Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metal oxide redox chemistry for chemical looping processes

Abstract

Chemical looping offers a versatile platform to convert fuels and oxidizers in a clean and efficient manner. Central to this technology are metal oxide materials that can oxidize fuels, affording a reduced material that can be reoxidized to close the loop. Recent years have seen substantial advances in the design, formulation and manufacture of these oxygen carrier materials and their incorporation into chemical looping reactors for the production of various chemicals. This Review describes the mechanisms by which oxygen carriers undergo redox reactions and how these carriers can be incorporated into robust chemical looping reactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical looping involves exposing a solid carrier material to different feed streams in separate steps.
Fig. 2: Selected developments in chemical looping for combustion, partial oxidation and selective oxidation.
Fig. 3: An oxygen carrier particle can be reduced by H2 and reoxidized by O2.
Fig. 4: Modified Ellingham diagrams for unary, binary and ternary metal oxides, as well as typical feedstocks.
Fig. 5: Representative crystal structures of metal oxide oxygen carriers.
Fig. 6: The morphological evolution of metal microparticles during chemical looping.
Fig. 7: Modifying the surface of an oxygen carrier can improve its cyclic redox reactivity.

Similar content being viewed by others

References

  1. Fan, L.-S. Chemical Looping Systems for Fossil Energy Conversions (Wiley, New York, 2010).

    Google Scholar 

  2. Lyngfelt, A. & Linderholm, C. Chemical-looping combustion of solid fuels — status and recent progress. Energy Procedia 114, 371–386 (2017).

    CAS  Google Scholar 

  3. Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    CAS  Google Scholar 

  4. Zhao, X. et al. Biomass-based chemical looping technologies: the good, the bad and the future. Energy Environ. Sci. 10, 1885–1910 (2017).

    CAS  Google Scholar 

  5. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. & de Diego, L. F. Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 38, 215–282 (2012).

    CAS  Google Scholar 

  6. Thursfield, A., Murugan, A., Franca, R. & Metcalfe, I. S. Chemical looping and oxygen permeable ceramic membranes for hydrogen production — a review. Energy Environ. Sci. 5, 7421–7459 (2012).

    CAS  Google Scholar 

  7. Luo, S., Zeng, L. & Fan, L.-S. Chemical looping technology: oxygen carrier characteristics. Annu. Rev. Chem. Biomol. Eng. 6, 53–75 (2015).

    CAS  PubMed  Google Scholar 

  8. Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354, 449–452 (2016). This work demonstrates that oxygen carriers can be used in combination with other carrier materials to enable broader applications of chemical looping technology.

    CAS  PubMed  Google Scholar 

  9. Hua, X. & Wang, W. Chemical looping combustion: a new low-dioxin energy conversion technology. J. Environ. Sci. 32, 135–145 (2015).

    Google Scholar 

  10. Song, T. et al. Nitrogen transfer of fuel-N in chemical looping combustion. Combust. Flame 159, 1286–1295 (2012).

    CAS  Google Scholar 

  11. Ishida, M., Zheng, D. & Akehata, T. Evaluation of a chemical-looping–combustion power-generation system by graphic exergy analysis. Energy 12, 147–154 (1987).

    CAS  Google Scholar 

  12. Dennis, J. S., Müller, C. R. & Scott, S. A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: performance with bituminous coals. Fuel 89, 2353–2364 (2010).

    CAS  Google Scholar 

  13. Song, T. & Shen, L. Review of reactor for chemical looping combustion of solid fuels. Int. J. Greenhouse Gas Control 76, 92–110 (2018).

    CAS  Google Scholar 

  14. Fan, L.-S. Chemical Looping Partial Oxidation: Gasification, Reforming, and Chemical Syntheses (Cambridge Univ. Press, Cambridge, 2017). This book includes comprehensive descriptions of various partial oxidation processes involving chemical looping schemes.

    Google Scholar 

  15. Mattisson, T., Lyngfelt, A. & Leion, H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int. J. Greenhouse Gas Control 3, 11–19 (2009).

