Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy

Abstract

The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The structure of lignocellulosic biomass and its components.
Fig. 2: Molecular dynamics models of three states of lignin
Fig. 3: Steam explosion pretreatment causes cellulose fibrils to coalesce.
Fig. 4: A molecular dynamics snapshot of cellulose in tetrahydrofuran–H2O.

References

  1. 1.

    Cosgrove, D. J. & Jarvis, M. C. Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3, 204 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).

    CAS  PubMed  Google Scholar 

  3. 3.

    Himmel, M. E. et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    CAS  PubMed  Google Scholar 

  4. 4.

    Meng, X. Z. & Ragauskas, A. J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol. 27, 150–158 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Meng, X. et al. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain. Chem. Eng. 4, 4563–4572 (2016).

    CAS  Google Scholar 

  6. 6.

    Sun, Z. et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92 (2018).

    Google Scholar 

  7. 7.

    Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

    PubMed  Google Scholar 

  8. 8.

    Chen, H. et al. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206 (2017).

    CAS  Google Scholar 

  9. 9.

    Balch, M. L. et al. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling. Energy Environ. Sci 10, 1252–1261 (2017).

    CAS  Google Scholar 

  10. 10.

    Kan, T., Strezov, V. & Evans, T. J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140 (2016).

    CAS  Google Scholar 

  11. 11.

    da Costa Sousa, L. et al. Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ. Sci. 9, 1215–1223 (2016).

    Google Scholar 

  12. 12.

    Chundawat, S. P. S. et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4, 973–984 (2011).

    CAS  Google Scholar 

  13. 13.

    George, A. et al. Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem. 17, 1728–1734 (2015).

    CAS  Google Scholar 

  14. 14.

    Socha, A. M. et al. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc. Natl Acad. Sci. USA 111, E3587–E3595 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Kumar, A. K., Parikh, B. S. & Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 23, 9265–9275 (2016).

    CAS  Google Scholar 

  16. 16.

    Zhang, K., Pei, Z. & Wang, D. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour. Technol. 199, 21–33 (2016).

    CAS  PubMed  Google Scholar 

  17. 17.

    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. & Levin, D. B. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    Rubinstein, M. & Colby, R. H. (eds) Polymer Physics (Oxford Univ. Press, 2003).

  19. 19.

    Smith, M. D., Cai, C. M., Cheng, X., Petridis, L. & Smith, J. C. Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass. Green Chem. 20, 1612–1620 (2018).

    CAS  Google Scholar 

  20. 20.

    Muller, F. et al. SANS measurements of semiflexible xyloglucan polysaccharide chains in water reveal their self-avoiding statistics. Biomacromolecules 12, 3330–3336 (2011).

    CAS  PubMed  Google Scholar 

  21. 21.

    Somerville, C. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22, 53–78 (2006).

    CAS  PubMed  Google Scholar 

  22. 22.

    McNamara, J. T., Morgan, J. L. W. & Zimmer, J. A molecular description of cellulose biosynthesis. Annu. Rev. Biochem. 84, 895–921 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sethaphong, L. et al. Tertiary model of a plant cellulose synthase. Proc. Natl Acad. Sci. USA 110, 7512–7517 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Guerriero, G., Fugelstad, J. & Bulone, V. What do we really know about cellulose biosynthesis in higher plants? J. Integr. Plant Biol. 52, 161–175 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Nishiyama, Y., Sugiyama, J., Chanzy, H. & Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003).

    CAS  PubMed  Google Scholar 

  26. 26.

    Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002).

    CAS  PubMed  Google Scholar 

  27. 27.

    Cosgrove, D. J. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122–131 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ding, S.-Y. & Himmel, M. E. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agr. Food Chem. 54, 597–606 (2006).

    CAS  Google Scholar 

  29. 29.

    Vandavasi, V. G. et al. A structural study of CESA1 catalytic domain of arabidopsis cellulose synthesis complex: evidence for CESA trimers. Plant Physiol. 170, 123–135 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Newman, R. H., Hill, S. J. & Harris, P. J. Wide-angle X-Ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 163, 1558–1567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang, T. & Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 67, 503–514 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Zhang, T., Vavylonis, D., Durachko, D. M. & Cosgrove, D. J. Nanoscale movements of cellulose microfibrils in primary cell walls. Nat. Plants 3, 17056 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Medronho, B., Romano, A., Miguel, M. G., Stigsson, L. & Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012).

    CAS  Google Scholar 

  34. 34.

    Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

    CAS  PubMed  Google Scholar 

  35. 35.

    Usov, I. et al. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 6, 7564 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bergenstråhle, M., Wohlert, J., Himmel, M. E. & Brady, J. W. Simulation studies of the insolubility of cellulose. Carbohydr. Res. 345, 2060–2066 (2010).

    PubMed  Google Scholar 

  37. 37.

    Kamide, K., Saito, M. & Suzuki, H. Persistence length of cellulose and cellulose derivatives in solution. Makromol. Chem., Rapid Commun. 4, 33–39 (1983).

    CAS  Google Scholar 

  38. 38.

    Kroon-Batenburg, L. M. J., Kruiskamp, P. H., Vliegenthart, J. F. G. & Kroon, J. Estimation of the persistence length of polymers by MD simulations on small fragments in solution. Application to cellulose. J. Phys. Chem. B 101, 8454–8459 (1997).

    CAS  Google Scholar 

  39. 39.

    Zhao, Z. et al. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J. Phys. Chem. A 117, 2580–2589 (2013).

    CAS  PubMed  Google Scholar 

  40. 40.

    Bu, L., Himmel, M. E. & Crowley, M. F. The molecular origins of twist in cellulose I-beta. Carbohydr. Polym. 125, 146–152 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Hadden, J. A., French, A. D. & Woods, R. J. Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99, 746–756 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gross, A. S. & Chu, J.-W. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J. Phys. Chem. B 114, 13333–13341 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    Gross, A. S., Bell, A. T. & Chu, J. W. Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys. Chem. Chem. Phys. 14, 8425–8430 (2012).

    CAS  PubMed  Google Scholar 

  44. 44.

    Miyamoto, H., Schnupf, U. & Brady, J. W. Water structuring over the hydrophobic surface of cellulose. J. Agr. Food Chem. 62, 11017–11023 (2014).

    CAS  Google Scholar 

  45. 45.

    Petridis, L. et al. Hydration control of the mechanical and dynamical properties of cellulose. Biomacromolecules 15, 4152–4159 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Phyo, P., Wang, T., Yang, Y., O’Neill, H. & Hong, M. Direct determination of hydroxymethyl conformations of plant cell wall cellulose using 1H polarization transfer solid-state NMR. Biomacromolecules 19, 1485–1497 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Thomas, L. H. et al. Structure of cellulose microfibrils in primary cell walls from Collenchyma. Plant Physiol. 161, 465–476 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kanchanalai, P., Temani, G., Kawajiri, Y. & Realff, M. J. Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. Bioresources 11, 1672–1689 (2016).

    CAS  Google Scholar 

  49. 49.

    Zhao, W. et al. From lignin subunits to aggregates: insights into lignin solubilization. Green Chem. 19, 3272–3281 (2017).

    CAS  Google Scholar 

  50. 50.

    Perras, F. A. et al. Atomic-level structure characterization of biomass pre-and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR. J. Phys. Chem. A 121, 623–630 (2017).

    CAS  PubMed  Google Scholar 

  51. 51.

    Sangha, A. K. et al. Chemical factors that control lignin polymerization. J. Phys. Chem. B 118, 164–170 (2014).

    CAS  PubMed  Google Scholar 

  52. 52.

    Ziebell, A. et al. Increase in 4-coumaryl alcohol Units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J. Biol. Chem. 285, 38961–38968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Petridis, L., Schulz, R. & Smith, J. C. Simulation analysis of the temperature dependence of lignin structure and dynamics. J. Am. Chem. Soc. 133, 20277–20287 (2011).

    CAS  PubMed  Google Scholar 

  54. 54.

    Ratnaweera, D. R. et al. The impact of lignin source on its self-assembly in solution. RSC Adv. 5, 67258–67266 (2015).

    CAS  Google Scholar 

  55. 55.

    Petridis, L. et al. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys. Rev. E 83, 061911 (2011).

    Google Scholar 

  56. 56.

    Grosberg, A. Y., Nechaev, S. K. & Shakhnovich, E. I. The role of topological constraints in the kinetics of collapse of macromolecules. J. Phys. 49, 2095–2100 (1988).

    CAS  Google Scholar 

  57. 57.

    Silveira, R. L., Stoyanov, S. R., Gusarov, S., Skaf, M. S. & Kovalenko, A. Supramolecular interactions in secondary Plant cell walls: effect of lignin chemical composition revealed with the molecular theory of solvation. J. Phys. Chem. Lett. 6, 206–211 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Athawale, M. V., Goel, G., Ghosh, T., Truskett, T. M. & Garde, S. Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water. Proc. Natl Acad. Sci. USA 104, 733–738 (2007).

    CAS  PubMed  Google Scholar 

  59. 59.

    Langan, P. et al. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem. 16, 63–68 (2014).

    CAS  Google Scholar 

  60. 60.

    Pingali, S. V. et al. Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose 21, 873–878 (2014).

    CAS  Google Scholar 

  61. 61.

    Nishiyama, Y., Langan, P., O’Neill, H., Pingali, S. V. & Harton, S. Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 21, 1015–1024 (2014).

    Google Scholar 

  62. 62.

    Silveira, R. L., Stoyanov, S. R., Kovalenko, A. & Skaf, M. S. Cellulose aggregation under hydrothermal pretreatment conditions. Biomacromolecules 17, 2582–2590 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Driemeier, C., Mendes, F. M., Santucci, B. S. & Pimenta, M. T. B. Cellulose co-crystallization and related phenomena occurring in hydrothermal treatment of sugarcane bagasse. Cellulose 22, 2183–2195 (2015).

    CAS  Google Scholar 

  64. 64.

    Petridis, L. & Smith, J. C. Conformations of low-molecular-weight lignin polymers in water. ChemSusChem 9, 289–295 (2016).

    CAS  PubMed  Google Scholar 

  65. 65.

    Li, W. et al. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 13, 2038–2047 (2011).

    CAS  Google Scholar 

  66. 66.

    Hatakeyama, H. & Hatakeyama, T. Lignin structure, properties, and applications. Adv. Polym. Sci. 232, 1–63 (2009).

    Google Scholar 

  67. 67.

    Khodadadi, S. & Sokolov, A. P. Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter 11, 4984–4998 (2015).

    CAS  PubMed  Google Scholar 

  68. 68.

    Vural, D. et al. Impact of hydration and temperature history on the structure and dynamics of lignin. Green Chem. 20, 1602–1611 (2018).

    CAS  Google Scholar 

  69. 69.

    Vural, D., Smith, J. C. & Petridis, L. Dynamics of the lignin glass transition. Phys. Chem. Chem. Phys. 20, 20504–20512 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Li, H., Pu, Y., Kumar, R., Ragauskas, A. J. & Wyman, C. E. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol. Bioeng. 111, 485–492 (2014).

    CAS  PubMed  Google Scholar 

  71. 71.

    Pingali, S. V. et al. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11, 2329–2335 (2010).

    CAS  PubMed  Google Scholar 

  72. 72.

    Selig, M. J. et al. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23, 1333–1339 (2007).

    CAS  PubMed  Google Scholar 

  73. 73.

    Gao, X. et al. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEXTM, and ionic liquid pretreatments. Biotechnol. Biofuels 7, 71 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lindner, B., Petridis, L., Schulz, R. & Smith, J. C. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics Simulation. Biomacromolecules 14, 3390–3398 (2013).

    CAS  PubMed  Google Scholar 

  75. 75.

    Nakagame, S., Chandra, R. P., Kadla, J. F. & Saddler, J. N. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol. Bioeng. 108, 538–548 (2011).

    CAS  PubMed  Google Scholar 

  76. 76.

    Rahikainen, J. et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface. Biotechnol. Bioeng. 108, 2823–2834 (2011).

    CAS  PubMed  Google Scholar 

  77. 77.

    Sammond, D. W. et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. J. Biol. Chem. 289, 20960–20969 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Liu, Y. S. et al. Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J. Biol. Chem. 286, 11195–11201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Vermaas, J. V. et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol. Biofuels 8, 217 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Luo, Y. et al. The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal. Today https://doi.org/10.1016/j.cattod.2018.06.042 (2018).

    Article  Google Scholar 

  81. 81.

    Jacobsen, S. E. & Wyman, C. E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl. Biochem. Biotechnol. 84, 81–96 (2000).

    PubMed  Google Scholar 

  82. 82.

    Pereira, C. S., Silveira, R. L., Dupree, P. & Skaf, M. S. Effects of xylan side-chain substitutions on xylan–cellulose interactions and implications for thermal pretreatment of cellulosic biomass. Biomacromolecules 18, 1311–1321 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    Grantham, N. J. et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat. Plants 3, 859–865 (2017).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kumar, R. et al. Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chem. 20, 921–934 (2018).

    CAS  Google Scholar 

  85. 85.

    Nguyen, T. Y., Cai, C. M., Kumar, R. & Wyman, C. E. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8, 1716–1725 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Cai, C. M., Nagane, N., Kumar, R. & Wyman, C. E. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem. 16, 3819–3829 (2014).

    CAS  Google Scholar 

  87. 87.

    Cai, C. M., Zhang, T., Kumar, R. & Wyman, C. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 15, 3140–3145 (2013).

    CAS  Google Scholar 

  88. 88.

    Shuai, L. & Luterbacher, J. Organic solvent effects in biomass conversion reactions. ChemSusChem 9, 133–155 (2016).

    CAS  PubMed  Google Scholar 

  89. 89.

    Smith, M. D. et al. Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran–water on lignin structure and dynamics. Green Chem. 18, 1268–1277 (2016).

    CAS  Google Scholar 

  90. 90.

    Sannigrahi, P., Kim, D. H., Jung, S. & Ragauskas, A. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci. 4, 1306–1310 (2011).

    CAS  Google Scholar 

  91. 91.

    Smith, M. D., Cheng, X., Petridis, L., Mostofian, B. & Smith, J. C. Organosolv–water cosolvent phase separation on cellulose and its influence on the physical deconstruction of cellulose: a molecular dynamics Analysis. Sci. Rep. 7, 14494 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Mostofian, B. et al. Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications. J. Am. Chem. Soc. 138, 10869–10878 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Sun, J. et al. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem. 19, 3152–3163 (2017).

    CAS  Google Scholar 

  94. 94.

    Remsing, R. C., Swatloski, R. P., Rogers, R. D. & Moyna, G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and35/37Cl NMR relaxation study on model systems. Chem. Commun. 1271–1273 (2006).

  95. 95.

    Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).

    CAS  PubMed  Google Scholar 

  96. 96.

    Anderson, J. L., Ding, J., Welton, T. & Armstrong, D. W. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 124, 14247–14254 (2002).

    CAS  PubMed  Google Scholar 

  97. 97.

    Pinkert, A., Marsh, K. N., Pang, S. S. & Staiger, M. P. Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728 (2009).

    CAS  PubMed  Google Scholar 

  98. 98.

    Feng, L. & Chen, Z.-I. Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 142, 1–5 (2008).

    Google Scholar 

  99. 99.

    Medronho, B. & Lindman, B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interfac. Sci. 222, 502–508 (2015).

    CAS  Google Scholar 

  100. 100.

    Lindman, B., Karlström, G. & Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81 (2010).

    CAS  Google Scholar 

  101. 101.

    Mostofian, B., Smith, J. C. & Cheng, X. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. Cellulose 21, 983–997 (2014).

    CAS  Google Scholar 

  102. 102.

    Li, Y. et al. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys. Chem. Chem. Phys. 17, 17894–17905 (2015).

    CAS  PubMed  Google Scholar 

  103. 103.

    Liu, H., Sale, K. L., Holmes, B. M., Simmons, B. A. & Singh, S. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J. Phys. Chem. B 114, 4293–4301 (2010).

    CAS  PubMed  Google Scholar 

  104. 104.

    Mostofian, B., Cheng, X. & Smith, J. C. Replica–exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride. J. Phys. Chem. B 118, 11037–11049 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Jiang, X., Kitamura, S., Sato, T. & Terao, K. Chain dimensions and stiffness of cellulosic and amylosic chains in an ionic liquid: cellulose, amylose, and an amylose carbamate in BmimCl. Macromolecules 50, 3979–3984 (2017).

    CAS  Google Scholar 

  106. 106.

    Nakamura, Y. & Norisuye, T. in Soft Matter Characterization (eds Borsali, R. & Pecora, R.) 235–286 (Springer, Doordrecht, 2008).

  107. 107.

    Hirosawa, K., Fujii, K., Hashimoto, K. & Shibayama, M. Solvated structure of cellulose in a phosphonate-based ionic liquid. Macromolecules 50, 6509–6517 (2017).

    CAS  Google Scholar 

  108. 108.

    Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K. & Ragauskas, A. J. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuel. Bioprod. Biorefin. 8, 836–856 (2014).

    CAS  Google Scholar 

  109. 109.

    Ralph, J. et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29–60 (2004).

    CAS  Google Scholar 

  110. 110.

    Crestini, C., Melone, F., Sette, M. & Saladino, R. Milled wood lignin: a linear oligomer. Biomacromolecules 12, 3928–3935 (2011).

    CAS  PubMed  Google Scholar 

  111. 111.

    Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E. & Vinzant, T. B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 101, 913–925 (2008).

    CAS  PubMed  Google Scholar 

  112. 112.

    Mellmer, M. A. et al. Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53, 11872–11875 (2014).

    CAS  Google Scholar 

  113. 113.

    Walker, T. W. et al. Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ. Sci. 11, 617–628 (2018).

    CAS  Google Scholar 

  114. 114.

    Mellmer, M. A. et al. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018).

    Google Scholar 

  115. 115.

    Zheng, M. et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel 177, 130–141 (2016).

    CAS  Google Scholar 

  116. 116.

    Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008).

    Google Scholar 

  117. 117.

    Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    CAS  Google Scholar 

  118. 118.

    Das, A. et al. Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation–hydrolysis sequence: comparison of different lignin sources. ACS Sustain. Chem. Eng. 6, 3367–3374 (2018).

    CAS  Google Scholar 

  119. 119.

    Thomas, V. A. et al. Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol. Biofuels 10, 252 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  PubMed  Google Scholar 

  121. 121.

    Sumi, T. & Sekino, H. Integral equation study of hydrophobic interaction: a comparison between the simple point charge model for water and a Lennard-Jones model for solvent. J. Chem. Phy. 126, 144508 (2007).

    Google Scholar 

  122. 122.

    Park, Y. B. & Cosgrove, D. J. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56, 180–194 (2015).

    CAS  PubMed  Google Scholar 

  123. 123.

    Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy (DOE), under Contract FWP ERKP752. This research used the resources of three user facilities supported by the DOE: the National Energy Research Scientific Computing Center (NERSC; contract no. DE-AC02-05CH11231), High Flux Isotope Reactor/Spallation Neutron Source (HFIR/SNS; DE-AC02-05CH11231) and Oak Ridge Leadership Computing Facility (OLCF; contract no. DE-AC05-00OR22725).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Jeremy C. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petridis, L., Smith, J.C. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 2, 382–389 (2018). https://doi.org/10.1038/s41570-018-0050-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing