Perspective | Published:

Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy


The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Cosgrove, D. J. & Jarvis, M. C. Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3, 204 (2012).

  2. 2.

    Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).

  3. 3.

    Himmel, M. E. et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

  4. 4.

    Meng, X. Z. & Ragauskas, A. J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol. 27, 150–158 (2014).

  5. 5.

    Meng, X. et al. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain. Chem. Eng. 4, 4563–4572 (2016).

  6. 6.

    Sun, Z. et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92 (2018).

  7. 7.

    Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

  8. 8.

    Chen, H. et al. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206 (2017).

  9. 9.

    Balch, M. L. et al. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling. Energy Environ. Sci 10, 1252–1261 (2017).

  10. 10.

    Kan, T., Strezov, V. & Evans, T. J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140 (2016).

  11. 11.

    da Costa Sousa, L. et al. Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ. Sci. 9, 1215–1223 (2016).

  12. 12.

    Chundawat, S. P. S. et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4, 973–984 (2011).

  13. 13.

    George, A. et al. Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem. 17, 1728–1734 (2015).

  14. 14.

    Socha, A. M. et al. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc. Natl Acad. Sci. USA 111, E3587–E3595 (2014).

  15. 15.

    Kumar, A. K., Parikh, B. S. & Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 23, 9265–9275 (2016).

  16. 16.

    Zhang, K., Pei, Z. & Wang, D. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour. Technol. 199, 21–33 (2016).

  17. 17.

    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. & Levin, D. B. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011).

  18. 18.

    Rubinstein, M. & Colby, R. H. (eds) Polymer Physics (Oxford Univ. Press, 2003).

  19. 19.

    Smith, M. D., Cai, C. M., Cheng, X., Petridis, L. & Smith, J. C. Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass. Green Chem. 20, 1612–1620 (2018).

  20. 20.

    Muller, F. et al. SANS measurements of semiflexible xyloglucan polysaccharide chains in water reveal their self-avoiding statistics. Biomacromolecules 12, 3330–3336 (2011).

  21. 21.

    Somerville, C. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22, 53–78 (2006).

  22. 22.

    McNamara, J. T., Morgan, J. L. W. & Zimmer, J. A molecular description of cellulose biosynthesis. Annu. Rev. Biochem. 84, 895–921 (2015).

  23. 23.

    Sethaphong, L. et al. Tertiary model of a plant cellulose synthase. Proc. Natl Acad. Sci. USA 110, 7512–7517 (2013).

  24. 24.

    Guerriero, G., Fugelstad, J. & Bulone, V. What do we really know about cellulose biosynthesis in higher plants? J. Integr. Plant Biol. 52, 161–175 (2010).

  25. 25.

    Nishiyama, Y., Sugiyama, J., Chanzy, H. & Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003).

  26. 26.

    Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002).

  27. 27.

    Cosgrove, D. J. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122–131 (2014).

  28. 28.

    Ding, S.-Y. & Himmel, M. E. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agr. Food Chem. 54, 597–606 (2006).

  29. 29.

    Vandavasi, V. G. et al. A structural study of CESA1 catalytic domain of arabidopsis cellulose synthesis complex: evidence for CESA trimers. Plant Physiol. 170, 123–135 (2016).

  30. 30.

    Newman, R. H., Hill, S. J. & Harris, P. J. Wide-angle X-Ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 163, 1558–1567 (2013).

  31. 31.

    Wang, T. & Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 67, 503–514 (2016).

  32. 32.

    Zhang, T., Vavylonis, D., Durachko, D. M. & Cosgrove, D. J. Nanoscale movements of cellulose microfibrils in primary cell walls. Nat. Plants 3, 17056 (2017).

  33. 33.

    Medronho, B., Romano, A., Miguel, M. G., Stigsson, L. & Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012).

  34. 34.

    Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

  35. 35.

    Usov, I. et al. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 6, 7564 (2015).

  36. 36.

    Bergenstråhle, M., Wohlert, J., Himmel, M. E. & Brady, J. W. Simulation studies of the insolubility of cellulose. Carbohydr. Res. 345, 2060–2066 (2010).

  37. 37.

    Kamide, K., Saito, M. & Suzuki, H. Persistence length of cellulose and cellulose derivatives in solution. Makromol. Chem., Rapid Commun. 4, 33–39 (1983).

  38. 38.

    Kroon-Batenburg, L. M. J., Kruiskamp, P. H., Vliegenthart, J. F. G. & Kroon, J. Estimation of the persistence length of polymers by MD simulations on small fragments in solution. Application to cellulose. J. Phys. Chem. B 101, 8454–8459 (1997).

  39. 39.

    Zhao, Z. et al. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J. Phys. Chem. A 117, 2580–2589 (2013).

  40. 40.

    Bu, L., Himmel, M. E. & Crowley, M. F. The molecular origins of twist in cellulose I-beta. Carbohydr. Polym. 125, 146–152 (2015).

  41. 41.

    Hadden, J. A., French, A. D. & Woods, R. J. Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99, 746–756 (2013).

  42. 42.

    Gross, A. S. & Chu, J.-W. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J. Phys. Chem. B 114, 13333–13341 (2010).

  43. 43.

    Gross, A. S., Bell, A. T. & Chu, J. W. Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys. Chem. Chem. Phys. 14, 8425–8430 (2012).

  44. 44.

    Miyamoto, H., Schnupf, U. & Brady, J. W. Water structuring over the hydrophobic surface of cellulose. J. Agr. Food Chem. 62, 11017–11023 (2014).

  45. 45.

    Petridis, L. et al. Hydration control of the mechanical and dynamical properties of cellulose. Biomacromolecules 15, 4152–4159 (2014).

  46. 46.

    Phyo, P., Wang, T., Yang, Y., O’Neill, H. & Hong, M. Direct determination of hydroxymethyl conformations of plant cell wall cellulose using 1H polarization transfer solid-state NMR. Biomacromolecules 19, 1485–1497 (2018).

  47. 47.

    Thomas, L. H. et al. Structure of cellulose microfibrils in primary cell walls from Collenchyma. Plant Physiol. 161, 465–476 (2012).

  48. 48.

    Kanchanalai, P., Temani, G., Kawajiri, Y. & Realff, M. J. Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. Bioresources 11, 1672–1689 (2016).

  49. 49.

    Zhao, W. et al. From lignin subunits to aggregates: insights into lignin solubilization. Green Chem. 19, 3272–3281 (2017).

  50. 50.

    Perras, F. A. et al. Atomic-level structure characterization of biomass pre-and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR. J. Phys. Chem. A 121, 623–630 (2017).

  51. 51.

    Sangha, A. K. et al. Chemical factors that control lignin polymerization. J. Phys. Chem. B 118, 164–170 (2014).

  52. 52.

    Ziebell, A. et al. Increase in 4-coumaryl alcohol Units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J. Biol. Chem. 285, 38961–38968 (2010).

  53. 53.

    Petridis, L., Schulz, R. & Smith, J. C. Simulation analysis of the temperature dependence of lignin structure and dynamics. J. Am. Chem. Soc. 133, 20277–20287 (2011).

  54. 54.

    Ratnaweera, D. R. et al. The impact of lignin source on its self-assembly in solution. RSC Adv. 5, 67258–67266 (2015).

  55. 55.

    Petridis, L. et al. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys. Rev. E 83, 061911 (2011).

  56. 56.

    Grosberg, A. Y., Nechaev, S. K. & Shakhnovich, E. I. The role of topological constraints in the kinetics of collapse of macromolecules. J. Phys. 49, 2095–2100 (1988).

  57. 57.

    Silveira, R. L., Stoyanov, S. R., Gusarov, S., Skaf, M. S. & Kovalenko, A. Supramolecular interactions in secondary Plant cell walls: effect of lignin chemical composition revealed with the molecular theory of solvation. J. Phys. Chem. Lett. 6, 206–211 (2015).

  58. 58.

    Athawale, M. V., Goel, G., Ghosh, T., Truskett, T. M. & Garde, S. Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water. Proc. Natl Acad. Sci. USA 104, 733–738 (2007).

  59. 59.

    Langan, P. et al. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem. 16, 63–68 (2014).

  60. 60.

    Pingali, S. V. et al. Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose 21, 873–878 (2014).

  61. 61.

    Nishiyama, Y., Langan, P., O’Neill, H., Pingali, S. V. & Harton, S. Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 21, 1015–1024 (2014).

  62. 62.

    Silveira, R. L., Stoyanov, S. R., Kovalenko, A. & Skaf, M. S. Cellulose aggregation under hydrothermal pretreatment conditions. Biomacromolecules 17, 2582–2590 (2016).

  63. 63.

    Driemeier, C., Mendes, F. M., Santucci, B. S. & Pimenta, M. T. B. Cellulose co-crystallization and related phenomena occurring in hydrothermal treatment of sugarcane bagasse. Cellulose 22, 2183–2195 (2015).

  64. 64.

    Petridis, L. & Smith, J. C. Conformations of low-molecular-weight lignin polymers in water. ChemSusChem 9, 289–295 (2016).

  65. 65.

    Li, W. et al. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 13, 2038–2047 (2011).

  66. 66.

    Hatakeyama, H. & Hatakeyama, T. Lignin structure, properties, and applications. Adv. Polym. Sci. 232, 1–63 (2009).

  67. 67.

    Khodadadi, S. & Sokolov, A. P. Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter 11, 4984–4998 (2015).

  68. 68.

    Vural, D. et al. Impact of hydration and temperature history on the structure and dynamics of lignin. Green Chem. 20, 1602–1611 (2018).

  69. 69.

    Vural, D., Smith, J. C. & Petridis, L. Dynamics of the lignin glass transition. Phys. Chem. Chem. Phys. 20, 20504–20512 (2018).

  70. 70.

    Li, H., Pu, Y., Kumar, R., Ragauskas, A. J. & Wyman, C. E. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol. Bioeng. 111, 485–492 (2014).

  71. 71.

    Pingali, S. V. et al. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11, 2329–2335 (2010).

  72. 72.

    Selig, M. J. et al. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23, 1333–1339 (2007).

  73. 73.

    Gao, X. et al. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEXTM, and ionic liquid pretreatments. Biotechnol. Biofuels 7, 71 (2014).

  74. 74.

    Lindner, B., Petridis, L., Schulz, R. & Smith, J. C. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics Simulation. Biomacromolecules 14, 3390–3398 (2013).

  75. 75.

    Nakagame, S., Chandra, R. P., Kadla, J. F. & Saddler, J. N. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol. Bioeng. 108, 538–548 (2011).

  76. 76.

    Rahikainen, J. et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface. Biotechnol. Bioeng. 108, 2823–2834 (2011).

  77. 77.

    Sammond, D. W. et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. J. Biol. Chem. 289, 20960–20969 (2014).

  78. 78.

    Liu, Y. S. et al. Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J. Biol. Chem. 286, 11195–11201 (2011).

  79. 79.

    Vermaas, J. V. et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol. Biofuels 8, 217 (2015).

  80. 80.

    Luo, Y. et al. The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal. Today (2018).

  81. 81.

    Jacobsen, S. E. & Wyman, C. E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl. Biochem. Biotechnol. 84, 81–96 (2000).

  82. 82.

    Pereira, C. S., Silveira, R. L., Dupree, P. & Skaf, M. S. Effects of xylan side-chain substitutions on xylan–cellulose interactions and implications for thermal pretreatment of cellulosic biomass. Biomacromolecules 18, 1311–1321 (2017).

  83. 83.

    Grantham, N. J. et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat. Plants 3, 859–865 (2017).

  84. 84.

    Kumar, R. et al. Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chem. 20, 921–934 (2018).

  85. 85.

    Nguyen, T. Y., Cai, C. M., Kumar, R. & Wyman, C. E. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8, 1716–1725 (2015).

  86. 86.

    Cai, C. M., Nagane, N., Kumar, R. & Wyman, C. E. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem. 16, 3819–3829 (2014).

  87. 87.

    Cai, C. M., Zhang, T., Kumar, R. & Wyman, C. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 15, 3140–3145 (2013).

  88. 88.

    Shuai, L. & Luterbacher, J. Organic solvent effects in biomass conversion reactions. ChemSusChem 9, 133–155 (2016).

  89. 89.

    Smith, M. D. et al. Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran–water on lignin structure and dynamics. Green Chem. 18, 1268–1277 (2016).

  90. 90.

    Sannigrahi, P., Kim, D. H., Jung, S. & Ragauskas, A. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci. 4, 1306–1310 (2011).

  91. 91.

    Smith, M. D., Cheng, X., Petridis, L., Mostofian, B. & Smith, J. C. Organosolv–water cosolvent phase separation on cellulose and its influence on the physical deconstruction of cellulose: a molecular dynamics Analysis. Sci. Rep. 7, 14494 (2017).

  92. 92.

    Mostofian, B. et al. Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications. J. Am. Chem. Soc. 138, 10869–10878 (2016).

  93. 93.

    Sun, J. et al. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem. 19, 3152–3163 (2017).

  94. 94.

    Remsing, R. C., Swatloski, R. P., Rogers, R. D. & Moyna, G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and35/37Cl NMR relaxation study on model systems. Chem. Commun. 1271–1273 (2006).

  95. 95.

    Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).

  96. 96.

    Anderson, J. L., Ding, J., Welton, T. & Armstrong, D. W. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 124, 14247–14254 (2002).

  97. 97.

    Pinkert, A., Marsh, K. N., Pang, S. S. & Staiger, M. P. Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728 (2009).

  98. 98.

    Feng, L. & Chen, Z.-I. Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 142, 1–5 (2008).

  99. 99.

    Medronho, B. & Lindman, B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interfac. Sci. 222, 502–508 (2015).

  100. 100.

    Lindman, B., Karlström, G. & Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81 (2010).

  101. 101.

    Mostofian, B., Smith, J. C. & Cheng, X. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. Cellulose 21, 983–997 (2014).

  102. 102.

    Li, Y. et al. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys. Chem. Chem. Phys. 17, 17894–17905 (2015).

  103. 103.

    Liu, H., Sale, K. L., Holmes, B. M., Simmons, B. A. & Singh, S. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J. Phys. Chem. B 114, 4293–4301 (2010).

  104. 104.

    Mostofian, B., Cheng, X. & Smith, J. C. Replica–exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride. J. Phys. Chem. B 118, 11037–11049 (2014).

  105. 105.

    Jiang, X., Kitamura, S., Sato, T. & Terao, K. Chain dimensions and stiffness of cellulosic and amylosic chains in an ionic liquid: cellulose, amylose, and an amylose carbamate in BmimCl. Macromolecules 50, 3979–3984 (2017).

  106. 106.

    Nakamura, Y. & Norisuye, T. in Soft Matter Characterization (eds Borsali, R. & Pecora, R.) 235–286 (Springer, Doordrecht, 2008).

  107. 107.

    Hirosawa, K., Fujii, K., Hashimoto, K. & Shibayama, M. Solvated structure of cellulose in a phosphonate-based ionic liquid. Macromolecules 50, 6509–6517 (2017).

  108. 108.

    Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K. & Ragauskas, A. J. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuel. Bioprod. Biorefin. 8, 836–856 (2014).

  109. 109.

    Ralph, J. et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29–60 (2004).

  110. 110.

    Crestini, C., Melone, F., Sette, M. & Saladino, R. Milled wood lignin: a linear oligomer. Biomacromolecules 12, 3928–3935 (2011).

  111. 111.

    Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E. & Vinzant, T. B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 101, 913–925 (2008).

  112. 112.

    Mellmer, M. A. et al. Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53, 11872–11875 (2014).

  113. 113.

    Walker, T. W. et al. Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ. Sci. 11, 617–628 (2018).

  114. 114.

    Mellmer, M. A. et al. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018).

  115. 115.

    Zheng, M. et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel 177, 130–141 (2016).

  116. 116.

    Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008).

  117. 117.

    Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

  118. 118.

    Das, A. et al. Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation–hydrolysis sequence: comparison of different lignin sources. ACS Sustain. Chem. Eng. 6, 3367–3374 (2018).

  119. 119.

    Thomas, V. A. et al. Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol. Biofuels 10, 252 (2017).

  120. 120.

    Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

  121. 121.

    Sumi, T. & Sekino, H. Integral equation study of hydrophobic interaction: a comparison between the simple point charge model for water and a Lennard-Jones model for solvent. J. Chem. Phy. 126, 144508 (2007).

  122. 122.

    Park, Y. B. & Cosgrove, D. J. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56, 180–194 (2015).

  123. 123.

    Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010).

Download references


This research was supported by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy (DOE), under Contract FWP ERKP752. This research used the resources of three user facilities supported by the DOE: the National Energy Research Scientific Computing Center (NERSC; contract no. DE-AC02-05CH11231), High Flux Isotope Reactor/Spallation Neutron Source (HFIR/SNS; DE-AC02-05CH11231) and Oak Ridge Leadership Computing Facility (OLCF; contract no. DE-AC05-00OR22725).

Author information

All authors contributed equally to the preparation of this manuscript.

Correspondence to Jeremy C. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: The structure of lignocellulosic biomass and its components.
Fig. 2: Molecular dynamics models of three states of lignin
Fig. 3: Steam explosion pretreatment causes cellulose fibrils to coalesce.
Fig. 4: A molecular dynamics snapshot of cellulose in tetrahydrofuran–H2O.