Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions

Abstract

Although aqueous solutions are considered to be sustainable, environmentally friendly reaction media, their use is often limited by poor reactant solubility. This limitation can be overcome by converting aqueous solutions into soft, dispersed interface-rich systems such as polyelectrolyte solutions, micellar solutions, oil-in-water microemulsions or vesicle dispersions. All consist of homogeneously distributed dynamic structures that, in a fashion reminiscent of enzymes, provide local environments that are different from the bulk solution. The presence of soft, dispersed interface-rich structures leads to not only selective reaction accelerations but also changes in reaction pathways, whereby chemical reactions are guided towards desired products. Once again, the analogy to enzyme-catalysed transformations is enticing. In this Review, we illustrate the general concepts applied in such systems and illustrate them with selected examples, ranging from enzyme mimics, the preparation of conductive polymers and transition-metal-catalysed organic syntheses on the industrial scale to the chemistry of prebiotic systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Two key effects that soft, dissolved interface-rich structures may have on chemical reactions in an aqueous solution.
Fig. 2: Soft, dissolved (or dispersed) interface-rich structures that were shown to promote (accelerate) certain chemical reactions.
Fig. 3: Promotion of chemical reactions by dissolved single-chain polymeric nanoparticles in aqueous solutions.
Fig. 4: Alteration of the chemical reaction pathway by catalytically active hyperbranched polymer particles.
Fig. 5: The concept and application of template polymerization.
Fig. 6: Accelerating a hydrolysis reaction in simple micelles.
Fig. 7: Promoting synthetic reactions in micelles.
Fig. 8: Promoting reactions in microemulsions and emulsion-like systems.
Fig. 9: First full assembly of an active pharmaceutical ingredient in water with TPGS-750-M.
Fig. 10: Acceleration of reactions in the presence of cationic vesicles.
Fig. 11: Reaction promotion by zwitterionic vesicles.
Fig. 12: Reaction promotion in bicontinuous cubic phases and on fatty acid vesicles.

References

  1. 1.

    Luisi, P. L. The Emergence of Life. From Chemical Origins of Synthetic Biology (Cambridge Univ. Press, Cambridge, 2006).

    Google Scholar 

  2. 2.

    Deamer, D. First Life. Discovering the Connections between Stars, Cells, and How Life Began (University of California Press, Berkeley, 2011).

    Google Scholar 

  3. 3.

    Ruiz-Mirazo, K., Briones, C. & de la Escosuras, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Riuz-Mirazo, K., Peretó, J. & Moreno, A. A universal definition of life: autonomy and open-ended evolution. Origins Life Evol. Biospheres 34, 323–346 (2004).

    Google Scholar 

  5. 5.

    Moreira, D. & López-García, P. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306–311 (2009).

    CAS  PubMed  Google Scholar 

  6. 6.

    Alberts, B. et al. Molecular Biology of the Cell, 6th edn, (Garland Science, Taylor & Francis Group, New York, 2015).

    Google Scholar 

  7. 7.

    Phillips, R., Kondev, J., Theriot, J. & Garcia, H. G. Physical Biology of the Cell 2nd edn, (Garland Science, Taylor & Francis Group, New York, 2013).

    Google Scholar 

  8. 8.

    Ouzounis, C. A. & Karp, P. D. Global properties of the metabolic map of Escherichia coli. Genome Res. 10, 568–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mouritsen, O. G. Life – as a Matter of Fat: The Emerging Science of Lipidomics. (Springer-Verlag Berlin Heidelberg, 2011).

  10. 10.

    Kohen, A. Role of dynamics in enzyme catalysis: substantial versus semantic controversies. Acc. Chem. Res. 48, 466–473 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Linsenmeier, A. M. & Braje, W. M. Efficient one-pot synthesis of dihydroquinolinones in water at room temperature. Tetrahedron 71, 6913–6919 (2015).

    CAS  Google Scholar 

  12. 12.

    Gallou, F., Isley, N. A., Ganic, A., Onken, U. & Parmentier, M. Surfactant technology applied toward an active pharmaceutical ingredient: more than a simple green chemistry advance. Green Chem. 18, 14–19 (2016).

    Google Scholar 

  13. 13.

    Lipshutz, B. L. When does organic chemistry follow nature’s lead and “make the switch”? J. Org. Chem. 82, 2806–2816 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Luisi, P. L. Why are enzymes macromolecules? Naturwissenschaften 66, 498–504 (1979).

    CAS  PubMed  Google Scholar 

  15. 15.

    Andreini, C., Cavallaro, G., Lorenzini, S. & Rosato, A. MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acid Res. 41, D312–D319 (2013).

    CAS  PubMed  Google Scholar 

  16. 16.

    Sheldon, R. A. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289–1307 (2007).

    CAS  Google Scholar 

  17. 17.

    Hanefeld, U., Gardossi, L. & Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    PubMed  Google Scholar 

  19. 19.

    Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biophys. Biomol. Struct. 30, 457–475 (2001).

    CAS  PubMed  Google Scholar 

  20. 20.

    Silverman, S. K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 41, 595–609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kuah, E., Toh, S., Yee, J., Ma, Q. & Gao, Z. Enzyme mimics: advances and applications. Chem. Eur. J. 22, 8404–8430 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Fréchet, J. M. J. Dendrimers and supramolecular chemistry. Proc. Natl Acad. Sci. USA 99, 4782–4787 (2002).

    PubMed  Google Scholar 

  24. 24.

    Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Lehn, J. M. Supramolecular chemistry – scope and perspectives. Molecules, supermolecules, and molecular devices (nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Google Scholar 

  26. 26.

    Moulin, E. & Giuseppone, N. in Supramolecular Chemistry: From Molecules to Nanomaterials (eds Gale, P. A., Steed, J. W.) 1543–1574 (John Wiley & Sons, Ltd., 2012).

  27. 27.

    Fersht, A. Structure and Mechanism in Protein Science (W. H. Freeman & Company, New York, 1999).

    Google Scholar 

  28. 28.

    Silverman, R. B. The Organic Chemistry of Enzyme-Catalyzed Reactions (Academic Press, Amsterdam, 2002).

    Google Scholar 

  29. 29.

    Berg, J. M., Tymoczko, J. L., Gatto, G. J. Jr. & Stryer, L. Biochemistry 8th edn, (W. H. Freeman & Company, New York, 2015).

    Google Scholar 

  30. 30.

    Dodson, G. & Wlodawer, A. Catalytic triads and their relatives. Trends Pharm. Sci. 23, 347–352 (1998).

    CAS  Google Scholar 

  31. 31.

    Nissen, P., Hansen, J., Ban, N., Moore, P. M. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    CAS  PubMed  Google Scholar 

  32. 32.

    Sievers, A., Beringer, M., Rodnina, M. V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl Acad. Sci. USA 101, 7897–7901 (2004); erratum 101, 12397–12398 (2004).

    CAS  PubMed  Google Scholar 

  33. 33.

    Bekturov, E. A. & Kudaibergenov, S. E. Catalysis by Polymers (WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, 2002).

    Google Scholar 

  34. 34.

    Artar, M., Terashima, T., Sawamoto, M., Meijer, E. W. & Palmans, A. R. A. Understanding the catalytic activity of single-chain polymeric nanoparticles in water. J. Polym. Sci. A Polym. Chem. 52, 12–20 (2014).

    CAS  Google Scholar 

  35. 35.

    Cole, J. P., Hanlon, A. M., Rodriguez, K. J. & Berda, E. B. Protein-like structure and activity in synthetic polymers. J. Polym. Sci. A Polym. Chem. 55, 191–206 (2017).

    CAS  Google Scholar 

  36. 36.

    Artar, M., Souren, E. R. J., Terashima, T., Meijer, E. W. & Palmans, A. R. A. Single chain polymeric nanoparticles as selective hydrophobic reaction spaces in water. ACS Macro Lett. 4, 1099–1103 (2015).

    CAS  Google Scholar 

  37. 37.

    Latorre-Sánchez, A. & Pomposo, J. A. Recent bioinspired applications of single-chain nanoparticles. Polym. Int. 65, 855–860 (2016).

    Google Scholar 

  38. 38.

    Bungenberg de Jong, H. G. & Kruyt, H. R. Coacervation (partial miscibility in colloid systems). Proc. K. Ned. Akad. Wet. 32, 849–856 (1929).

    Google Scholar 

  39. 39.

    Oparin, A. I. in In Prebiotic and Biochemical Evolution, (eds Kimball, A. P. & Oró, J.) 1–8 (North-Holland Publishing Company, Amsterdam, 1971).

    Google Scholar 

  40. 40.

    Wang, Q. & Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 47, 3108–3116 (2014).

    CAS  Google Scholar 

  41. 41.

    Jho, Y. S., Yoo, H. Y., Lin, Y., Han, S. & Hwang, D. S. Molecular and structural basis of low interfacial energy of complex coacervates in water. Adv. Colloid Interface Sci. 239, 61–73 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Tomalia, D. A., Naylor, A. M. & Goddard III, W. A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. 29, 138–175 (1990).

    Google Scholar 

  43. 43.

    Astruc, D. & Chardac, F. Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 101, 2991–3023 (2001).

    CAS  PubMed  Google Scholar 

  44. 44.

    Kirkorian, K., Ellis, A. & Twyman, L. J. Catalytic hyperbranched polymers as enzyme mimics; exploiting the principles of encapsulation and supramolecular chemistry. Chem. Soc. Rev. 41, 6138–6159 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Plamper, F. A. & Richtering, W. Functional microgels and microgel systems. Acc. Chem. Res. 50, 131–140 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Fendler, E. J. & Fendler, J. H. Micellar catalysis in organic reactions: kinetic and mechanistic implications. Adv. Phys. Org. Chem. 8, 271–406 (1970).

    CAS  Google Scholar 

  47. 47.

    Hiemenz, P. C. & Rajagopalan, R. Principles of Colloid and Surface Chemistry, 3rd edn, (Marcel Dekker, New York, 1997).

    Google Scholar 

  48. 48.

    Israelachvili, J. N. Intermolecular and Surface Forces, 3rd edn, (Elsevier, Amsterdam, 2011).

    Google Scholar 

  49. 49.

    Sjöblom, J., Lindberg, R. & Friberg, S. E. Microemulsions – phase equilibria characterization, structures, applications and chemical reactions. Adv. Colloid Interface Sci. 95, 125–287 (1996).

    Google Scholar 

  50. 50.

    Wennerström, H., Söderman, O., Olsson, U. & Lindman, B. Macroemulsions versus microemulsions. Colloids Surf. A. 123–124, 13–26 (1997).

    Google Scholar 

  51. 51.

    Holmberg, K. Organic reactions in microemulsions. Curr. Opin. Colloid Interf. Sci. 8, 187–196 (2003).

    CAS  Google Scholar 

  52. 52.

    Murakami, Y., Kikuchi, J., Hisaeda, Y. & Hayashida, O. Artificial enzymes. Chem. Rev. 96, 721–758 (1996).

    CAS  PubMed  Google Scholar 

  53. 53.

    Umakoshi, H., Morimoto, K., Yasuda, N., Shimanouchi, T. & Kuboi, R. Development of liposome-based mimics of superoxide dismutase and peroxidase based on the “LIPOzyme” concept. J. Biotechnol. 147, 59–63 (2010).

    CAS  PubMed  Google Scholar 

  54. 54.

    Mancin, F. et al. Hydrolytic metallo-nanozymes: from micelles and vesicles to gold nanoparticles. Molecules 21, 1014 (2016).

    Google Scholar 

  55. 55.

    Barriga, H. M. G., Holme, M. N. & Stevens, M. M. Cubosomes; the next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201804067 (2018).

    Article  Google Scholar 

  56. 56.

    Torchilin, V. P. & Weissig, V. (eds) Liposomes – A Practical Approach 2nd edn (Oxford Univ. Press, 2003).

  57. 57.

    Walde, P. in Encyclopedia of Nanoscience and Nanotechnology (ed. Nalwa, H. S.) 43–79 (APS, Valencia, CA, 2004).

    Google Scholar 

  58. 58.

    Korlach, J., Schwille, P., Webb, W. W. & Feigenson, G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 96, 8461–8466 (1999).

    CAS  PubMed  Google Scholar 

  59. 59.

    Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Suga, K. & Umakoshi, H. Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method. Langmuir 29, 4830–4838 (2013).

    CAS  PubMed  Google Scholar 

  61. 61.

    Huerta, E., Stals, P. J. M., Meijer, E. W. & Palmans, A. R. A. Consequences of folding a water-soluble polymer around an organocatalyst. Angew. Chem. Int. Ed. 52, 2906–2910 (2013).

    CAS  Google Scholar 

  62. 62.

    Hanlon, A. M., Lyon, C. K. & Berda, E. B. What is next in single-chain nanoparticles? Macromolecules 49, 2–14 (2016).

    CAS  Google Scholar 

  63. 63.

    Klotz, I. M., Royer, G. P. & Scarpa, I. S. Synthetic derivatives of polyethyleneimine with enzyme-like catalytic activity (synzymes). Proc. Natl Acad. Sci. USA 68, 263–264 (1971).

    CAS  PubMed  Google Scholar 

  64. 64.

    Kiefer, H. C., Congdon, W. I., Scarpa, I. S. & Klotz, I. M. Catalytic accelerations of 1012-fold by an enzyme-like synthetic polymer. Proc. Natl Acad. Sci. USA 69, 2155–2159 (1972).

    CAS  PubMed  Google Scholar 

  65. 65.

    Avenier, F., Domingos, J. B., Van Vliet, L. D. & Hollfelder, F. Poyethylene imine derivatives (“synzymes”) accelerate phosphate transfer in the absence of metal. J. Am. Chem. Soc. 129, 7611–7619 (2007).

    CAS  PubMed  Google Scholar 

  66. 66.

    Suh, J., Scarpa, I. S. & Klotz, I. M. Catalysis of decarboxylation of nitrobenzisoxazolecarboxylic acid and of cyanophenylacetic acid by modified polyethyleneimines. J. Am. Chem. Soc. 98, 7060–7064 (1976).

    CAS  Google Scholar 

  67. 67.

    Klotz, I. M. & Suh, J. in Artificial Enzymes (ed. Breslow, R.) 63–88 (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005).

    Google Scholar 

  68. 68.

    Chi, Y., Scroggins, S. T., Boz, E. & Fréchet, J. M. J. Control of aldol reaction pathways of enolizable aldehydes in an aqueous environment with a hyperbranched polymeric catalyst. J. Am. Chem. Soc. 130, 17287–17289 (2008).

    CAS  PubMed  Google Scholar 

  69. 69.

    Chevalier, Y. & Bolzinger, A.-M. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf. A 439, 23–34 (2013).

    CAS  Google Scholar 

  70. 70.

    Yang, Y. et al. An overview of pickering emulsions: solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 8, 287 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Zhang, H., Zhang, Q., Hong, C. & Zou, G. Asymmetric Michael addition in an aqueous environment with the assistance of optically active hyperbranched polymers. Polym. Chem. 8, 1771–1777 (2017).

    CAS  Google Scholar 

  72. 72.

    Tan, Y. Y. & Challa, G. in Encyclopedia of Polymer Science and Engineering 554–569. (John Wiley & Sons, Inc., New York, 1989.

    Google Scholar 

  73. 73.

    Połowinski, S. Template polymerisation and co-polymerisation. Prog. Polym. Sci. 27, 537–577 (2002).

    Google Scholar 

  74. 74.

    Ferguson, J. & Shah, A. O. Further studies on polymerization in interacting polymer systems. Eur. Polym. J. 4, 611–619 (1968).

    CAS  Google Scholar 

  75. 75.

    Liu, J. M., Sun, L., Hwang, J.-H. & Yang, S. C. Novel template guided synthesis of polyaniline. Mat. Res. Soc. Symp. Proc. 247, 601–606 (1992).

    CAS  Google Scholar 

  76. 76.

    Samuelson, L. A., Anagnostopoulos, A., Alva, K. S., Kumar, J. & Tripathy, S. K. Biologically derived conducting and water soluble polyaniline. Macromolecules 31, 4376–4378 (1998).

    CAS  Google Scholar 

  77. 77.

    Liu, W., Kumar, J., Tripathy, S., Senecal, K. J. & Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 121, 71–78 (1999).

    CAS  Google Scholar 

  78. 78.

    Zhang, Y., Douglas, J. F., Ermi, B. D. & Amis, E. J. Influence of counterion valency on the scattering properties of highly charged polyelectrolyte solutions. J. Chem. Phys. 114, 3299–3313 (2001).

    CAS  Google Scholar 

  79. 79.

    Kim, Y.-J., Uyama, H. & Kobayashi, S. Regioselective synthesis of poly(phenylene) as a complex with poly(ethylene glycol) by template polymerization of phenol in water. Macromolecules 36, 5058–5060 (2003).

    CAS  Google Scholar 

  80. 80.

    Romsted, L. in Supramolecular Chemistry: From Molecules to Nanomaterials (eds Gale, P. A. & Steed J. W.)181–203 (John Wiley & Sons, Ltd., 2012).

  81. 81.

    Smart, T. et al. Block copolymer nanostructures. Nano Today 3, 38–46 (2008).

    CAS  Google Scholar 

  82. 82.

    Heald, C. R. et al. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir 18, 3669–3675 (2002).

    CAS  Google Scholar 

  83. 83.

    Lund, R. et al. Equilibrium chain exchange kinetics of diblock copolymer micelles: effect of morphology. Macromolecules 44, 6145–6154 (2011).

    CAS  Google Scholar 

  84. 84.

    Bernheim-Groswasser, A., Zana, R. & Talmon, Y. Sphere-to-cylinder transition in aqueous micellar solution of a dimeric (gemini) surfactant. J. Phys. Chem. B. 104, 4005–4009 (2000).

    CAS  Google Scholar 

  85. 85.

    Almgren, M. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Biochim. Biophys. Acta 1508, 146–163 (2000).

    CAS  PubMed  Google Scholar 

  86. 86.

    Menger, F. M. & Portnoy, C. E. On the chemistry of reactions proceeding inside molecular aggregates. J. Am. Chem. Soc. 89, 4698–4703 (1967).

    CAS  Google Scholar 

  87. 87.

    Namani, T. & Walde, P. From decanoate micelles to decanoic acid/ dodecylbenzenesulfonate vesicles. Langmuir 21, 6210–6219 (2005).

    CAS  PubMed  Google Scholar 

  88. 88.

    Bunton, C. A., Minch, M. J., Hidalgo, J. & Sepulveda, L. Electrolyte effects on the cationic micelle-catalyzed decarboxylation of 6-nitrobenzisoxazole-3-carboxylate anion. J. Am. Chem. Soc. 95, 3262–3272 (1973).

    CAS  Google Scholar 

  89. 89.

    Tascioglu, S. Micellar solutions as reaction media. Tetrahedron 52, 11113–11152 (1996).

    CAS  Google Scholar 

  90. 90.

    Dwars, T., Paetzold, E. & Oehme, G. Reactions in micellar systems. Angew. Chem. Int. Ed. 44, 7174–7199 (2005).

    CAS  Google Scholar 

  91. 91.

    La Sorella, G., Strukul, G. & Scarso, A. Recent advances in catalysis in micellar media. Green Chem. 17, 644–683 (2015).

    Google Scholar 

  92. 92.

    Bunton, C. A. The dependence of micellar rate effects upon reaction mechanism. Adv. Colloid Interf. Sci. 123–126, 333–343 (2006).

    Google Scholar 

  93. 93.

    Bunton, C. A., Romsted, L. S. & Savelli, G. Tests of the pseudophase model of micellar catalysis: its partial failure. J. Am. Chem. Soc. 101, 1253–1259 (1979).

    CAS  Google Scholar 

  94. 94.

    Shinoda, K. & Hutchinson, E. Pseudo-phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66, 577–582 (1962).

    CAS  Google Scholar 

  95. 95.

    Romsted, L. S., Bunton, C. A. & Yao, J. Micellar catalysis, a useful misnomer. Curr. Opin. Colloid Interface Sci. 2, 622–628 (1997).

    CAS  Google Scholar 

  96. 96.

    Peng, Y.-Y., Ding, Q.-P., Li, Z., Wang, P. G. & Cheng, J.-P. Proline catalyzed aldol reactions in aqueous micelles: an environmentally friendly reaction system. Tetrahedron Lett. 44, 3871–3875 (2003).

    CAS  Google Scholar 

  97. 97.

    Scrimin, P. in Supramolecular Control of Structure and Reactivity (ed. Hamilton, A. D.) 101–153 (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  98. 98.

    Ravichandran, S. et al. Micellar nanoreactors for hematin catalyzed synthesis of electrically conducting polypyrrole. Langmuir 28, 13380–13386 (2012).

    CAS  PubMed  Google Scholar 

  99. 99.

    Cardellicchio, C., Capozzi, A. M. M. & Naso, F. The Betti base: the awakening of a sleeping beauty. Tetrahedron: Asymm. 21, 507–517 (2010).

    CAS  Google Scholar 

  100. 100.

    Kumar, A., Gupta, M. K. & Kumar, M. Non-ionic surfactant catalyzed synthesis of Betti base in water. Tetrahedron Lett. 51, 1582–1584 (2010).

    CAS  Google Scholar 

  101. 101.

    Kumar, A., Gupta, M. K., Kumar, M. & Saxena, D. Micelle promoted multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction in water. RSC Adv. 3, 1673–1678 (2013).

    CAS  Google Scholar 

  102. 102.

    Gabriel, C. M. et al. Effects of co-solvents on reactions run under micellar catalysis conditions. Org. Lett. 19, 194–197 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    Menger, F. M. & Elrington, A. R. Organic reactivity in microemulsion systems. J. Am. Chem. Soc. 113, 9621–9624 (1991).

    CAS  Google Scholar 

  104. 104.

    Menger, F. M. & Elrington, A. R. Rapid deactivation of mustard via microemulsion technology. J. Am. Chem. Soc. 112, 8201–8203 (1990).

    CAS  Google Scholar 

  105. 105.

    Chhatre, A. S., Joshi, R. A. & Kulkarni, B. D. Microemuslions as media for organic synthesis: selective nitration of phenol to ortho-nitrophenol using dilute nitric acid. J. Colloid Interface Sci. 158, 183–187 (1993).

    CAS  Google Scholar 

  106. 106.

    Strey, R. Microemulsion microstructure and interfacial curvature. Colloid Polym. Sci. 272, 1005–1019 (1994).

    CAS  Google Scholar 

  107. 107.

    Dey, J., Saha, M., Pal, A. K. & Ismail, K. Regioselective nitration of aromatic compounds in an aqueous sodium dodecylsulfate and nitric acid medium. RSC Adv. 3, 18609–18613 (2013).

    CAS  Google Scholar 

  108. 108.

    Chern, C. S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci. 31, 443–486 (2006).

    CAS  Google Scholar 

  109. 109.

    Asua, J. M. Miniemulsion polymerization. Prog. Polym. Sci. 27, 1283–1346 (2002).

    CAS  Google Scholar 

  110. 110.

    Landfester, K. Polyreactions in miniemulsions. Macromol. Rapid Commun. 22, 896–936 (2001).

    Google Scholar 

  111. 111.

    Handa, S., Fennewald, J. C. & Lipshutz, B. H. Aerobic oxidation in nanomicelles of aryl alkynes, in water at room temperature. Angew. Chem. Int. Ed. 53, 3432–3435 (2014).

    CAS  Google Scholar 

  112. 112.

    Lipshutz, B. H. et al. TPGS-750M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem. 76, 4379–4391 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Lipshutz, B. H., Ghorai, S. & Cortes-Clerget, M. The hydrophobic effect applied to organic synthesis: recent synthetic chemistry “in water”. Chem. Eur. J. 24, 6672–6695 (2018).

    CAS  PubMed  Google Scholar 

  114. 114.

    Klumphu, P. & Lipshutz, B. H. “Nok”: a phytosterol-based amphiphile enabling transition-metal-catalyzed couplings in water at room temperature. J. Org. Chem. 79, 888–900 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Lee, N. R., Gallou, F. & Lipshutz, B. H. SNAr reactions in aqueous nanomicelles: from milligrams to grams with no dipolar aprotic solvents needed. Org. Process Res. Dev. 21, 218–221 (2017).

    CAS  Google Scholar 

  116. 116.

    Lipshutz, B., Aguinaldo, G. T., Ghorai, S. & Voigtritter, K. Olefin cross-metathesis reactions at room temperature using the nonionic amphiphile “PTS”: just add water. Org. Lett. 10, 1325–1328 (2008).

    CAS  PubMed  Google Scholar 

  117. 117.

    Gallou, F., Guo, P., Parmentier, M. & Zhou, J. A. General and practical alternative to polar aprotic solvents exemplified on an amide bond formation. Org. Proc. Res. Dev. 20, 1388–1391 (2016).

    CAS  Google Scholar 

  118. 118.

    Andersson, M. P., Gallou, F., Klumphu, P., Takale, B. & Lipshutz, B. H. Structure of nanoparticles derived from designer surfactant TPGS-750-M in water, as used in organic synthesis. Chem. Eur. J. 24, 6778–6786 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Gelbart, W. M. & Ben-Shaul, A. The “New” Science of “Complex Fluids”. J. Phys. Chem. 100, 13169–13189 (1996).

    CAS  Google Scholar 

  120. 120.

    Walde, P., Umakoshi, H., Stano, P. & Mavelli, F. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem. Commun. 50, 10177–10197 (2014).

    CAS  Google Scholar 

  121. 121.

    Fernandez-Trillo, F., Grover, L. M., Stephenson-Brown, A., Harrison, P. & Mendes, P. M. Vesicles in nature and the laboratory: elucidation of their biological properties and synthesis of increasingly complex synthetic vesicles. Angew. Chem. Int. Ed. 56, 3142–3160 (2017).

    CAS  Google Scholar 

  122. 122.

    Bagatolli, L. A. & Mouritsen, O. G. Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front. Plant Sci. 4, 457 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    CAS  PubMed  Google Scholar 

  124. 124.

    Brown, D. A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    CAS  PubMed  Google Scholar 

  125. 125.

    Carquin, M., D’Auria, L., Pollet, H., Bongarzone, E. R. & Tyteca, D. Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains. Prog. Lipid Res. 62, 1–24 (2016).

    CAS  PubMed  Google Scholar 

  126. 126.

    Sezgin, E., Lebental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Pintre, I. C. & Webb, S. J. Binding and reactivity at bilayer membranes. Adv. Phys. Org. Chem. 47, 129–183 (2013).

    CAS  Google Scholar 

  128. 128.

    Fendler, J. H. & Hinze, W. L. Reactivity control in micelles and surfactant vesicles. Kinetics and mechanism of base-catalyzed hydrolysis of 5,5′-Dithiobis(2-nitrobenzoic acid) in water, hexadecyltrimethylammonium bromide micelles, and dioctadecyldimethylammonium chloride surfactant vesicles. J. Am. Chem. Soc. 103, 5439–5447 (1981).

    CAS  Google Scholar 

  129. 129.

    Riddles, P. W., Blakeley, R. P. & Zerner, B. Reassessment of ellman’s reagent. Methods Enzymol. 91, 49–60 (1983).

    CAS  PubMed  Google Scholar 

  130. 130.

    Iwasaki, F., Suga, K. & Umakoshi, H. Pseudo-interphase of liposome promotes 1,3-dipolar cycloaddition reaction of benzonitrile oxide and N-ethylmaleimide in aqueous solution. J. Phys. Chem. B 119, 9772–9779 (2015).

    CAS  PubMed  Google Scholar 

  131. 131.

    Iwasaki, F., Suga, K., Okamoto, Y. & Umakoshi, H. Enantioselective C–C bond formation enhanced by self-assembly of achiral surfactants. ACS Omega 2, 1447–1453 (2017).

    CAS  Google Scholar 

  132. 132.

    Paprocki, D., Koszelewski, D., Walde, P. & Ostaszewski, R. Efficient Passerini reactions in an aqueous vesicle system. RSC Adv. 5, 102828–102835 (2015).

    CAS  Google Scholar 

  133. 133.

    Grochmal, A., Prout, L., Makin-Taylor, R., Prohens, R. & Tomas, S. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds. J. Am. Chem. Soc. 137, 12269–12275 (2015).

    CAS  PubMed  Google Scholar 

  134. 134.

    Luginbühl, S., Bertschi, L., Willeke, M., Schuler, L. D. & Walde, P. How anionic vesicles steer the oligomerization of enzymatically oxidized p-aminodiphenylamine (PADPA) toward a polyaniline emeraldine salt (PANI-ES)-type product. Langmuir 32, 9765–9779 (2016).

    PubMed  Google Scholar 

  135. 135.

    Janosevic Ležaic, A. et al. Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements. Sci. Rep. 6, 30724 (2016).

    Google Scholar 

  136. 136.

    Duss, M. et al. Lipidic mesophases as novel nanoreactor scaffolds for organocatalysts: heterogeneously catalyzed asymmetric aldol reactions in confined water. ACS Appl. Mater. Interfaces 10, 5114–5124 (2018).

    CAS  PubMed  Google Scholar 

  137. 137.

    Zhou, T. et al. Efficient asymmetric synthesis of carbohydrates by aldolase nano- confined in lipidic cubic mesophases. ACS Catal. 8, 5810–5815 (2018).

    CAS  Google Scholar 

  138. 138.

    Hutchison, C. A. III et al. Design and synthesis of a minimal bacterial genome. Science 35, aad6253 (2016).

    Google Scholar 

  139. 139.

    Keller, M. A., Turchyn, A. V. & Ralser, M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10, 725 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Keller, M. A. et al. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Sci. Adv. 2, e1501235 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Muchowska, K. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    CAS  PubMed  Google Scholar 

  143. 143.

    Joyce, G. F. & Orgel, L. E. in The RNA World (eds Gesteland, R. F., Cech, T. R., & Atkins, J. F.) 23–56 (Cold Spring Harbor Laboratory Press, New York, 2006).

    Google Scholar 

  144. 144.

    Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine nucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    CAS  PubMed  Google Scholar 

  145. 145.

    Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Saladino, R., Crestini, C., Pino, S., Costanzo, G. & Di Mauro, E. Formamide and the origin of life. Phys. Life Rev. 9, 84–104 (2012).

    PubMed  Google Scholar 

  147. 147.

    Saladino, R., Šponer, J. E., Šponer, J. & Di Mauro, E. Rewarming the primordial soup: revisitations and rediscoveries in prebiotic chemistry. ChemBioChem 19, 22–25 (2018).

    CAS  PubMed  Google Scholar 

  148. 148.

    Lincoln, T. A. & Joyce, G. F. Self-sustained replication of an RNA enzyme. Science 323, 1229–1232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Vaidya, N. et al. Spontaneous network formation among cooperative RNA replicators. Nature 491, 72–77 (2012).

    CAS  PubMed  Google Scholar 

  150. 150.

    Vasas, V., Fernando, C. T., Santos, M., Kauffman, S. A. & Szathmáry, E. Evolution before genes. Biol. Direct 7, 1 (2012).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    de la Escosura, A., Briones, C. & Ruiz-Mirazo, K. The systems perspective at the crossroads between chemistry and biology. J. Theor. Biol. 381, 11–22 (2015).

    PubMed  Google Scholar 

  152. 152.

    Sutherland, J. D. Studies on the origin of life - the end of the beginning. Nat. Rev. Chem. 1, 1–7 (2017).

    Google Scholar 

  153. 153.

    Gibard, C. et al. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).

    CAS  PubMed  Google Scholar 

  154. 154.

    Maurer, S. E., Deamer, D. W., Boncella, J. M. & Monnard, P.-A. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9, 979–987 (2009).

    CAS  PubMed  Google Scholar 

  155. 155.

    Szostak, J. W. An optimal degree of physical and chemical heterogeneity for the origin of life? Phil. Trans. Roy. Soc. B 366, 2894–2901 (2011).

    CAS  Google Scholar 

  156. 156.

    Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol. 7, 170050 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 119, 2863–2869 (2006).

    CAS  PubMed  Google Scholar 

  159. 159.

    Spitzer, J. & Poolman, B. The role of biomacromolecular crowding, ionic strength and physicochemical gradients in the complexities of life’s emergence. Microbiol. Mol. Biol. Rev. 73, 371–388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Spitzer, J., Pielak, G. & Poolman, B. Emergence of life: physical chemistry changes the paradigm. Biol. Direct 10, 33 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Oparin, A. I., Serebroskaya, K. B., Pantskhava, S. N. & Vasil’yeva, N. V. Enzymatic synthesis of polyadenylic acid in coacervate drops. Biokhimiya 28, 671–673 (1963).

    CAS  Google Scholar 

  162. 162.

    Monnard, P.-A. & Walde, P. Current ideas about prebiological compartmentalization. Life 5, 1239–1263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Ferris, J. P. Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Phil. Trans. R. Soc., B 361, 1777–1786 (2006).

    CAS  Google Scholar 

  164. 164.

    Lambert, J. F. Adsorption and polymerization of amino acids on mineral surfaces: a review. Origins Life Evol. Biospheres 38, 211–242 (2008).

    CAS  Google Scholar 

  165. 165.

    Rimola, A., Costa, D., Sodupe, M., Lambert, J. F. & Ugliengo, P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev. 113, 4216–4313 (2013).

    CAS  PubMed  Google Scholar 

  166. 166.

    Erastova, V., Degiacomi, M. T., Fraser, D. G. & Greenwell, H. C. Mineral surface chemistry control for origin of prebiotic peptides. Nat. Commun. 8, 2033 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS  PubMed  Google Scholar 

  168. 168.

    Tang, T.-Y. D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).

    Google Scholar 

  169. 169.

    Douliez, J.-P. et al. Catanionic coacervate droplets as a surfactant-based membrane-free protocell model. Angew. Chem. Int. Ed. 56, 13689–13693 (2017).

    CAS  Google Scholar 

  170. 170.

    Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).

    CAS  Google Scholar 

  171. 171.

    Walde, P., Goto, A., Monnard, P. A., Wessicken, M. & Luisi, P. L. Oparin’s reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self- reproducing vesicles. J. Am. Chem. Soc. 116, 7541–7547 (1994).

    CAS  Google Scholar 

  172. 172.

    Morowitz, H. J., Heinz, B. & Deamer, D. W. The chemical logic of a minimum protocell. Origins Life Evol. Biospheres 18, 281–287 (1988).

    CAS  Google Scholar 

  173. 173.

    Blocher, M., Liu, D., Walde, P. & Luisi, P. L. Liposome-assisted selective polycondensation of α-amino acids and peptides. Macromolecules 32, 7332–7334 (1999).

    CAS  Google Scholar 

  174. 174.

    Hitz, T., Blocher, M., Walde, P. & Luisi, P. L. Stereoselectivity aspects in the condensation of racemic NCA-amino acids in the presence and absence of liposomes. Macromolecules 34, 2443–2449 (2001).

    CAS  Google Scholar 

  175. 175.

    Zepik, H. H., Rajamani, S., Maurel, M.-C. & Deamer, D. Oligomerization of thioglutamic acid: encapsulated reactions and lipid catalysis. Origins Life Evol. Biospheres 37, 495–505 (2007).

    CAS  Google Scholar 

  176. 176.

    Murillo-Sánchez, S., Beaufils, D., González Mañas, J. M., Pascal, R. & Ruiz-Mirazo, K. Fatty acids’ double role in the prebiotic formation of a hydrophobic dipeptide. Chem. Sci. 7, 3406–3414 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Vlassov, A., Khvorova, A. & Yarus, M. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc. Natl Acad. Sci. USA 98, 7706–7711 (2001).

    CAS  PubMed  Google Scholar 

  178. 178.

    Janas, T., Janas, T. & Yarus, M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34, 2128–2136 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Kamat, N. P., Tobé, S., Hill, I. T. & Szostak, J. W. Electrostatic localization of RNA to protocell membranes by cationic hydrophobic peptides. Angew. Chem. Int. Ed. 54, 11735–11739 (2015).

    CAS  Google Scholar 

  180. 180.

    Budin, I. & Szostak, J. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl Acad. Sci. USA 108, 5249–5254 (2011).

    CAS  PubMed  Google Scholar 

  181. 181.

    Budin, I., Prywes, N., Zhang, N. & Szostak, J. W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 107, 1582–1590 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Mansy, S. S. et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Sacerdote, M. G. & Szostak, J. W. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl Acad. Sci. USA 102, 6004–6008 (2005).

    CAS  PubMed  Google Scholar 

  184. 184.

    Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Chen, I. A., Roberts, R. W. & Szostak, J. W. The emergence of competition between model protocells. Science 305, 1474–1476 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Adamala, K. & Szostak, J. W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5, 495–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Hardy, M. D. et al. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl Acad. Sci. USA 112, 8187–8192 (2015).

    CAS  PubMed  Google Scholar 

  189. 189.

    O’Flaherty, D. K. et al. Copying of mixed-sequence RNA templates inside model protocells. J. Am. Chem. Soc. 140, 5171–5178 (2018).

    PubMed  Google Scholar 

  190. 190.

    Albanese, D. C. M. & Gaggero, N. Albumin as a promiscuous biocatalyst in organic synthesis. RSC Adv. 5, 10588–10598 (2015).

    CAS  Google Scholar 

  191. 191.

    Hollfelder, F., Kirby, A. J., Tawfik, D. S., Kikuchi, K. & Hilvert, D. Characterization of proton-transfer catalysis by serum albumins. J. Am. Chem. Soc. 122, 1022–1029 (2000).

    CAS  Google Scholar 

  192. 192.

    Lockridge, O. et al. Pseudo-esterase activity of human albumin. J. Biol. Chem. 283, 22582–22590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Saunders, B. R. & Vincent, B. Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interf. Sci. 80, 1–25 (1999).

    CAS  Google Scholar 

  194. 194.

    Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim. Biophys. Acta 470, 185–201 (1977).

    CAS  PubMed  Google Scholar 

  195. 195.

    Roussel, G., Michaux, C. & Perpète, E. A. Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution. J. Mol. Model. 20, 2469 (2014).

    PubMed  Google Scholar 

  196. 196.

    Hagan, S. A. et al. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153–2161 (1996).

    CAS  Google Scholar 

  197. 197.

    Wu, D. et al. Effect of molecular parameters on the architecture and membrane properties of 3D assemblies of amphiphilic copolymers. Macromolecules 47, 5060–5069 (2014).

    CAS  Google Scholar 

  198. 198.

    Ma, J.-G., Boyd, B. J. & Drummond, C. J. Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity. Langmuir 22, 8646–8654 (2006).

    CAS  PubMed  Google Scholar 

  199. 199.

    Guo, Z. et al. Vesicles as soft templates for the enzymatic polymerization of aniline. Langmuir 25, 11390–11404 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dedicated to P. L. Luisi and F. M. Menger. The financial support from the European Cooperation in Science and Technology (COST) action CM1304 for the stimulating meetings on the ‘Emergence and Evolution of Complex Chemical Systems’ is highly appreciated, as well as the financial support from the Swiss National Science Foundation (project No. 200020_150254), the Polish National Science Center through HARMONIA project No. 2014/14/M/ST5/00030 and the Basque Government (project IT 590–13).

Reviewer information

Nature Reviews Chemistry thanks B. Lipshutz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation, revision and editing.

Corresponding author

Correspondence to Peter Walde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dispersed

To be more or less evenly distributed throughout the entire volume considered.

Interface

The surface area of a dispersed entity that is in direct contact with the solution in which the entity is dispersed.

Green industrial processes

Industrial processes that address and follow the guidance of the principles of green chemistry and engineering.

In vivo catalytic activity

The ability to catalyse a particular chemical reaction at the place where the enzyme is localized within a cell (in the case of intracellular enzymes) or in the environment into which it is secreted from cells (the case of extracellular enzymes).

Catalytic triad

A set of three specifically arranged amino acids involved in the catalysis at the active site of certain enzymes.

Soft interface

Fluid in the sense that there is no fixed relationship between nearest-neighbour molecules or between different parts of the molecules constituting the interface.

Dendrimers

Radially symmetric molecules with a well-defined monodisperse structure of tree-like branches.

Amphiphiles

Chemical compounds consisting of ‘water-loving’ (hydrophilic) and ‘fat-loving’ (lipophilic), for example, ‘water-hating’ (hydrophobic), parts.

Pickering emulsions

Emulsions that are stabilized by solid colloidal particles instead of conventional amphiphiles.

Amphiphilic block copolymers

Polymer molecules consisting of adjacent blocks that differ in their constitution and water solubility such that they behave as macromolecular amphiphiles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serrano-Luginbühl, S., Ruiz-Mirazo, K., Ostaszewski, R. et al. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat Rev Chem 2, 306–327 (2018). https://doi.org/10.1038/s41570-018-0042-6

Download citation

Further reading