    CAS  Google Scholar 

  16. Luo, S. et al. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2: CO ratio of 2: 1. Energy Environ. Sci. 7, 4104–4117 (2014).

    CAS  Google Scholar 

  17. Chen, S., Zeng, L., Tian, H., Li, X. & Gong, J. Enhanced lattice oxygen reactivity over Ni modified WO3-based redox catalysts for chemical looping partial oxidation of methane. ACS Catal. 7, 3548–3559 (2017). This work shows how bulk phase doping and surface modifications of mixed oxides can improve the performances of these oxygen-carrying materials.

    CAS  Google Scholar 

  18. Mihai, O., Chen, D. & Holmen, A. Chemical looping methane partial oxidation: the effect of the crystal size and O content of LaFeO3. J. Catal. 293, 175–185 (2012).

    CAS  Google Scholar 

  19. He, F., Galinsky, N. & Li, F. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles — feasibility assessment and process simulations. Int. J. Hydrogen Energy 38, 7839–7854 (2013).

    CAS  Google Scholar 

  20. Galvita, V. V., Poelman, H. & Marin, G. B. Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping. Top. Catal. 54, 907–913 (2011).

    CAS  Google Scholar 

  21. Bhavsar, S., Najera, M., Solunke, R. & Veser, G. Chemical looping: to combustion and beyond. Catal. Today 228, 96–105 (2014).

    CAS  Google Scholar 

  22. Voitic, G. & Hacker, V. Recent advancements in chemical looping water splitting for the production of hydrogen. RSC Adv. 6, 98267–98296 (2016).

    CAS  Google Scholar 

  23. Jiang, Q. et al. Catalytic function of IrOx in the two-step thermochemical CO2-splitting reaction at high temperatures. ACS Catal. 6, 1172–1180 (2016).

    CAS  Google Scholar 

  24. Muhich, C. L. et al. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 341, 540–542 (2013).

    CAS  PubMed  Google Scholar 

  25. Zhang, J., Haribal, V. & Li, F. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme. Sci. Adv. 3, e1701184 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Contractor, R. M. Dupont’s CFB technology for maleic anhydride. Chem. Eng. Sci. 54, 5627–5632 (1999).

    CAS  Google Scholar 

  27. Patience, G. S. & Bockrath, R. E. Butane oxidation process development in a circulating fluidized bed. Appl. Catal., A 376, 4–12 (2010).

    CAS  Google Scholar 

  28. Naeem, M. A. et al. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents. Nat. Comm. 9, 2408 (2018).

    Google Scholar 

  29. Brunet, S., Mey, D., Pérot, G., Bouchy, C. & Diehl, F. On the hydrodesulfurization of FCC gasoline: a review. Appl. Catal., A 278, 143–172 (2005).

    CAS  Google Scholar 

  30. Michalsky, R., Avram, A. M., Peterson, B. A., Pfromm, P. H. & Peterson, A. A. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage. Chem. Sci. 6, 3965–3974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Laassiri, S., Zeinalipour-Yazdi, C. D., Catlow, C. R. A. & Hargreaves, J. S. J. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping. Appl. Catal., B 223, 60–66 (2018).

    CAS  Google Scholar 

  32. Hepworth, T. C. Oxygen for limelight. Nature 47, 176–177 (1892).

    Google Scholar 

  33. Hardie, D. W. F. & Pratt, J. D. A History of the Modern British Chemical Industry (Pergamon Press, Oxford, 1966).

    Google Scholar 

  34. Bergmann, F. J. Process for the production of calcium carbide in blast furnaces. German patent 29384 (1897).

  35. Lewis, W. K. & Gilliland, E. R. Conversion of hydrocarbons with suspended catalyst. US Patent 2498088 (1950).

  36. Lewis, W. K. & Gilliland, E. R. Production of pure carbon dioxide. US Patent 2665971 (1954).

  37. Institute of Gas Technology. Development of the Steam-Iron Process for Hydrogen Production (US Department Energy, 1979).

  38. Richter, H. J. & Knoche, K. F. Reversibility of combustion processes. ACS Symp. Ser. 235, 71–85 (1983).

    CAS  Google Scholar 

  39. Ströhle, J., Orth, M. & Epple, B. Design and operation of a 1MWth chemical looping plant. Appl. Energy 113, 1490–1495 (2014).

    Google Scholar 

  40. Whitty, K., Lighty, J. & Fry, A. Development and Scale-Up of Copper-Based Chemical Looping with Oxygen Uncoupling. Presented at the 4th International Conference on Chemical Looping (Nanjing, China, 2016).

    Google Scholar 

  41. Langorgen, O., Saanum, I. & Haugen, N. E. L. Performance of a 150 kW Chemical Looping Combustion Reactor System for Gaseous Fuels Using a Copper-Based Oxygen Carrier. Presented at the 4th International Conference on Chemical Looping (Nanjing, China, 2016).

    Google Scholar 

  42. Andrus, H. E., Brautsch, A. & Beal, C. Alstom’s chemical looping coal-fired power plant development program. Proc. Int. Tech. Conf. Coal Util. Fuel Syst. 2, 993–1004 (2007).

    Google Scholar 

  43. Fan, L.-S. Chemical Looping Technology for Combustion, Gasification, Reforming, and Chemical Syntheses: Redox Reaction Mechanism and Technology Commercialization Readiness. Presented at the 255th National Meeting and Exposition of the American-Chemical-Society (New Orleans, USA, 2018).

    Google Scholar 

  44. Corcoran, A., Knutsson, P., Lind, F. & Thunman, H. Comparing the structural development of sand and rock ilmenite during long-term exposure in a biomass fired 12MWth CFB-boiler. Fuel Process. Technol. 171, 39–44 (2018).

    CAS  Google Scholar 

  45. Shen, L. H. 3MWth Pilot Demonstration of Chemical Looping Combustion and Gasification of Coal in China. Presented at the 6th International Conference on CO2 Emission Control and Utilization (Hangzhou, China, 2018).

    Google Scholar 

  46. Li, Z. S. Demonstration of CLC Technology in Semi-Industrial Scale via a Chinese-European Collaboration. Presented at the 6th International Conference on CO2 Emission Control and Utilization (Hangzhou, China, 2018).

    Google Scholar 

  47. Lane, H. Process of producing hydrogen. US Patent 1078686 (1913).

  48. Reed, H. C. & Berg, C. H. Hydrogen. US Patent 2635947 (1953).

  49. Dobbyn, R. C. et al. Evaluation of the Performance of Materials and Components Used in the CO2 Acceptor Process Gasification Pilot Plant (US Department Energy, 1978).

  50. Rao, C. N. R. & Dey, S. Solar thermochemical splitting of water to generate hydrogen. Proc. Natl Acad. Sci. USA 114, 13385–13393 (2017).

    CAS  PubMed  Google Scholar 

  51. Muhich, C. L. et al. A review and perspective of efficient hydrogen generation via solar thermal water splitting. WIREs Energy Environ. 5, 261–287 (2016).

    CAS  Google Scholar 

  52. Haribal, V. P., He, F., Mishra, A. & Li, F. Iron-doped BaMnO3 for hybrid water splitting and syngas generation. ChemSusChem 10, 3402–3408 (2017).

    CAS  PubMed  Google Scholar 

  53. Otsuka, K., Wang, Y., Sunada, E. & Yamanaka, I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 175, 152–160 (1998).

    CAS  Google Scholar 

  54. Steinfeld, A., Kuhn, P. & Karni, J. High-temperature solar thermochemistry: production of iron and synthesis gas by Fe3O4-reduction with methane. Energy 18, 239–249 (1993).

    CAS  Google Scholar 

  55. Zheng, Y. et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Appl. Catal., B 202, 51–63 (2017).

    CAS  Google Scholar 

  56. Zhao, K. et al. Exploration of the mechanism of chemical looping steam methane reforming using double perovskite-type oxides La1.6Sr0.4FeCoO6. Appl. Catal., B 219, 672–682 (2017).

    CAS  Google Scholar 

  57. Kulkarni, P. et al. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2 (US Department Energy, 2008).

  58. Jia, Z. et al. Design Basis of 1 MWth Calcium Looping Gasification Pilot Unit. Presented at the 2018 International Pittsburgh Coal Conference (Xuzhou, China, 2018).

    Google Scholar 

  59. Chung, C., Qin, L., Shah, V. & Fan, L.-S. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications. Energy Environ. Sci. 10, 2318–2323 (2017).

    CAS  Google Scholar 

  60. Fan, L.-S., Zeng, L., Wang, W. & Luo, S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion — prospect and opportunity. Energy Environ. Sci. 5, 7254–7280 (2012).

    CAS  Google Scholar 

  61. Zeng, L., Kathe, M. V., Chung, E. Y. & Fan, L.-S. Some remarks on direct solid fuel combustion using chemical looping processes. Curr. Opin. Chem. Eng. 1, 290–295 (2012).

    CAS  Google Scholar 

  62. Qin, L. et al. Nanostructure formation mechanism and ion diffusion in iron–titanium composite materials with chemical looping redox reactions. J. Mater. Chem. A 3, 11302–11312 (2015). This paper details ionic diffusion in a mixed-oxide system and how this is related to morphology changes during chemical looping processes.

    CAS  Google Scholar 

  63. Cavani, F. & Trifirò, F. The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins. Catal. Today 24, 307–313 (1995).

    CAS  Google Scholar 

  64. Keller, G. E. & Bhasin, M. M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 73, 9–19 (1982).

    CAS  Google Scholar 

  65. Neal, L. M., Yusuf, S., Sofranko, J. A. & Li, F. Oxidative dehydrogenation of ethane: a chemical looping approach. Energy Technol. 4, 1200–1208 (2016).

    CAS  Google Scholar 

  66. Chung, E. Y. et al. Catalytic oxygen carriers and process systems for oxidative coupling of methane using the chemical looping technology. Ind. Eng. Chem. Res. 55, 12750–12764 (2016).

    CAS  Google Scholar 

  67. Brady, C., Murphy, B. & Xu, B. Enhanced methane dehydroaromatization via coupling with chemical looping. ACS Catal. 7, 3924–3928 (2017).

    CAS  Google Scholar 

  68. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017). This work describes the potential application of chemical looping processes in the direct syntheses of chemicals from simple feedstocks.

    CAS  PubMed  Google Scholar 

  69. Grasselli, R. K., Stern, D. L. & Tsikoyiannis, J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): I. DH SHC DH catalysts in series (co-fed process mode). Appl. Catal., A 189, 1–8 (1999).

    CAS  Google Scholar 

  70. Grasselli, R. K., Stern, D. L. & Tsikoyiannis, J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): II. DH+ SHC catalysts physically mixed (redox process mode). Appl. Catal., A 189, 9–14 (1999).

    CAS  Google Scholar 

  71. Mamedov, E. A. & Cortés Corberán, V. Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks. Appl. Catal., A 127, 1–40 (1995).

    CAS  Google Scholar 

  72. Al-Ghamdi, S. A. & de Lasa, H. I. Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst. Fuel 128, 120–140 (2014).

    CAS  Google Scholar 

  73. Gao, Y., Neal, L. M. & Li, F. Li-promoted LaxSr2−xFeO4−δ core–shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme. ACS Catal. 6, 7293–7302 (2016).

    CAS  Google Scholar 

  74. Yusuf, S., Neal, L. M. & Li, F. Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme. ACS Catal. 7, 5163–5173 (2017).

    CAS  Google Scholar 

  75. Yusuf, S. et al. Manganese silicate based redox catalysts for greener ethylene production via chemical looping — oxidative dehydrogenation of ethane. Appl. Catal., B 232, 77–85 (2018).

    CAS  Google Scholar 

  76. Novotný, P., Yusuf, S., Li, F. & Lamb, H. H. Oxidative dehydrogenation of ethane using MoO3/Fe2O3 catalysts in a cyclic redox mode. Catal. Today. https://doi.org/10.1016/j.cattod.2018.02.046 (2018).

    Article  Google Scholar 

  77. Gao, Y., Haeri, F., He, F. & Li, F. Alkali metal-promoted LaxSr2−xFeO4−δ redox catalysts for chemical looping oxidative dehydrogenation of ethane. ACS Catal. 8, 1757–1766 (2018).

    CAS  Google Scholar 

  78. Chan, M. S. C., Marek, E., Scott, S. A. & Dennis, J. S. Chemical looping epoxidation. J. Catal. 359, 1–7 (2018).

    CAS  Google Scholar 

  79. Chan, M. S. C. et al. Improving hydrogen yields, and hydrogen:steam ratio in the chemical looping production of hydrogen using Ca2Fe2O5. Chem. Eng. J. 296, 406–411 (2016).

    CAS  Google Scholar 

  80. Zhao, K. et al. Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production. Appl. Energy 168, 193–203 (2016).

    CAS  Google Scholar 

  81. Rydén, M. et al. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1−xFeyCo1−yO3−δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4. Int. J. Greenhouse Gas Control 2, 21–36 (2008).

    Google Scholar 

  82. Fan, L.-S., Tong, A. & Zeng, L. in Multiphase Reactor Engineering for Clean and Low–Carbon Energy Applications (eds Cheng, Y., Wei, F. & Jin, Y.) 377–400 (Wiley, 2017).

  83. Imtiaz, Q., Hosseini, D. & Müller, C. R. Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU): thermodynamics, material development, and synthesis. Energy Technol. 1, 633–647 (2013).

    CAS  Google Scholar 

  84. Lau, C. Y., Dunstan, M. T., Hu, W., Grey, C. P. & Scott, S. A. Large scale in silico screening of materials for carbon capture through chemical looping. Energy Environ. Sci. 10, 818–831 (2017). This paper describes how advanced computational tools can be used for the screening of new potential oxygen carriers.

    CAS  Google Scholar 

  85. Adánez, J. et al. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 18, 371–377 (2004).

    Google Scholar 

  86. Andersson, D. A., Simak, S. I., Skorodumova, N. V., Abrikosov, I. A. & Johansson, B. Optimization of ionic conductivity in doped ceria. Proc. Natl Acad. Sci. USA 103, 3518–3521 (2006).

    CAS  PubMed  Google Scholar 

  87. Kümmerle, E. A. & Heger, G. The Structures of C–Ce2O3+δ, Ce7O12, and Ce11O20. J. Solid State Chem. 147, 485–500 (1999).

    Google Scholar 

  88. Yang, Z., Woo, T. K., Baudin, M. & Hermansson, K. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. J. Chem. Phys. 120, 7741–7749 (2004).

    CAS  PubMed  Google Scholar 

  89. Nolan, M., Parker, S. C. & Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 595, 223–232 (2005).

    CAS  Google Scholar 

  90. Cheng, Z., Sherman, B. J. & Lo, C. S. Carbon dioxide adsorption and activation on ceria (110): a density functional theory study. J. Chem. Phys. 138, 014702 (2013).

    PubMed  Google Scholar 

  91. Paier, J., Penschke, C. & Sauer, J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem. Rev. 113, 3949–3985 (2013).

    CAS  PubMed  Google Scholar 

  92. Mahato, N., Banerjee, A., Gupta, A., Omar, S. & Balani, K. Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015).

    CAS  Google Scholar 

  93. Dai, X. P., Li, R. J., Yu, C. C. & Hao, Z. P. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage. J. Phys. Chem. B 110, 22525–22531 (2006).

    CAS  PubMed  Google Scholar 

  94. Mihai, O., Chen, D. & Holmen, A. Catalytic consequence of oxygen of lanthanum ferrite perovskite in chemical looping reforming of methane. Ind. Eng. Chem. Res. 50, 2613–2621 (2011).

    CAS  Google Scholar 

  95. Nalbandian, L., Evdou, A. & Zaspalis, V. La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming. Int. J. Hydrogen Energy 36, 6657–6670 (2011).

    CAS  Google Scholar 

  96. Pineau, A., Kanari, N. & Gaballah, I. Kinetics of reduction of iron oxides by H2: part I: low temperature reduction of hematite. Thermochim. Acta 447, 89–100 (2006).

    CAS  Google Scholar 

  97. Pineau, A., Kanari, N. & Gaballah, I. Kinetics of reduction of iron oxides by H2: part II. Low temperature reduction of magnetite. Thermochim. Acta 456, 75–88 (2007).

    CAS  Google Scholar 

  98. Thomas, T., Fan, L.-S., Gupta, P. & Velazquez-Vargas, L. G. Combustion looping using composite oxygen carriers. US Patent 7767191 (2003).

  99. Tong, A., Zeng, L., Kathe, M. V., Sridhar, D. & Fan, L.-S. Application of the moving-bed chemical looping process for high methane conversion. Energy Fuels 27, 4119–4128 (2013).

    CAS  Google Scholar 

  100. Cheng, Z. et al. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies. Phys. Chem. Chem. Phys. 18, 16423–16435 (2016).

    CAS  PubMed  Google Scholar 

  101. Hsia, C., Pierre, G. R. St., Raghunathan, K. & Fan, L.-S. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2. AIChE J. 39, 698–700 (1993).

    CAS  Google Scholar 

  102. Hsia, C., Pierre, G. R. S. & Fan, L.-S. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction. AIChE J. 41, 2337–2340 (1995).

    CAS  Google Scholar 

  103. Ando, K. & Oishi, Y. Self-diffusion coefficients of oxygen ion in single crystals of MgO·nAl2O3 spinels. J. Chem. Phys. 61, 625–629 (1974).

    CAS  Google Scholar 

  104. Oishi, Y. & Ando, K. Self-diffusion of oxygen in polycrystalline MgAl2O4. J. Chem. Phys. 63, 376–378 (1975).

    CAS  Google Scholar 

  105. Reddy, K. P. R. & Cooper, A. R. Oxygen diffusion in MgO and α-Fe2O3. J. Am. Ceram. Soc. 66, 664–666 (1983).

    CAS  Google Scholar 

  106. Uberuaga, B. P. et al. Defect kinetics in spinels: long-time simulations of MgAl2O4, MgGa2O4, and MgIn2O4. Phys. Rev. B 75, 104116 (2007).

    Google Scholar 

  107. Wilson, C. et al. Structure and properties of ilmenite from first principles. Phys. Rev. B 71, 075202 (2005).

    Google Scholar 

  108. Sun, Z., Luo, S. & Fan, L.-S. Ionic transfer mechanism of COS reaction with CaO: inert marker experiment and density functional theory (DFT) calculation. AIChE J. 58, 2617–2620 (2012).

    CAS  Google Scholar 

  109. Nakamura, R., Tokozakura, D., Nakajima, H., Lee, J. G. & Mori, H. Hollow oxide formation by oxidation of Al and Cu nanoparticles. J. Appl. Phys. 101, 074303 (2007).

    Google Scholar 

  110. Qin, L., Majumder, A., Fan, J. A., Kopechek, D. & Fan, L.-S. Evolution of nanoscale morphology in single and binary metal oxide microparticles during reduction and oxidation processes. J. Mater. Chem. A 2, 17511–17520 (2014).

    CAS  Google Scholar 

  111. Fu, Y., Chen, J. & Zhang, H. Synthesis of Fe2O3 nanowires by oxidation of iron. Chem. Phys. Lett. 350, 491–494 (2001).

    CAS  Google Scholar 

  112. Wen, X., Wang, S., Ding, Y., Wang, Z. L. & Yang, S. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215–220 (2005).

    CAS  PubMed  Google Scholar 

  113. Dang, H. Y., Wang, J. & Fan, S. S. The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology 14, 738 (2003).

    CAS  Google Scholar 

  114. He, F., Wei, Y., Li, H. & Wang, H. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides. Energy Fuels 23, 2095–2102 (2009).

    CAS  Google Scholar 

  115. Li, F. et al. Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuels 23, 4182–4189 (2009).

    CAS  Google Scholar 

  116. Azimi, G., Mattisson, T., Leion, H., Rydén, M. & Lyngfelt, A. Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). Int. J. Greenhouse Gas Control 34, 12–24 (2015).

    CAS  Google Scholar 

  117. de Diego, L. F. et al. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem. Eng. J. 144, 289–298 (2008).

    Google Scholar 

  118. Qin, L., Cheng, Z., Guo, M., Fan, J. A. & Fan, L.-S. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes. Acta Mater. 124, 568–578 (2017).

    CAS  Google Scholar 

  119. Shafiefarhood, A., Zhang, J., Neal, L. M. & Li, F. Rh-promoted mixed oxides for “low-temperature” methane partial oxidation in the absence of gaseous oxidants. J. Mater. Chem. A 5, 11930–11939 (2017).

    CAS  Google Scholar 

  120. Jin, Y., Sun, C. & Su, S. Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO. Phys. Chem. Chem. Phys. 17, 16277–16284 (2015).

    CAS  PubMed  Google Scholar 

  121. Cheng, Z. et al. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process. Phys. Chem. Chem. Phys. 18, 32418–32428 (2016).

    CAS  PubMed  Google Scholar 

  122. Neal, L. M., Shafiefarhood, A. & Li, F. Dynamic methane partial oxidation using a Fe2O3@La0.8Sr0.2FeO3−δ core–shell redox catalyst in the absence of gaseous oxygen. ACS Catal. 4, 3560–3569 (2014). This work describes a new core–shell catalytic oxygen carrier and the mechanism by which it converts methane into syngas.

    CAS  Google Scholar 

  123. Shafiefarhood, A., Galinsky, N., Huang, Y., Chen, Y. & Li, F. Fe2O3@LaxSr1−xFeO3 core–shell redox catalyst for methane partial oxidation. ChemCatChem 6, 790–799 (2014).

    CAS  Google Scholar 

  124. Liss, W. E. Impacts of shale gas advancements on natural gas utilization in the United States. Energy Technol. 2, 953–967 (2014).

    Google Scholar 

  125. Fleischer, V. et al. Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. J. Catal. 360, 102–117 (2018).

    CAS  Google Scholar 

  126. Borchert, H. & Baerns, M. The effect of oxygen-anion conductivity of metal–oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane. J. Catal. 168, 315–320 (1997).

    CAS  Google Scholar 

  127. Cheng, Z. & Lo, C. S. Effect of support structure and composition on the catalytic activity of Pt nanoclusters for methane dehydrogenation. Ind. Eng. Chem. Res. 52, 15447–15454 (2013).

    CAS  Google Scholar 

  128. Liu, S., Tan, X., Li, K. & Hughes, R. Methane coupling using catalytic membrane reactors. Catal. Rev. 43, 147–198 (2001).

    CAS  Google Scholar 

  129. Voskresenskaya, E. N., Roguleva, V. G. & Anshits, A. G. Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling. Catal. Rev. 37, 101–143 (1995).

    CAS  Google Scholar 

  130. Malekzadeh, A. et al. Correlation of electrical properties and performance of OCM MOx/Na2WO4/SiO2 catalysts. Catal. Commun. 2, 241–247 (2001).

    CAS  Google Scholar 

  131. Greish, A. A. et al. Oxidative coupling of methane in the redox cyclic mode over the catalysts on the basis of CeO2 and La2O3. Mendeleev Commun. 20, 28–30 (2010).

    CAS  Google Scholar 

  132. Sung, J. S. et al. Peculiarities of oxidative coupling of methane in redox cyclic mode over Ag–La2O3/SiO2 catalysts. Appl. Catal., A 380, 28–32 (2010).

    CAS  Google Scholar 

  133. Huang, K., Zhan, X.-L., Chen, F.-Q. & Lü, D.-W. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem. Eng. Sci. 58, 81–87 (2003).

    CAS  Google Scholar 

  134. Chua, Y. T., Mohamed, A. R. & Bhatia, S. Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2). Appl. Catal., A 343, 142–148 (2008).

    CAS  Google Scholar 

  135. Hou, Y.-H., Han, W.-C., Xia, W.-S. & Wan, H.-L. Structure sensitivity of La2O2CO3 catalysts in the oxidative coupling of methane. ACS Catal. 5, 1663–1674 (2015).

    CAS  Google Scholar 

  136. Cheng, Z. et al. C2 selectivity enhancement in chemical looping oxidative coupling of methane over a Mg–Mn composite oxygen carrier by Li-doping-induced oxygen vacancies. ACS Energy Lett. 3, 1730–1736 (2018).

    CAS  Google Scholar 

  137. Cao, Y., Sit, S. P. & Pan, W.-P. Preparation and characterization of lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. Aerosol Air Qual. Res. 14, 572–584 (2014).

    CAS  Google Scholar 

  138. Cao, Y., Zhao, H.-Y., Sit, S. P. & Pan, W.-P. Lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. J. Therm. Anal. Calorim. 116, 1257–1266 (2014).

    CAS  Google Scholar 

  139. Liu, L. & Zachariah, M. R. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion. Energy Fuels 27, 4977–4983 (2013).

    CAS  Google Scholar 

  140. Mohamed, S. A., Quddus, M. R., Razzak, S. A., Hossain, M. M. & de Lasa, H. I. Fluidizable NiO/Ce-γAl2O3 oxygen carrier for chemical looping combustion. Energy Fuels 29, 6095–6103 (2015).

    CAS  Google Scholar 

  141. Wang, M., Liu, J., Hu, J. & Liu, F. O2–CO2 mixed gas production using a Zr-doped Cu-based oxygen carrier. Ind. Eng. Chem. Res. 54, 9805–9812 (2015).

    CAS  Google Scholar 

  142. Imtiaz, Q., Kurlov, A., Rupp, J. L. M. & Müller, C. R. Highly efficient oxygen-storage material with intrinsic coke resistance for chemical looping combustion-based CO2 capture. ChemSusChem 8, 2055–2065 (2015).

    CAS  PubMed  Google Scholar 

  143. Qin, L. et al. Impact of 1% lanthanum dopant on carbonaceous fuel redox reactions with an iron-based oxygen carrier in chemical looping processes. ACS Energy Lett. 2, 70–74 (2017). This article discloses how very low concentrations of a metal oxide dopant can lower the energy barrier for C–H bond activation.

    CAS  Google Scholar 

  144. Qin, L. et al. Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification. Appl. Catal., B 235, 143–149 (2018).

    CAS  Google Scholar 

  145. Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D. & Kilner, J. A. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4, 2774–2789 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

L.Z. and J.G. thank the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (Grants 21525626 and U1663224) and the Program of Introducing Talents of Discipline to Universities of China (Grant B06006). J.A.F. acknowledges support from the US National Science Foundation (Grant 1804224) and the Packard Fellowship Foundation. Z.C. and L.-S.F. thank the US National Science Foundation (Grant 1236467), Ohio State University (funding from the C. John Easton Professorship in Engineering) and the Ohio Supercomputer Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Liang-Shih Fan or Jinlong Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Cheng, Z., Fan, J.A. et al. Metal oxide redox chemistry for chemical looping processes. Nat Rev Chem 2, 349–364 (2018). https://doi.org/10.1038/s41570-018-0046-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0046-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing