, 1771–1773 (1985).

    Article  CAS  Google Scholar 

  103. Vu, T., Bond, A. & Hockless, D. Electrochemical synthesis and structural and physical characterization of one-and two-electron-reduced forms of [SMo12O40]2–. Inorg. Chem. 40, 65–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, C. et al. A hybrid polyoxometalate-organic molecular catalyst for visible light driven water oxidation. Chem. Commun. 50, 11591–11594 (2014).

    Article  CAS  Google Scholar 

  105. Yuan, M. et al. Modified polyoxometalates: hydrothermal syntheses and crystal structures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes. Inorg. Chem. 42, 3670–3676 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Bakri, R. et al. Rational addition of capping groups to the phosphomolybdate Keggin anion [PMo12O40]3− by mild, non-aqueous reductive aggregation. Chem. Comm. 48, 2779–2781 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Dai, L. et al. Hydrothermal synthesis and crystal structure of two new α-Keggin derivatives decorated by transition metal complexes. Transit. Met. Chem. 31, 340–346 (2006).

    Article  CAS  Google Scholar 

  108. Tian, A.-X. et al. Subtly tuning one N site of benzyl-1 H-triazole ligands to build mono-nuclear subunits and tri-nuclear clusters to modify polyoxometalates. CrystEngComm 17, 5569–5578 (2015).

    Article  CAS  Google Scholar 

  109. Chen, W. & Mi, J. A new redox-based approach for synthesizing a mixed-valence hybrid polymolybdate uncommonly bicapped by Cr(III) coordination complexes. Polyhedron 85, 117–123 (2015).

    Article  CAS  Google Scholar 

  110. Dong, B.-X. et al. Synthesis, crystal structure and electrochemical properties of a new 2D network containing linear {ε-H2PMoV8MoVI4O40Zn4}∞ inorganic chain. J. Clust. Sci. 27, 361–371 (2016).

    Article  CAS  Google Scholar 

  111. Yu, H.-H. et al. Hydrothermal synthesis and structural characterization of the first mixed molybdenum-tungsten capped-keggin polyoxometal complex: {[Co(dien)]4[(AsVO4)MoV8WVI4O33(μ2-OH)3]}·2H2O. Dalton Trans., 195–197 (2008).

  112. Wang, W., Xu, L., Gao, G., Liu, L. & Liu, X. The first ε-Keggin core of molybdogermanate in extended architectures of nickel(II) with N-donor ligands: Syntheses, crystal structures and magnetic properties. CrystEngComm 11, 2488–2493 (2009).

    Article  CAS  Google Scholar 

  113. Cui, X. B., Zheng, S. T. & Yang, G. Y. First Nickel(II) cation inclusion within the mixed-valence polyoxomolybdate capped with four NiII(en)(H2O) groups: hydrothermal synthesis and structure of [MoV8MoVI4O30(μ2-OH)6(NiIIO4){NiII(en)(H2O)}4]. Z. Anorg. Allgem. Chem. 631, 642–644 (2005).

    Article  CAS  Google Scholar 

  114. Han, X., Zhang, Z., Zhang, T., Li, Y. & Lin, W. Polyoxometalate-based cobalt–phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 136, 5359–5366 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Keita, B. et al. MoV–MoVI mixed valence polyoxometalates for facile synthesis of stabilized metal nanoparticles: electrocatalytic oxidation of alcohols. J. Phys. Chem. C 111, 8145–8148 (2007).

    Article  CAS  Google Scholar 

  116. Roch-Marchal, C., Hidalgo, T., Banh, H., Fischer, R. A. & Horcajada, P. A promising catalytic and theranostic agent obtained through the in-situ synthesis of au nanoparticles with a reduced polyoxometalate incorporated within mesoporous MIL-101. Eur. J. Inorg. Chem. 2016, 4387–4394 (2016).

    Article  CAS  Google Scholar 

  117. Zhang, G. et al. Synthesis of various crystalline gold nanostructures in water: the polyoxometalate β-[H4PMo12O40]3− as the reducing and stabilizing agent. J. Mater. Chem. 19, 8639 (2009).

    Article  CAS  Google Scholar 

  118. Nakamura, I., Tsunashima, R., Nishihara, S., Inouebc, K. & Akutagawad, T. A dielectric anomaly observed for doubly reduced mixed-valence polyoxometalate. Chem. Commun. 53, 6824–6827 (2017). A comparison of the mixed-valence complex [PMoV2MoVI10O40]5− and the fully oxidized complex [BWVI12O40]5− in terms of structure and dielectric behaviour.

    Article  CAS  Google Scholar 

  119. Pope, M. T. & Varga, G. M. Heteropoly blues. I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg. Chem. 5, 1249–1254 (1966).

    Article  CAS  Google Scholar 

  120. Varga, G. M., Papaconstantinou, E. & Pope, M. T. Heteropoly blues. IV. Spectroscopic and magnetic properties of some reduced polytungstates. Inorg. Chem. 9, 662–667 (1970).

    Article  CAS  Google Scholar 

  121. Wang, Z., Gao, S., Xu, L., Shen, E. & Wang, E. Synthesis and structural characterization of a tungstophosphate heteropoly blue. Polyhedron 15, 1383–1388 (1996).

    Article  Google Scholar 

  122. Li, N. & Huang, R. Six new inorganic–organic hybrids based on rigid triangular ligands: syntheses, structures and properties. J. Solid State Chem. 233, 320–328 (2016).

    Article  CAS  Google Scholar 

  123. Zhao, C. et al. A molecular crown analogue templated by Keggin polyanions: synthesis, structure, and electrochemical and luminescent properties. Z. Naturforsch. B 70, 547–553 (2015).

    Article  CAS  Google Scholar 

  124. Zhang, X. et al. Steric hindrance-dependent rational design and synthesis of three new Keggin-based supramolecular networks. Dalton Trans., 9198–9206 (2009).

  125. Wang, J., Shen, Y. & Niu, J. Hydrothermal synthesis and crystal structure of a novel compound supported by α-Keggin units [Cu(2,2′-bipy)2]{AlWVI11WVO40[Cu(2,2′-bipy)2]2}·2H2O. J. Coord. Chem. 59, 1007–1014 (2006).

    Article  CAS  Google Scholar 

  126. Casañ-Pastor, N., Gomez-Romero, P., Jameson, G. B. & Baker, L. C. W. Crystal structures of α-[CoIIW12O40]6– and its heteropoly blue 2e reduction product, α-[CoIIW12O40]8–. Structural, electronic, and chemical consequences of electron delocalization in a multiatom mixed-valence system. J. Am. Chem. Soc. 113, 5658–5663 (1991).

    Article  Google Scholar 

  127. Geletii, Y. V. et al. Electron exchange between α-Keggin tungstoaluminates and a well-defined cluster-anion probe for studies in electron transfer. Inorg. Chem. 44, 8955–8966 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Canny, J., Liu, F.-X. & Hervé, G. Electrochemical synthesis and stability of the brown six-electron reduced β- and γ-12-tungstosilicates. C. R. Chim. 8, 1011–1016 (2005).

    Article  CAS  Google Scholar 

  129. Suaud, N., Gaita-Ariño, A., Clemente-Juan, J. M., Sánchez-Marín, J. & Coronado, E. Electron delocalization in mixed-valence Keggin polyoxometalates. Ab initio calculation of the local effective transfer integrals and its consequences on the spin coupling. J. Am. Chem. Soc. 124, 15134–15140 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Troupis, A., Hiskia, A. & Papaconstantinou, E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. Int. Ed. 41, 1911–1914 (2002). Fine metal nanoparticles of Ag, Au, Pd, and Pt were obtained at room temperature by simply treating solutions of the metal ions with the 1e reduced Keggin complex [SiW12O40]5−.

    Article  CAS  Google Scholar 

  131. Chen, Q. & Hill, C. L. A bivanadyl capped, highly reduced Keggin polyanion, [PMoV6MoVI6O40(VIVO)2]5–. Inorg. Chem. 35, 2403–2405 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Cevik, S., Alkan, Z., Poyraz, M., Sari, M. & Buyukgungor, O. Hydrothermal synthesis and characterization of (N(C2H5)4)4[VMo12V2O44]. Cryst. Res. Technol. 42, 955–960 (2007).

    Article  CAS  Google Scholar 

  133. Sha, J. et al. Asymmetrical polar modification of a bivanadium-capped Keggin POM by multiple Cu–N coordination polymeric chains. Inorg. Chem. 46, 11183–11189 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Maestre, J. M., Poblet, J. M., Bo, C., Casan-Pastor, N. & Gomez-Romero, P. Electronic structure of the highly reduced polyoxoanion [PMo12O40(VO)2)]5−: a DFT study. Inorg. Chem. 37, 3444–3446 (1998).

    Article  CAS  Google Scholar 

  135. Gu, X. et al. Target syntheses of saturated Keggin polyoxometalate-based extended solids. Inorg. Chim. Acta 358, 3701–3710 (2005).

    Article  CAS  Google Scholar 

  136. Shi, Z., Peng, J., Gómez-García, C. J., Benmansour, S. & Gu, X. Influence of metal ions on the structures of Keggin polyoxometalate-based solids: hydrothermal syntheses, crystal structures and magnetic properties. J. Solid State Chem. 179, 253–265 (2006).

    Article  CAS  Google Scholar 

  137. Sha, J. et al. Target syntheses of two new bivanadyl capped Keggin polyoxometalate derivatives. J. Clust. Sci. 19, 499–509 (2008).

    Article  CAS  Google Scholar 

  138. Shi, Z., Gu, X., Peng, J. & Chen, Y. Controlled assembly of two new bicapped bisupporting Keggin-polyoxometalate derivatives: [M(2,2′-bpy)2(H2O)]2[SiMoVI8MoV4VIV2O42] (M = Co. Zn). J. Solid State Chem. 178, 1988–1995 (2005).

    Article  CAS  Google Scholar 

  139. Liu, C.-M., Zhang, D.-Q. & Zhu, D.-B. One- and two-dimensional coordination polymers constructed from bicapped keggin mixed molybdenum-vanadium heteropolyoxoanions and polynuclear copper(I) clusters bridged by asymmetrical bipyridine (2,4′-bipy and 2,3′-bipy) ligands. Cryst. Growth Design 6, 524–529 (2006).

    Article  CAS  Google Scholar 

  140. Dai, L. et al. A novel two-dimensional mixed molybdenum-vanadium polyoxometalate: Synthesis, magnetic property and characterization of [PMoVI8MoV4O40(VIVO)2{Co(phen)2}2](H3O)2[PMoVI4MoV8O40(VIVO)2{Co(phen)2(H2O)}2]. J. Mol. Struct. 829, 74–79 (2007).

    Article  CAS  Google Scholar 

  141. Yu, Y. et al. Two novel zipper-like compounds of the usual and bivanadyl capped Keggin clusters connected by propeller-shaped complexes. New J. Chem. 38, 1271–1276 (2014).

    Article  CAS  Google Scholar 

  142. Yao, S., Zhang, Z., Li, Y. & Wang, E. Two dumbbell-like polyoxometalates constructed from capped molybdovanadate and transition metal complexes. Inorg. Chim. Acta 363, 2131–2136 (2010).

    Article  CAS  Google Scholar 

  143. Ding, Y., Meng, J.-X., Chen, W.-L. & Wang, E.-B. Controllable assembly of four new POM-based supramolecular compounds by altering the POM secondary building units from pseudo-Keggin to classical Keggin. CrystEngComm 13, 2687 (2011).

    Article  CAS  Google Scholar 

  144. Meng, J.-X., Lu, Y., Li, Y.-G., Fu, H. & Wang, E.-B. Controllable self-assembly of four new metal–organic frameworks based on different phosphomolybdate clusters by altering the molar ratio of H3PO4 and Na2MoO4 . CrystEngComm 13, 2479 (2011).

    Article  CAS  Google Scholar 

  145. Shi, S. et al. 0D and 1D dimensional structures based on the combination of polyoxometalates, transition metal coordination complexes and organic amines. CrystEngComm 12, 2122–2128 (2010).

    Article  CAS  Google Scholar 

  146. Lu, Y., Wang, E., Guo, Y., Xu, X. & Xu, L. Hydrothermal synthesis and crystal structure of a hybrid material based on [Cu4(bpy)4(H2O)2(PO4)2]2+ and an α-Keggin polyoxoanion. J. Mol. Struct. 737, 183–187 (2005).

    Article  CAS  Google Scholar 

  147. Lu, Y., Li, Y. G., Ma, Y., Wang, E. B. & Xu, X. X. Hydrothermal synthesis and crystal structure of two new modified polyoxometalates based on PMo8V6O42 clusters. Transit. Met. Chem. 31, 708–713 (2006).

    Article  CAS  Google Scholar 

  148. Lin, S. et al. A polymeric chain formed by bicapped pseudo-Keggin polyoxometalate and [Ni(en)2]2+ complexes: synthesis, structure and catalytic properties of {[H3PMo8V6O46][Ni(en)2]}·2[Ni(en)2]·5H2O. J. Coord. Chem. 61, 167–177 (2008).

    Article  CAS  Google Scholar 

  149. Li, F. Y. et al. A novel cobalt(II) complex with polyoxometalate-based ligand by virtue of coexistence of both a capped-Keggin anion and a neutral unit. J. Coord. Chem. 58, 1751–1758 (2005).

    Article  CAS  Google Scholar 

  150. Li, F., Xu, L., Wei, Y. & Wang, E. A new polyoxometalate-based complex with alternate ionic layer structures: Hydrothermal synthesis, crystal structure and magnetic property. Inorg. Chem. Commun. 8, 263–266 (2005).

    Article  CAS  Google Scholar 

  151. Lan, Q., Zhang, Z.-M., Li, Y.-G., Lu, Y. & Wang, E.-B. Synthesis of a poly-pendant 1D chain based on ‘trans-vanadium’ bicapped, Keggin-type vanadtungstate and its photocatalytic properties. Dalton Trans. 43, 16265–16269 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Guo, G., Xu, Y., Cao, J. & Hu, C. An unprecedented vanadoniobate cluster with ‘trans-vanadium’ bicapped Keggin-type {VNb12O40(VO)2}. Chem. Commun. 47, 9411–9413 (2011).

    Article  CAS  Google Scholar 

  153. Son, J. H., Ohlin, C. A., Larson, E. C., Yu, P. & Casey, W. H. Synthesis and characterization of a soluble vanadium-containing keggin polyoxoniobate by ESI-MS and 51V NMR: (TMA)9[V3Nb12O42]·18H2O. Eur. J. Inorg. Chem., 1748–1753 (2013).

  154. Dolbecq, A., Cadot, E., Eisner, D. & Secheresse, F. Hydrothermal syntheses: a route to the stepwise condensation of reduced Keggin polyanions. From reduced β-[HmSiMo12O40]n− monomers to bicapped dimerized [Si2Mo28O84(H2O)2]6− anions. Inorg. Chem. 38, 4217–4223 (1999).

    Article  CAS  Google Scholar 

  155. Han, Z.-G. et al. An unusual metallic oxygen cluster consisting of a {AlMo12O40(MoO2)}. Inorg. Chem. 53, 670–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Mei, H., Yan, D., Chen, Q., Xu, Y. & Sun, Q. Hydrothermal synthesis, structure characterization and catalytic property of a new 1D chain built on bi-capped Keggin type mix-valence molybdenum compound: (NH4)[MoVI6MoV6O36(AsVO4)MoV(MoVO)]. Inorg. Chim. Acta 363, 2265–2268 (2010).

    Article  CAS  Google Scholar 

  157. Zhang, Q. B. et al. Synthesis and characterization of the first polyoxometalate possessing bicapped by antimony alpha-Keggin structure (C2N2H9)2[PMoV5MoVI7SbIII2O40]·2H2O. Inorg. Chem. Commun. 9, 544–547 (2006).

    Article  CAS  Google Scholar 

  158. Shi, S.-Y. et al. First examples of extended structures based on {PMo12Sb2O40} polyoxoanions. Dalton Trans. 39, 1389–1394 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Liu, Y. B. et al. Hydrothermal synthesis and characterization of three one-dimensional chain materials formed by reduced tetra-capped Keggin polyoxoanions and [M(en)2]2+ (M = Cu, Co and Ni) cations. J. Mol. Struct. 825, 45–52 (2006).

    Article  CAS  Google Scholar 

  160. Sun, Y. H. et al. Hydrothermal synthesis and crystal structural characterization of two new modified polyoxometalates constructed of positive and negative metal-oxo cluster ions. J. Mol. Struct. 740, 193–201 (2005).

    Article  CAS  Google Scholar 

  161. Li, F. Y. et al. Arsenicum-centered molybdenum-vanadium polyoxometalates bearing transition metal complexes: Hydrothermal syntheses, crystal structures and magnetic properties. J. Mol. Struct. 753, 61–67 (2005).

    Article  CAS  Google Scholar 

  162. Sun, Y.-H. et al. A new mixed molybdenum–vanadium polyoxometalate double-supporting transition metal complex: {[Co(phen)2]2-C2O4}{H2PMoVI3MoV5VIV8O44[Co(phen)2(H2O)]2}. J. Coord. Chem. 58, 1561–1571 (2005).

    Article  CAS  Google Scholar 

  163. Liu, C.-M., Zhang, D.-Q., Xu, C.-Y. & Zhu, D.-B. Two novel windmill-like tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2 (M = Co. Ni). Solid State Sci. 6, 689–696 (2004).

    Article  CAS  Google Scholar 

  164. Xu, Y., Zhu, H., Cai, H. & You, X. [MoV2MoVI6VIV8O40(PO4)]5−: the first polyanion with a tetra-capped Keggin structure. Chem. Comm. 40, 787–788 (1999).

    Article  Google Scholar 

  165. Liu, C. M. et al. Spin glass behaviour in a 1D mixed molybdenum-vanadium heteropolyoxometalate-bridged coordination polymer. Eur. J. Inorg. Chem. 24, 4774–4779 (2004).

    Article  CAS  Google Scholar 

  166. Liu, C. M., Zhang, D. Q., Xiong, M. & Zhu, D. B. A novel two-dimensional mixed molybdenum-vanadium polyoxometalate with two types of cobalt(II) complex fragments as bridges. Chem. Commun. 853, 1416–1417 (2002).

    Article  CAS  Google Scholar 

  167. Liu, C.-M., Zhang, D.-Q. & Zhu, D.-B. 3D Supramolecular array assembled by cross-like arrangement of 1d sandwich mixed molybdenum–;vanadium polyoxometalate bridged coordination polymer chains: hydrothermal synthesis and crystal structure of {[MoVI5MoV3VIV8O40(PO4)][Ni(en)2]}[Ni(en)2]2·4H2O. Cryst. Growth Des. 5, 1639–1642 (2005).

    Article  CAS  Google Scholar 

  168. López, X. et al. Highly reduced polyoxometalates: ab initio and DFT study of [PMo8V4O40(VO)4]5−. J. Chem. Theory Comput. 1, 856–861 (2005).

    Article  PubMed  CAS  Google Scholar 

  169. Barrows, J. N. & Pope, M. T. Stabilization and magnetic resonance characterization of the one-electron heteropoly blue derivative of the molybdophosphate [P2Mo18O62]6−. Slow intramolecular proton exchange of the two-electron blue in acetonitrile solution. Inorg. Chim. Acta 213, 91–98 (1993).

    Article  CAS  Google Scholar 

  170. Kortz, U. & Pope, M. T. Polyoxometalate-diphosphate complexes. 2. Structure of 18-molybdopyrophosphate, [(P2O7)Mo18O54]4−, which encloses a linear, eclipsed conformation of the pyrophosphate anion, and preliminary characterization of its one- and two-electron heteropoly blues. Inorg. Chem. 33, 5643–5646 (1994).

    Article  CAS  Google Scholar 

  171. Zhang, H. et al. pH and ligand dependent assembly of Well–Dawson arsenomolybdate capped architectures. Inorg. Chem. 53, 12337–12347 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Way, D. M., Bond, A. M. & Wedd, A. G. Multielectron reduction of α-[S2Mo18O62]4− in aprotic and protic media: voltammetric studies. Inorg. Chem. 36, 2826–2833 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Cooper, J. B., Way, D. M., Bond, M. & Wedd, G. A green heteropoly blue — isolation of a stable, odd oxidation level in a Dawson molybdate anion [S2Mo18O62]5−. Inorg. Chem. 32, 2416–2420 (1993).

    Article  CAS  Google Scholar 

  174. Neier, R., Trojanowski, C. & Mattes, R. Reduced polyoxomolybdates with the Keggin and Dawson structures: preparation and crystal-structures of 2-electron reduced [K(18-crown-6)]2[N(PPh3)2]2[HPMo12O40]·8MeCN·18-crown-6 and 4-electron reduced [NBun4]5[H3S2Mo18O62]·4MeCN (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane). J. Chem. Soc., Dalton Trans., 2521–2528 (1995).

  175. Long, D. L., Kögerler, P. & Cronin, L. Old clusters with new tricks: Engineering S···S interactions and novel physical properties in sulfite-based Dawson clusters. Angew. Chem. Int. Ed. 43, 1817–1820 (2004). This article presents a new family of Dawson-type POMos that encapsulate two SO32− ions that participate in interesting supramolecular S···S interactions.

    Article  CAS  Google Scholar 

  176. Baffert, C., Feldberg, S. W., Bond, A. M., Long, D.-L. & Cronin, L. pH-dependence of the aqueous electrochemistry of the two-electron reduced α-[Mo18O54(SO3)] sulfite Dawson-like polyoxometalate anion derived from its triethanolammonium salt. Dalton Trans. 54, 4599–4607 (2007).

    Article  CAS  Google Scholar 

  177. Baffert, C. et al. Experimental and theoretical investigations of the sulfite-based polyoxometalate cluster redox series: α- and β-[Mo18O54(SO3)2]4−/5−/6−. Chem. Eur. J. 12, 8472–8483 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Long, D. L., Abbas, H., Kögerler, P. & Cronin, L. Confined electron-transfer reactions within a molecular metal oxide ‘Trojan Horse’. Angew. Chem. Int. Ed. 44, 3415–3419 (2005).

    Article  CAS  Google Scholar 

  179. Fay, N. et al. Structural, electrochemical, and spectroscopic characterization of a redox pair of sulfite-based polyoxotungstates: α-[W18O54(SO3)2]4− and α-[W18O54(SO3)2]5−. Inorg. Chem. 46, 3502–3510 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Zhu, S. et al. Synthesis and crystal structure determination of a novel α-Dawson mixed-valence octadecatungstoperchlorate. J. Chem. Soc., Dalton Trans., 3633–3634 (1993).

  181. Sun, W. et al. A new 3D framework based on reduced Wells–Dawson arsenotungstates as eight-connected linkages. RSC Adv. 4, 24755–24761 (2014).

    Article  CAS  Google Scholar 

  182. Kozik, M., Hammer, C. F. & Baker, L. C. W. NMR of 31P heteroatoms in paramagnetic one-electron heteropoly blues. Rates of intra- and intercomplex electron transfers. Factors affecting line widths. J. Am. Chem. Soc. 108, 7627–7630 (1986).

    Article  CAS  PubMed  Google Scholar 

  183. Kozik, M. & Baker, L. C. W. Electron-exchange reactions between heteropoly anions: comparison of experimental rate constants with theoretically predicted values. J. Am. Chem. Soc. 112, 7604–7611 (1990).

    Article  CAS  Google Scholar 

  184. Kozik, M., Casan-Pastor, N., Hammer, C. F. & Baker, L. C. W. Ring currents in wholly inorganic heteropoly blue complexes. Evaluation by a modification of Evans’ susceptibility method. J. Am. Chem. Soc. 110, 7697–7701 (1988).

    Article  CAS  Google Scholar 

  185. Kozik, M., Hammer, C. F. & Baker, L. C. W. Direct determination by 183W NMR of the locations of added electrons in ESR-silent heteropoly blues. Chemical Shifts and relaxation times in polysite mixed-valence transition-metal species. J. Am. Chem. Soc. 108, 2748–2749 (1986).

    Article  CAS  Google Scholar 

  186. Kirby, J. F. & Baker, L. C. W. Evaluations of a general NMR method, based on properties of heteropoly blues, for determining rates of electron transfer through various bridges. New mixed-mixed valence complexes. J. Am. Chem. Soc. 117, 10010–10016 (1995).

    Article  CAS  Google Scholar 

  187. Harmalker, S. P., Leparulo, M. & Pope, M. T. Mixed-valence chemistry of adjacent vanadium centers in heteropolytungstate anions. I. Synthesis and electronic structures of mono-, di-, and trisubstituted derivatives of α-octadecatungstodiphosphate(6−) ion (α-[P2W18O62]6−). J. Am. Chem. Soc. 105, 4286–4292 (1983).

    Article  CAS  Google Scholar 

  188. Mbomekalle, I. M. et al. Synthesis, characterization and electrochemistry of the novel Dawson-type tungstophosphate [H4PW18O62]7− and first transition metal ions derivatives. Eur. J. Inorg. Chem. 2, 276–285 (2004).

    Article  CAS  Google Scholar 

  189. Keita, B., Mbomekalle, I. M., Nadjo, L. & Haut, C. Tuning the formal potentials of new VIV-substituted Dawson-type polyoxometalates for facile synthesis of metal nanoparticles. Electrochem. Commun. 6, 978–983 (2004).

    Article  CAS  Google Scholar 

  190. Keita, B. et al. Reactions of V-substituted polyoxometalates with L-cysteine. J. Clust. Sci. 17, 221–233 (2006).

    Article  CAS  Google Scholar 

  191. Contant, R. et al. Synthesis, characterization and electrochemistry of complexes derived from [(1),2,3-P2Mo2W15O61]10− and first transition metal ions. Eur. J. Inorg. Chem. 62, 567–574 (2000).

    Article  Google Scholar 

  192. Miras, H. N. et al. Solution identification and solid state characterisation of a heterometallic polyoxometalate {Mo11V7}: [MoVI11VV5VIV2O52(μ9-SO3)]7−. Chem. Commun. 52, 4703–4705 (2008).

    Article  CAS  Google Scholar 

  193. Zhang, X., Wu, H. & Zhang, F. The three-electron heteropoly blue [P6Mo18O73]11− with a basket-shaped skeleton. Chem. Commun. 2046–2047 (2004).

  194. Zhang, F.-Q., Zhang, X.-M., Fang, R.-Q. & Wu, H.-S. P6Mo18O73 heteropolyanion and its four-copper complex: theoretical and experimental investigation. Dalton Trans. 39, 8256–8260 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Yu, K. et al. A basket-like [SrP6MoV4MoVI14O73]10− polyoxoanion modified with {Cu(phen)(H2O)x} (x = 1–3) fragments: synthesis, structure, magnetic, and electrochemical properties. Eur. J. Inorg. Chem. 2007, 5662–5669 (2007).

    Article  CAS  Google Scholar 

  196. Chen, Z. Y. et al. Nonclassical phosphomolybdates with different degrees of reduction: syntheses and structural and photo/electrocatalytic properties. Inorg. Chem. 55, 8309–8320 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Yu, K. et al. Supramolecular assembly based on Keggin cluster and basketlike cage. Inorg. Chem. Commun. 14, 1846–1849 (2011).

    Article  CAS  Google Scholar 

  198. Yu, K. et al. Assembly of organic-inorganic hybrid supramolecular materials based on basketlike {MP6Mo18O73} (M = Ca Sr, Ba) cage and transition-metal complex. Inorg. Chem. 52, 485–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Yu, K. et al. High-efficiency photo- and electro-catalytic material based on a basket-like {SrP6Mo18O73} cage. RSC Adv. 5, 59630–59637 (2015).

    Article  CAS  Google Scholar 

  200. Zhang, H. et al. Organic–Inorganic hybrid materials based on basket-like {CaP6Mo18O73} cages. Inorg. Chem. 54, 6744–6757 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Kai, Y. et al. Influence of pH and organic ligands on the supramolecular network based on molybdenum phosphate/strontium chemistry. Dalton Trans. 41, 10014–10020 (2012).

    Article  Google Scholar 

  202. Zhang, H. et al. Assembly of a basket-like {SrP6Mo18O73} cage from 0D dimer to 2D network and its photo-/electro-catalytic properties. Dalton Trans. 44, 12839–12851 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, H. et al. 1,4-Bis(imidazole)butane ligand and strontium(II) directed 1D chains based on basket-type molybdophosphates and transition metal (TM) linkers. CrystEngComm 17, 6110–6119 (2015).

    Article  CAS  Google Scholar 

  204. Nakamura, I. et al. Investigating the formation of ‘molybdenum blues’ with gel electrophoresis and mass spectrometry. J. Am. Chem. Soc. 137, 6524–6530 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Fujibayashi, M., Song, Y.-F., Cronin, L. & Tsunashima, R. Exploring the solvent mediated assembly and redox activity of a POM–organic hybrid [Na(SO3)2(PhPO3)4MoV4MoVI14O49]5−. New J. Chem. 40, 8488–8492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dumas, E., Debiemme-Chouvy, C. & Sevov, S. C. A reduced polyoxomolybdenum borophosphate anion related to the Wells–Dawson clusters. J. Am. Chem. Soc. 124, 908–909 (2002). The synthesis of the first reduced Mo borophosphate is presented.

    Article  CAS  PubMed  Google Scholar 

  207. Sassoye, C., Norton, K. & Sevov, S. C. [MoV5MoVI7O30(BPO4)2(O3P-Ph)6]5−: a phenyl-substituted molybdenum(V/VI) boro-phosphate polyoxometalate. Inorg. Chem. 42, 1652–1655 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Khan, M. I., Tabussum, S., Doedens, R. J., Golub, V. O. & O’Connor, C. J. Functionalized metal oxide clusters: synthesis, characterization, crystal structures, and magnetic properties of a novel series of fully reduced heteropolyoxovanadium cationic clusters decorated with organic ligands – [MVIV6O6{(OCH2CH2)2N(CH2CH2OH)}6]X (M = Li, X = Cl·LiCl; M = Na X = Cl·H2O; M = Mg X = 2Br·H2O; M = Mn Fe X = 2Cl; M = Co Ni X = 2Cl·H2O). Inorg. Chem. 43, 5850–5859 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Khan, M. I. et al. Organo-functionalized metal-oxide clusters: synthesis and characterization of the reduced cationic species [NaVIV6O6{(OCH2CH2)2NH}6]+. Dalton Trans. 43, 16509–16514 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Khan, M. I., Tabussum, S. & Doedens, R. J. A novel cationic heteropolyoxovanadium(IV) cluster functionalized with organic ligands: synthesis and characterization of the fully reduced species [MnIIVIV6O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2 . Chem. Commun. 532–533 (2004).

  211. Zhang, Y.-T. et al. Synthesis, structures, and magnetic properties of metal–organic polyhedra based on unprecedented {V7} isopolyoxometalate clusters. Dalton Trans. 45, 14898–14901 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Zhang, Y.-T. et al. Anderson-like alkoxo-polyoxovanadate clusters serving as unprecedented second building units to construct metal–organic polyhedra. Chem. Commun. 47, 3909–3913 (2016).

    Google Scholar 

  213. Mak, W. & Huang, K. A. Hexanuclear oxovanadium(IV) anionic aggregate containing μ2- and μ6-carbonato groups: synthesis and structural characterization of (NH4)5[(VO)6(CO)4(OH)9]·10H2O. J. Chem. Soc., Chem. Commun. 1597–1598 (1986).

  214. Li, H., Swenson, L., Doedens, R. J. & Khan, M. I. An organo-functionalized metal–oxide cluster, [VIV6O6 {(OCH2CH2)2N(CH2CH2OH)}6], with Anderson-like structure. Dalton Trans. 45, 16511–16518 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Haushalter, R. C. & Lai, F. W. Synthesis of a new one-dimensional sodium molybdenum phosphate polymer: structure of [(H3O)2NaMo6P4O24(OH)7]2−. Inorg. Chem. 28, 2904–2905 (1989).

    Article  CAS  Google Scholar 

  216. Haushalter, R. C. & Lai, F. W. [Et4N]6[Na14Mo24P17O97(OH)31]·xH2O: a hollow cluster filled with 12 Na+ ions and a H3PO4 molecule. Angew. Chem. Int. Ed. 28, 743–746 (1989).

    Article  Google Scholar 

  217. Mundit, L. A. & Haushalter, R. C. Hydrothermal synthesis of a layered zinc molybdenum phosphate with octahedral and tetrahedral zinc: structure of (TMA)2(H3O)2[Zn3Mo12O30(HPO4)2(H2PO4)6]·11.5 H2O. Inorg. Chem. 31, 3050–3053 (1992).

    Article  Google Scholar 

  218. Mundit, L. A. & Haushalter, R. C. Hydrothermal synthesis, structure, and sorption properties of the new microporous ferric molybdenum phosphates [(CH3)4N]2(NH4)2[Fe2Mo12O30(H2PO4)6(HPO4)2]·nH2O and [(CH3)4N]2Na4[Fe3Mo12O30(HxPO4)8]·nH2O. Inorg. Chem. 32, 1579–1586 (1993).

    Article  Google Scholar 

  219. Cao, G., Haushalter, R. C. & Strohmaier, K. G. A novel polyoxo molybdenum(V) organophosphonate anion having a sandwich structure: synthesis and crystal structure of [N(C2H5)4]2Na3(H3O)4{Na[Mo6O15(O3PC6H5)(HO3PC6H5)3]2}·H2O. Inorg. Chem. 32, 127–128 (1993).

    Article  CAS  Google Scholar 

  220. K. M., Khan, M. I., Chen, Q. & Zubieta, J. Oxomolybdenum(V) polyanion clusters. Hydrothermal syntheses and structures of (NH4)5Na4{Na[Mo6O12(OH)3(O3PC6H5)4)]2}·6H2O and (C6H5CH2NMe3)4K4{K2[Mo6O12(OH)3(O3PC6H5)4]2}·10H2O and their relationship to the binuclear (Et4N)[Mo2O4Cl3(H2O)3]·5H2O. Inorg. Chim. Acta 235, 135–145 (1995).

    Article  CAS  Google Scholar 

  221. Manos, M. J., Keramidas, A. D., Woollins, J. D., Slawin, A. M. Z. & Kabanos, T. A. The first polyoxomolybdenum carbonate compound: Synthesis and crystal structure of (NH4)5[(MoV2O4)3(μ6-CO3)(μ-CO3)3(μ-OH)3]·0.5CH3OH. J. Chem. Soc., Dalton Trans. 3, 3419–3420 (2001).

    Article  CAS  Google Scholar 

  222. Dolbecq, A., Cadot, E. & Sécheresse, F. [Mo9S8O12(OH)8(H2O)2]2−: a novel polyoxothiomolybdate with a MoVI octahedron encapsulated in a reduced MoV cyclic octanuclear core. Chem. Commun. 2293–2294 (1998).

  223. Cadot, E., Dolbecq, A., Salignac, B. & Sécheresse, F. Self-condensation of [MoIV2O2S2]2+ with phosphate or arsenate ions by acid-base processes in aqueous solution: syntheses, crystal structures, and reactivity of [(HXO4)4Mo6S6O6(OH)3]5−, X = P, As. Chem. Eur. J. 5, 2396–2403 (1999).

    Article  CAS  Google Scholar 

  224. Streb, C., Long, D.-L. & Cronin, L. Engineering porosity in a chiral heteropolyoxometalate-based framework: the supramolecular effect of benzenetricarboxylic acid. Chem. Commun. 471–473 (2007).

  225. Xu, L. et al. A manganese molybdenum phosphate with a tunnel: hydrothermalsynthesis, structure and catalytic properties of (NH3CH2CH2NH3)10(H3O)3(H5O2)Na2[MnMo12O24(OH)6(PO4)4(PO3OH)4][MnMo12O24(OH)6(PO4)6(PO3OH)2]·9H2O. New J. Chem. 23, 1041–1044 (1999).

    Article  CAS  Google Scholar 

  226. Zhang, H. et al. The highest connected pure inorganic 3D framework assembled by {P4Mo6} cluster and alkali metal potassium. RSC Adv. 5, 3552–3559 (2015).

    Article  CAS  Google Scholar 

  227. Chang, W.-J., Jiang, Y.-C., Wang, S.-L. & Lii, K.-H. Hydrothermal synthesis of a three-dimensional organic-inorganic hybrid network formed by poly(oxomolybdophosphate) anions and nickel coordination cations. Inorg. Chem. 45, 6586–6588 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Wang, W., Han, Z., Wang, X., Zhao, C. & Yu, H. Polyanionic clusters [M(P4Mo6)2] (M = Ni, Cd) as effective molecular catalysts for the electron-transfer reaction of ferricyanide to ferrocyanide. Inorg. Chem. 55, 6435–6442 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Peloux, C. et al. A new family of layered molybdenum(V) cobalto-phosphates built up of [H14(Mo16O32)Co16(PO4)24(H2O)20]10– wheels. Angew. Chem. Int. Ed. 40, 2455–2457 (2001).

    Article  Google Scholar 

  230. Peloux, C. et al. A new two-dimensional molybdenum(V) nickel phosphate built up of [H18(Mo16O32)Ni16(PO4)26(OH)6(H2O)8]10– wheels. Inorg. Chem. 41, 7100–7104 (2002).

    Article  PubMed  CAS  Google Scholar 

  231. Zhang, Y.-N., Zhou, B.-B., Li, Y.-G., Sua, Z.-H. & Zhao, Z.-F. A new molybdenum(V) nickel phosphate based on divacant [H30(MoV16O32)Ni14(PO4)26O2(OH)4(H2O)8]12– wheel. Dalton Trans., 9446–9451 (2009).

  232. Blazevic, A. & Rompel, A. The Anderson–Evans polyoxometalate: from inorganic building blocks via hybrid organic–inorganic structures to tomorrows “Bio-POM”. Coord. Chem. Rev. 307, 42–64 (2016).

    Article  CAS  Google Scholar 

  233. Johnson, G. K. & Schlemper, E. O. Existence and structure of the molecular ion 18-vanadate(IV). J. Am. Chem. Soc. 100, 3645–3646 (1978).

    Article  CAS  Google Scholar 

  234. Müller, A., Penk, M., Rohlfing, R., Krickemeyer, E. & Döring, J. Topologically interesting cages for negative ions with extremely high ”coordination number”: an unusual property of V–O clusters. Angew. Chem. Int. Ed. 29, 926–927 (1990).

    Article  Google Scholar 

  235. Müller, A., Krickemeyer, E., Penk, M., Walberg, H. J. & Bögge, H. Spherical mixed-valence [V15O36]5−, an example from an unusual cluster family. Angew. Chem. Int. Ed. 26, 1045–1046 (1987).

    Article  Google Scholar 

  236. Gatteschi, D., Tsukerblatt, B., Barra, A. L. & Brunel, L. C. Magnetic properties of isostructural dodecanuclear polyoxovanadates with six and eight vanadium(IV) ions. Inorg. Chem. 32, 2114–2117 (1993).

    Article  CAS  Google Scholar 

  237. Kögerler, P., Tsukerblat, B. & Müller, A. Structure-related frustrated magnetism of nanosized polyoxometalates: aesthetics and properties in harmony. Dalton Trans. 39, 21–36 (2010).

    Article  Google Scholar 

  238. Müller, A. & Döring, J. A novel heterocluster with D3-symmetry containing twenty-one core atoms: [AsIII2VIV15O42(H2O)]5−. Angew. Chem. Int. Ed. 27, 1721 (1988).

    Article  Google Scholar 

  239. Antonova, E., Näther, C. & Bensch, W. Assembly of [V15Sb6O42(H2O)]6− cluster shells into higher dimensional aggregates via weak Sb···N/Sb···O intercluster interactions and a new polyoxovanadate with a discrete [V16Sb4O42(H2O)]8− cluster shell. CrystEngComm 14, 6853 (2012).

    Article  CAS  Google Scholar 

  240. Wutkowski, A., Näther, C., Kögerler, P. & Bensch, W. Antimonato polyoxovanadate based three-dimensional framework exhibiting ferromagnetic exchange interactions: synthesis, structural characterization, and magnetic investigation of {[Fe(C6H14N2)2]3[V15Sb6O42(H2O)]}·8H2O. Inorg. Chem. 52, 3280–3284 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Qi, Y. et al. Two unprecedented inorganic-organic boxlike and chainlike hybrids based on arsenic-vanadium clusters linked by nickel complexes. J. Solid State Chem. 180, 382–389 (2007).

    Article  CAS  Google Scholar 

  242. Wang, J., Näther, C., Speldrich, M., Kögerler, P. & Bensch, W. Chain and layer networks of germanato-polyoxovanadates. CrystEngComm 15, 10238 (2013).

    Article  CAS  Google Scholar 

  243. Zheng, S.-T., Zhang, J., Li, B. & Yang, G.-Y. The first solid composed of [As4V16O42(H2O)] clusters. Dalton Trans. 42, 5584–5587 (2008).

    Article  CAS  Google Scholar 

  244. Wutkowski, A., Näther, C., Kögerler, P. & Bensch, W. [V16Sb4O42(H2O){VO(C6H14N2)2}4]: a terminal expansion to a polyoxovanadate archetype. Inorg. Chem. 47, 1916–1918 (2008).

    Article  CAS  PubMed  Google Scholar 

  245. Kiebach, R., Näther, C. & Bensch, W. [C6H17N3]4[Sb4V16O42]·2H2O and [NH4]4[Sb8V14O42]·2H2O — the first isolated Sb derivates of the [V18O42] family. Solid State Sci. 8, 964–970 (2006).

    Article  CAS  Google Scholar 

  246. Wang, X. Q., Liu, L. M., Zhang, G. & Jacobson, A. J. An extended chain structure formed by covalently linking polyoxovanadate cages with tetrahedral six rings. Chem. Commun. 2472–2473 (2001).

  247. Tripathi, A. et al. The first framework solid composed of vanadosilicate clusters the first framework solid composed of vanadosilicate clusters. J. Am. Chem. Soc. 125, 10528–10529 (2003).

    Article  CAS  PubMed  Google Scholar 

  248. Whitfield, T., Wang, X. & Jacobson, A. J. Vanadogermanate cluster anions. Inorg. Chem. 42, 3728–3733 (2003).

    Article  CAS  PubMed  Google Scholar 

  249. Monakhov, K. Y., Bensch, W. & Kögerler, P. Semimetal-functionalised polyoxovanadates. Chem. Soc. Rev. 44, 8443–8483 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Khan, M. I., Yohannes, E. & Doedens, R. J. A novel series of materials composed of arrays of vanadium oxide container molecules, {V18O42(X)} (X = H2O, Cl, Br): synthesis and characterization of [M2(H2N(CH2)2NH2)5][{M(H2N(CH2)2NH2)2}2V18O42(X)]·9H2O (M = Zn. Cd). Inorg. Chem. 42, 3125–3129 (2003).

    Article  CAS  PubMed  Google Scholar 

  251. Müller, A. & Döring, J. Topologisch und elektronisch bemerkenswerte “reduzierte“ cluster des typs [V18O42(X)]n− (X = SO4, VO4) mit Td-symmetrie und davon abgeleitete cluster [V(18−p)As2pO42(X)]m− (X = SO3, SO4, H2O; p = 3, 4). Z. Anorg. Allgem. Chem. 595, 251–274 (1991).

    Article  Google Scholar 

  252. Gatteschi, D., Pardi, L., Barra, A. L., Müller, A. & Döring, J. Layered magnetic structure of a metal cluster ion. Nature 354, 463–465 (1991).

    Article  CAS  Google Scholar 

  253. Tsukerblat, B., Tarantul, A. & Müller, A. Low temperature EPR spectra of the mesoscopic cluster V15: The role of antisymmetric exchange. J. Chem. Phys. 125, 054714 (2006).

    Article  PubMed  CAS  Google Scholar 

  254. Lo, X., Bo, C. & Poblet, J. M. Electronic properties of polyoxometalates: electron and proton affinity of mixed-addenda Keggin and Wells–Dawson anions. J. Am. Chem. Soc. 124, 12574–12582 (2002).

    Article  CAS  Google Scholar 

  255. Wu, K. H., Yu, P. Y., Yang, C. C., Wang, G. P. & Chao, C. M. Preparation and characterization of polyoxometalate-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological self-detoxifying material. Polym. Degrad. Stab. 94, 1411–1418 (2009). Mixed-metal reduced Keggin Mo/V POMs were used as a chemical and biological protective material.

    Article  CAS  Google Scholar 

  256. Keggin, J. F. Structure of the crystals of 12-phosphotungstic acid. Nature 131, 351 (1933).

    Article  Google Scholar 

  257. Hori, T., Himeno, S. & Tamada, O. Crystal structure of bis(tetra- n-butylammonium)dodecamolybdosulfate(VI)-(2–), [NBun4]2[SMo12O40]. J. Chem. Soc., Dalton Trans., 2083–2087 (1996).

  258. Wang, J., Ma, P., Li, J. & Niu, J. Hybrid tungstocuprate [Cu(2,2′-bpy)3]H4[CuW12O40]·6H2O based on Keggin polyoxoanion [CuW12O40]6– with Cu as heteroatom. Chem. Res. Chinese U. 23, 263–267 (2007).

    Article  CAS  Google Scholar 

  259. Baker, L. C. W. & Figgis, J. S. New fundamental type of inorganic complex: hybrid between heteropoly and conventional coordination complexes. Possibilities for geometrical isomerisms in 11-, 12-, 17-, and 18-heteropoly derivatives. J. Am. Chem. Soc. 92, 3794–3797 (1970).

    Article  CAS  Google Scholar 

  260. López, X. & Poblet, J. M. DFT study on the five isomers of PW12O403–: relative stabilization upon reduction. Inorg. Chem. 43, 6863–6865 (2004).

    Article  PubMed  CAS  Google Scholar 

  261. López, X., Carbó, J. J., Bo, C. & Poblet, J. M. Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem. Soc. Rev. 41, 7537–7371 (2012).

    Article  PubMed  CAS  Google Scholar 

  262. López, X., Maestre, J. M., Bo, C. & & Poblet, J. M. Electronic properties of polyoxometalates: a DFT study of α/β-[XM12O40]n– relative stability (M = W, Mo and X a main group element). J. Am. Chem. Soc. 123, 9571–9576 (2001).

    Article  PubMed  CAS  Google Scholar 

  263. Kehrman, F. Zur Kenntnis der komplexen anorganischen Wren. Z. Anorg. Allgem. Chem., 423–441 (1892).

  264. Dawson, B. The structure of the 9(18)-heteropolyanion in potassium 9(18)-tungstophosphate. K6[P2W18O62]·14H2O. Acta Cryst. 6, 113–126 (1953).

    Article  CAS  Google Scholar 

  265. Ichida, B. Y. H. & Sasaki, Y. The structure of hexaguanidinium octadecamolybdodiarsenate enneahydrate. Acta Cryst. C39, 529–533 (1983).

    CAS  Google Scholar 

  266. Ozawa, Y. & Sasaki, Y. Synthesis and crystal structure of [(CH3)4N]6[H3BiW18O60]. Chem. Lett. 16, 923–926 (1987).

    Article  Google Scholar 

  267. Jeannin, Y. & Martin-Frère, J. X-Ray study of (NH4)7[H2AsW18O60]·16H2O: first example of a heteropolyanion containing protons and arsenic(III). Inorg. Chem. 18, 3010–3014 (1979).

    Article  CAS  Google Scholar 

  268. Pope, M. T. & Papaconstantinou, E. Heteropoly blues. II. Reduction of 2:18-tungstates. Inorg. Chem. 6, 1147–1152 (1967).

    Article  CAS  Google Scholar 

  269. Papaconstantinou, E. & Pope, M. T. Heteropoly blues. V. Electronic spectra of one- to six-electron blues of 18-metallodiphosphate anions. Inorg. Chem. 9, 667–669 (1970).

    Article  CAS  Google Scholar 

  270. Papaconstantinou, E. & Pope, M. T. Heteropoly blues. III. Preparation and stabilities of reduced 18-molybdodiphosphates. Inorg. Chem. 6, 1152–1155 (1967).

    Article  CAS  Google Scholar 

  271. Wang, Y., Li, F., Xu, L., Jiang, N. & Liu, X. Multidimensional crystal frameworks based on heteropoly blue building block of [SiW10Mo(V)2O40]6−: synthesis, structures and magnetic properties. Dalton Trans. 42, 5839–5847 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by the Austrian Science Fund (FWF): M2203 (N.I.G.) and P27534 (A.R.). The authors thank L. Krivosudský and E. Al-Sayed for valuable discussions concerning this work and A. Bijelic for critical proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Annette Rompel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumerova, N., Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat Rev Chem 2, 0112 (2018). https://doi.org/10.1038/s41570-018-0112

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-018-0112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing