Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

3D printing for chemical, pharmaceutical and biological applications

Abstract

3D printing is becoming increasingly prevalent in modern chemistry laboratories. This technology provides chemists with the ability to design, prototype and print functional devices that integrate catalytic and/or analytical functionalities and even to print common laboratory hardware and teaching aids. Although access to 3D printers has increased considerably, some design principles and material considerations need to be weighed before employing such technology in chemistry laboratories. In addition, a certain level of expertise needs to be acquired in order to use computer-aided design, printing software and the specialist hardware associated with higher-end instrumentation. Nonetheless, the recent progress in this field is encouraging, with these printing technologies offering many advantages over traditional production methods. This Review highlights some of the notable advances in this growing area over the past decade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of 3D printed laboratory hardware.
Fig. 2: Examples of 3D printed model kits.
Fig. 3: Examples of 3D printed microfluidic and millifluidic devices.
Fig. 4: Example of a 3D printed switching valve.
Fig. 5: Examples of 3D printed microfluidics and millifluidic devices with embedded optical functionalities.
Fig. 6: Example of a 3D printed catalytic structure.
Fig. 7: Examples of 3D printed biological perfusion reactors.
Fig. 8: Examples of 3D printed pharmaceutical tablets.

Similar content being viewed by others

References

  1. Lužanin, O., Movrin, D. & Plancak, M. Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens. J. Technol. Plast. 39, 49–58 (2014).

    Google Scholar 

  2. Wong, K. V. & Hernandez, A. A. Review of additive manufacturing. ISRN Mech. Eng. 2012, 1–10 (2012).

    Article  Google Scholar 

  3. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Busachi, A. et al. A review of additive manufacturing technology and cost estimation techniques for the defence sector. CIRP J. Manuf. Sci. Technol. 19, 117–128 (2017).

    Article  Google Scholar 

  5. He, Y., Wu, Y., Fu, J., Gao, Q. & Qiu, J. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28, 1658–1678 (2016).

    Article  CAS  Google Scholar 

  6. Pohanka, M. Three-dimensional printing in analytical chemistry: principles and applications. Anal. Lett. 49, 2865–2882 (2016).

    Article  CAS  Google Scholar 

  7. Anzalone, G. C., Glover, A. G. & Pearce, J. M. Open-source colorimeter. Sensors 13, 5338–5346 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, C., Anzalone, N. C., Faria, R. P. & Pearce, J. M. Open-source 3D-printable optics equipment. PLOS ONE 8, e59840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dhankani, K. C. & Pearce, J. M. Open source laboratory sample rotator mixer and shaker. HardwareX 1, 1–12 (2017).

    Article  Google Scholar 

  10. Trivedi, D. K. & Pearce, J. M. Open source 3D printed nutating mixer. Appl. Sci. 7, 942 (2017).

    Google Scholar 

  11. Wijnen, B., Hunt, E. J., Anzalone, G. C. & Pearce, J. M. Open-source syringe pump library. PLOS ONE 9, 1–8 (2014).

    Google Scholar 

  12. Balakrishnan, S. et al. A scalable perfusion culture system with miniature peristaltic pumps for live-cell imaging assays with provision for microfabricated scaffolds. Biores. Open Access 4, 343–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sweet, E. C., Mehta, R. R., Lin, R. & Lin, L. Finger-powered, 3D printed microfluidic pumps. Int. Solid State Sens Actuators Microsyst. Conf. https://doi.org/10.1109/TRANSDUCERS.2017.7994410 (2017).

    Article  Google Scholar 

  14. Gordeev, E. G., Degtyareva, E. S. & Ananikov, V. P. Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russ. Chem. Bull. Int. Ed. 65, 1637–1643 (2016).

    Article  CAS  Google Scholar 

  15. Lücking, T. H. et al. 3D-printed individual labware in biosciences by rapid prototyping: in vitro biocompatibility and applications for eukaryotic cell cultures. Eng. Life Sci. 15, 57–64 (2015).

    Article  CAS  Google Scholar 

  16. Belka, M., Ulenberg, S. & Ba¸czek, T. Fused deposition modeling enables the low-cost fabrication of porous, customized-shape sorbents for small-molecule extraction. Anal. Chem. 89, 4373–4376 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Gupta, V., Beirne, S., Nesterenko, P. N. & Paull, B. Investigating the effect of column geometry on separation efficiency using 3D printed liquid chromatographic columns containing polymer monolithic phases. Anal. Chem. 90, 1186–1194 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Cecil, F. et al. 3D printed LED based on-capillary detector housing with integrated slit. Anal. Chim. Acta 965, 131–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Gupta, V., Mahbub, P., Nesterenko, P. N. & Paull, B. A. New 3D printed radial flow-cell for chemiluminescence detection: application in ion chromatographic determination of hydrogen peroxide in urine and coffee extracts. Anal. Chim. Acta 1005, 81–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Macdonald, N. P., Currivan, S. A., Tedone, L. & Paull, B. Direct production of microstructured surfaces for planar chromatography using 3D printing. Anal. Chem. 89, 2457–2463 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Fichou, D. & Morlock, G. E. Open-source-based 3D printing of thin silica gel layers in planar chromatography. Anal. Chem. 89, 2116–2122 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Lederle, F., Meyer, F., Kaldun, C., Namyslo, J. C. & Hübner, E. G. Sonogashira coupling in 3D-printed NMR cuvettes: synthesis and properties of arylnaphthylalkynes. New J. Chem. 41, 1925–1932 (2017).

    Article  CAS  Google Scholar 

  23. Whitehead, H. D., Waldman, J. V., Wirth, D. M. & LeBlanc, G. 3D printed UV-visible cuvette adapter for low-cost and versatile spectroscopic experiments. ACS Omega 2, 6118–6122 (2017).

    Article  CAS  Google Scholar 

  24. Prikryl, J. & Foret, F. Fluorescence detector for capillary separations fabricated by 3D printing. Anal. Chem. 86, 11951–11956 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Bayram, A. et al. Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer. Sens Actuators A Phys. 269, 382–387 (2018).

    Article  CAS  Google Scholar 

  26. Herrmann, K. H., Gärtner, C., Güllmar, D., Krämer, M. & Reichenbach, J. R. 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer. Med. Eng. Phys. 36, 1373–1380 (2014).

    Article  PubMed  Google Scholar 

  27. Meloni, G. N. & Bertotti, M. 3D printing scanning electron microscopy sample holders: a quick and cost effective alternative for custom holder fabrication. PLOS ONE 12, e0182000 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mulberry, G., White, K. A., Vaidya, M., Sugaya, K. & Kim, B. N. 3D printing and milling a real-time PCR device for infectious disease diagnostics. PLOS ONE 12, e0179133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martínez-Jarquín, S., Moreno-Pedraza, A., Guillén-Alonso, H. & Winkler, R. Template for 3D printing a low-temperature plasma probe. Anal. Chem. 88, 6976–6980 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Anciaux, S. K., Geiger, M. & Bowser, M. T. 3D printed micro free-flow electrophoresis device. Anal. Chem. 88, 7675–7682 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Duarte, L. C. et al. 3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry. Anal. Methods 8, 496–503 (2016).

    Article  CAS  Google Scholar 

  32. Scalfani, V. F. & Vaid, T. P. 3D printed molecules and extended solid models for teaching symmetry and point groups. J. Chem. Educ. 91, 1174–1180 (2014).

    Article  CAS  Google Scholar 

  33. Penny, M. R. et al. Three-dimensional printing of a scalable molecular model and orbital kit for organic chemistry teaching and learning. J. Chem. Educ. 94, 1265–1271 (2017).

    Article  CAS  Google Scholar 

  34. Jones, O. A. H. & Spencer, M. J. S. A. Simplified method for the 3D printing of molecular models for chemical education. J. Chem. Educ. 95, 88–96 (2018).

    Article  CAS  Google Scholar 

  35. Rossi, S., Benaglia, M., Brenna, D., Porta, R. & Orlandi, M. Three dimensional (3D) printing: a straightforward, user-friendly protocol to convert virtual chemical models to real-life objects. J. Chem. Educ. 92, 1398–1401 (2015).

    Article  CAS  Google Scholar 

  36. Stone-Sundberg, J., Kaminsky, W., Snyder, T. & Moeck, P. 3D printed models of small and large molecules, structures and morphologies of crystals, as well as their anisotropic physical properties. Cryst. Res. Technol. 50, 432–441 (2015).

    Article  CAS  Google Scholar 

  37. Wood, P. A. et al. The next dimension of structural science communication: simple 3D printing directly from a crystal structure. CrystEngComm 19, 690–698 (2017).

    Article  CAS  Google Scholar 

  38. Robertson, M. J. & Jorgensen, W. L. Illustrating concepts in physical organic chemistry with 3D printed orbitals. J. Chem. Educ. 92, 2113–2116 (2015).

    Article  CAS  Google Scholar 

  39. Casas, L. & Estop, E. Virtual and printed 3D models for teaching crystal symmetry and point groups. J. Chem. Educ. 92, 1338–1343 (2015).

    Article  CAS  Google Scholar 

  40. Higman, C. S., Situ, H., Blacklin, P. & Hein, J. E. Hands-on data analysis: using 3D printing to visualize reaction progress surfaces. J. Chem. Educ. 94, 1367–1371 (2017).

    Article  CAS  Google Scholar 

  41. Kaliakin, D. S., Zaari, R. R. & Varganov, S. A. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry. J. Chem. Educ. 92, 2106–2112 (2015).

    Article  CAS  Google Scholar 

  42. Tabassum, T. et al. Development and application of 3D printed mesoreactors in chemical engineering education. J. Chem. Educ. 95, 783–790 (2018).

    Article  CAS  Google Scholar 

  43. Schelly, C., Anzalone, G., Wijnen, B. & Pearce, J. M. Open-source 3D printing technologies for education: bringing additive manufacturing to the classroom. J. Vis. Lang. Comput. 28, 226–237 (2015).

    Article  Google Scholar 

  44. Dixon, C., Lamanna, J. & Wheeler, A. R. Printed microfluidics. Adv. Funct. Mater. 27, 1604824 (2017).

    Article  CAS  Google Scholar 

  45. Faustino, V., Catarino, S. O., Lima, R. & Minas, G. Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J. Biomech. 49, 2280–2292 (2016).

    Article  PubMed  Google Scholar 

  46. Abgrall, P. & Gué, A. M. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem - a review. J. Micromechan. Microengineer. 17, R15–R49 (2007).

    Article  Google Scholar 

  47. Amin, R. et al. 3D-printed microfluidic devices. Biofabrication 8, 22001 (2016).

    Article  CAS  Google Scholar 

  48. Tseng, P., Murray, C., Kim, D. & Di Carlo, D. Research highlights: printing the future of microfabrication. Lab. Chip 14, 1491–1495 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Symes, M. D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kitson, P. J. et al. 3D printing of versatile reactionware for chemical synthesis. Nat. Protoc. 11, 920–936 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Kitson, P. J., Symes, M. D., Dragone, V. & Cronin, L. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099–3103 (2013).

    Article  CAS  Google Scholar 

  52. Kitson, P. J., Glatzel, S. & Cronin, L. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot. Beilstein J. Org. Chem. 12, 2776–2783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kitson, P. J. et al. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V. & Cronin, L. Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab. Chip 12, 3199–3522 (2012).

    Article  CAS  Google Scholar 

  55. Dragone, V., Sans, V., Rosnes, M. H., Kitson, P. J. & Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathieson, J. S., Rosnes, M. H., Sans, V., Kitson, P. J. & Cronin, L. Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 4, 285–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Capel, A. J. et al. Design and additive manufacture for flow chemistry. Lab. Chip 13, 4583–4590 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Li, F., Macdonald, N. P., Guijt, R. M. & Breadmore, M. C. Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing. Anal. Chem. 89, 12805–12811 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Macdonald, N. P. et al. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89, 3858–3866 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Walczak, R. & Adamski, K. Inkjet 3D printing of microfluidic structures - on the selection of the printer towards printing your own microfluidic chips. J. Micromechan. Microengineer. 25, 85013 (2015).

    Article  CAS  Google Scholar 

  61. Shallan, A. I., Smejkal, P., Corban, M., Guijt, R. M. & Breadmore, M. C. Cost effective three-dimensional printing of visibly transparent microchips within minutes. Anal. Chem. 86, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Rao, Z. X. et al. 3D-printed polypropylene continuous-flow column reactors: exploration of reactor utility in SNAr reactions and the synthesis of bicyclic and tetracyclic heterocycles. Eur. J. Org. Chem. 44, 6499–6504 (2017).

    Article  CAS  Google Scholar 

  63. Peris, E. et al. Tuneable 3D printed enzymatic reactors for continuous-flow biotransformations. Green Chem. 19, 5345–5349 (2017).

    Article  CAS  Google Scholar 

  64. Okafor, O. et al. Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. React. Chem. Eng. 2, 129–136 (2017).

    Article  CAS  Google Scholar 

  65. Gutmann, B. et al. Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React. Chem. Eng. 2, 919–927 (2017).

    Article  CAS  Google Scholar 

  66. Comina, G., Suska, A. & Filippini, D. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab. Chip 14, 424–430 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Comina, G., Suska, A. & Filippini, D. 3D printed unibody lab-on-a-chip: features survey and check-valves integration. Micromachines 6, 437–451 (2015).

    Article  Google Scholar 

  68. Chan, H. N. et al. Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid. Nanofluid. 19, 9–18 (2015).

    Article  CAS  Google Scholar 

  69. Kamei, K. et al. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 17, 36 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Dahlberg, T. et al. 3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers. Sci. Rep. 8, 3372–3382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He, Y. et al. Printing 3D microfluidic chips with a 3D sugar printer. Microfluid. Nanofluid. 19, 447–456 (2015).

    Article  CAS  Google Scholar 

  72. Saggiomo, V. & Velders, A. H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2, 1–5 (2015).

    Google Scholar 

  73. Gong, H., Woolley, A. T. & Nordin, G. P. 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab. Chip 18, 639–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Gong, H., Woolley, A. T. & Nordin, G. P. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab. Chip 16, 2450–2458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alam, M. N. H. Z., Hossain, F., Vale, A. & Kouzani, A. Design and fabrication of a 3D printed miniature pump for integrated microfluidic applications. Int. J. Precis. Eng. Manuf. 18, 1287–1296 (2017).

    Article  Google Scholar 

  76. Au, A. K., Bhattacharjee, N., Horowitz, L. F., Chang, T. C. & Folch, A. 3D-printed microfluidic automation. Lab. Chip 15, 1934–1941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Keating, S. J. et al. 3D printed multimaterial microfluidic valve. PLOS ONE 11, e0160624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van den Driesche, S., Lucklum, F., Bunge, F. & Vellekoop, M. J. 3D printing solutions for microfluidic chip-to-world connections. Micromachines 9, 1–12 (2018).

    Google Scholar 

  79. Au, A. K., Lee, W. & Folch, A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab. Chip 14, 1294–1301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Monaghan, T., Capel, A. J., Christie, S. D., Harris, R. A. & Friel, R. J. Solid-state additive manufacturing for metallized optical fiber integration. Compos. Part A 76, 181–193 (2015).

    Article  CAS  Google Scholar 

  81. Monaghan, T., Harding, M. J., Harris, R. A., Friel, R. J. & Christie, S. D. R. Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab. Chip 16, 3362–3373 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Capel, A. J. et al. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation. Beilstein J. Org. Chem. 13, 111–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hampson, S. M., Rowe, W., Christie, S. D. R. & Platt, M. 3D printed microfluidic device with integrated optical sensing for particle analysis. Sens Actuators B Chem. 256, 1030–1037 (2018).

    Article  CAS  Google Scholar 

  84. Bishop, G. W., Satterwhite-Warden, J. E., Bist, I., Chen, E. & Rusling, J. F. Electrochemiluminescence at bare and DNA-coated graphite electrodes in 3D-printed fluidic devices. ACS Sensors 1, 197–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Ambrosi, A., Moo, J. G. S. & Pumera, M. Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv. Funct. Mater. 26, 698–703 (2016).

    Article  CAS  Google Scholar 

  86. Chisholm, G., Kitson, P. J., Kirkaldy, N. D., Bloor, L. G. & Cronin, L. 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy Environ. Sci. 7, 3026–3032 (2014).

    Article  CAS  Google Scholar 

  87. Azuaje, J. et al. An efficient and recyclable 3D printed α-Al2O3catalyst for the multicomponent assembly of bioactive heterocycles. Appl. Catal. A Gen. 530, 203–210 (2017).

    Article  CAS  Google Scholar 

  88. Tubío, C. R. et al. 3D printing of a heterogeneous copper-based catalyst. J. Catal. 334, 110–115 (2016).

    Article  CAS  Google Scholar 

  89. Díaz-Marta, A. S. et al. Three-dimensional printing in catalysis: combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 8, 392–404 (2018).

    Article  CAS  Google Scholar 

  90. Skorski, M. R., Esenther, J. M., Ahmed, Z., Miller, A. E. & Hartings, M. R. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci. Technol. Adv. Mater. 17, 89–97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Avril, A. et al. Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React. Chem. Eng. 2, 180–188 (2017).

    Article  CAS  Google Scholar 

  92. Lefevere, J., Gysen, M., Mullens, S., Meynen, V. & Van Noyen, J. The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion. Catal. Today 216, 18–23 (2013).

    Article  CAS  Google Scholar 

  93. Michorczyk, P., He˛drzak, E. & We˛grzyniak, A. Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. J. Mater. Chem. A 4, 18753–18756 (2016).

    Article  CAS  Google Scholar 

  94. Manzano, J. S., Weinstein, Z. B., Sadow, A. D. & Slowing, I. I. Direct 3D printing of catalytically active structures. ACS Catal. 7, 7567–7577 (2017).

    Article  CAS  Google Scholar 

  95. Melchels, F. P. W., Feijen, J. & Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Heal. Econ. 47, 20–33 (2016).

    Article  Google Scholar 

  98. Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab. Chip 17, 2395–2420 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ho, C. M. B., Ng, S. H., Li, K. H. H. & Yoon, Y.-J. 3D printed microfluidics for biological applications. Lab. Chip 15, 3627–3637 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Johnson, B. N. et al. 3D printed nervous system on a chip. Lab. Chip 16, 1393–1400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, J., Hwang, H. H., Wang, P., Whang, G. & Chen, S. Direct 3D-printing of cell-laden constructs in microfluidic architectures. Lab. Chip 16, 1430–1438 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Anderson, K. B., Lockwood, S. Y., Martin, R. S. & Spence, D. M. A 3D printed fluidic device that enables integrated features. Anal. Chem. 85, 5622–5626 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Erkal, J. L. et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab. Chip 14, 2023–2032 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. LaBonia, G. J., Lockwood, S. Y., Heller, A. A., Spence, D. M. & Hummon, A. B. Drug penetration and metabolism in 3-dimensional cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics 16, 1814–1821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lockwood, S. Y., Meisel, J. E., Monsma, F. J. & Spence, D. M. A. Diffusion-based and dynamic 3D-printed device that enables parallel in vitro pharmacokinetic profiling of molecules. Anal. Chem. 88, 1864–1870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, Y., Chen, C., Summers, S., Medawala, W. & Spence, D. M. C-Peptide and zinc delivery to erythrocytes requires the presence of albumin: implications in diabetes explored with a 3D-printed fluidic device. Integr. Biol. 7, 534–543 (2015).

    Article  CAS  Google Scholar 

  107. Santangelo, M. F., Libertino, S., Turner, A. P. F., Filippini, D. & Mak, W. C. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection. Biosens Bioelectron. 99, 464–470 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Singh, M. et al. 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs. Lab. Chip 17, 2561–2571 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Krejcova, L. et al. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron. 54, 421–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Costa, P. F. et al. Additively manufactured device for dynamic culture of large arrays of 3D tissue engineered constructs. Adv. Healthc. Mater. 4, 864–873 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Knowlton, S. et al. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication 8, 25019 (2016).

    Article  Google Scholar 

  112. Ong, L. J. Y. et al. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication 9, 45005 (2017).

    Article  Google Scholar 

  113. Oskui, S. M. et al. Assessing and reducing the toxicity of 3D-printed parts. Environ. Sci. Technol. Lett. 3, 1–6 (2016).

    Article  CAS  Google Scholar 

  114. Urrios, A. et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab. Chip 16, 2287–2294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gross, B. C., Anderson, K. B., Meisel, J. E., McNitt, M. I. & Spence, D. M. Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis. Anal. Chem. 87, 6335–6341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pietrzak, K., Isreb, A. & Alhnan, M. A. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur. J. Pharm. Biopharm. 96, 380–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Okwuosa, T. C. et al. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur. J. Pharm. Sci. 118, 134–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Preis, M. & Öblom, H. 3D-printed drugs for children — are we ready yet? AAPS PharmSciTech 18, 303–308 (2017).

    Article  PubMed  Google Scholar 

  119. Norman, J., Madurawe, R. D., Moore, C. M. V., Khan, M. A. & Khairuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 108, 39–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Trenfield, S. J., Awad, A., Goyanes, A., Gaisford, S. & Basit, A. W. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol. Sci. 39, 440–451 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Khaled, S. A., Burley, J. C., Alexander, M. R. & Roberts, C. J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int. J. Pharm. 461, 105–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Kyobula, M. et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J. Control. Release 261, 207–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Goole, J. & Amighi, K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int. J. Pharm. 499, 376–394 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Hsiao, W. K., Lorber, B., Reitsamer, H. & Khinast, J. 3D printing of oral drugs: a new reality or hype? Expert Opin. Drug Deliv. 15, 1–4 (2018).

    Article  PubMed  Google Scholar 

  125. Goyanes, A., Kobayashi, M., Martínez-Pacheco, R., Gaisford, S. & Basit, A. W. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int. J. Pharm. 514, 290–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Skowyra, J., Pietrzak, K. & Alhnan, M. A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci. 68, 11–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Smith, D. M., Kapoor, Y., Klinzing, G. R. & Procopio, A. T. Pharmaceutical 3D printing: design and qualification of a single step print and fill capsule. Int. J. Pharm. 544, 21–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Goyanes, A., Buanz, A. B. M., Hatton, G. B., Gaisford, S. & Basit, A. W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm. 89, 157–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Khaled, S. A., Burley, J. C., Alexander, M. R., Yang, J. & Roberts, C. J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J. Control. Release 217, 308–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Long, J. et al. Review: application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr. Pharm. Des. 23, 433–439 (2016).

    Google Scholar 

  131. Boehm, R. D., Miller, P. R., Daniels, J., Stafslien, S. & Narayan, R. J. Inkjet printing for pharmaceutical applications. Mater. Today 17, 247–252 (2014).

    Article  CAS  Google Scholar 

  132. Daly, R., Harrington, T. S., Martin, G. D. & Hutchings, I. M. Inkjet printing for pharmaceutics - a review of research and manufacturing. Int. J. Pharm. 494, 554–567 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Acosta-Velez, G. F. & Wu, B. M. 3D pharming: direct printing of personalized pharmaceutical tablets. Polym. Sci. 2, 1–10 (2016).

    Google Scholar 

  134. Alomari, M., Mohamed, F. H., Basit, A. W. & Gaisford, S. Personalised dosing: printing a dose of one’s own medicine. Int. J. Pharm. 494, 568–577 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Buanz, A. B. M., Saunders, M. H., Basit, A. W. & Gaisford, S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm. Res. 28, 2386–2392 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Genina, N. et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur. J. Pharm. Sci. 47, 615–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Sandler, N. et al. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. J. Pharm. Sci. 100, 3386–3395 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Genina, N., Fors, D., Palo, M., Peltonen, J. & Sandler, N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int. J. Pharm. 453, 488–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Stern, M. et al. Additive manufacturing of optically transparent glass. 3D Print. Addit. Manuf. 2, 92–105 (2015).

    Google Scholar 

  140. Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Nguyen, D. T. et al. 3D-printed transparent glass. Adv. Mater. 29, 1–5 (2017).

    Google Scholar 

  142. Ji, Q. et al. A modular microfluidic device via multimaterial 3D printing for emulsion generation. Sci. Rep. 8, 1–11 (2018).

    Article  CAS  Google Scholar 

  143. Rocha, V. G. et al. Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl. Mater. Interfaces 9, 37136–37145 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Loughborough University School of Sport, Exercise and Health Science and School of Science. This work was funded in part by the Engineering and Physical Sciences Research Council (EPSRC), grant ref.: EP/L02067X/2.

Reviewers information

Nature Reviews Chemistry thanks D. Spence, S. Hilton and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the research, writing and review of this article.

Corresponding authors

Correspondence to Andrew J. Capel or Steven D. R. Christie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS

National Institutes of Health (NIH) 3D Print Exchange: https://3dprint.nih.gov/

RepRap: https://reprap.org/wiki/RepRap

Thingiverse: https://www.thingiverse.com/

Glossary

Fused deposition modelling

(FDM). A relatively inexpensive and accessible 3D printing technique in which a thermoplastic is dispensed through a heated nozzle.

Standard tessellation language

(STL). A file format supported by numerous 3D printing software packages that describes the surface geometry of a computer-aided design file through an unstructured triangulated surface.

Perfusion devices or bioreactors

Devices used in cell culture and tissue engineering to aid in the development and maturation of in vitro cultures.

Replicating rapid prototyper

(RepRap). An initiative to develop affordable 3D printers capable of fabricating most of their own components.

Microfluidic devices

Devices that use a network of fluidic channels whereby the characterized geometries are <1 mm.

Computational fluid dynamic (CFD) modelling

A form of fluidic mechanics that simulates the movement and flow of liquids and gases.

Membrane valves

Valves used in a device that regulates, directs or controls the flow of liquid using a permeable membrane.

Multiplexer

A device that combines flows from multiple fluidic inlets and reconstitutes them into fewer outlets.

Luer lock and barbed connectors

Standardized fluidic connectors utilized for fluidic applications.

Static mixers

Fluidic devices without moving components that promote passive mixing within a system.

Immortalized cell line

A population of cells that, owing to mutation, undergo continuous proliferation, avoiding cellular senescence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capel, A.J., Rimington, R.P., Lewis, M.P. et al. 3D printing for chemical, pharmaceutical and biological applications. Nat Rev Chem 2, 422–436 (2018). https://doi.org/10.1038/s41570-018-0058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0058-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing