Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing electrochemically reversible H2 oxidation and production catalysts

Abstract

The most energy-efficient electrocatalysts mediate forward and reverse reactions at high rates with minimal overpotential requirements. Such electrocatalytic reversibility is commonly observed for redox enzymes and is an attribute that we have sought to bestow on synthetic molecules to realize highly active and robust catalysts for applications in renewable energy. The recent development of the first synthetic molecular catalysts that reversibly mediate H2 2 H+ + 2e exploits an enzyme-inspired outer coordination sphere that works in concert with both first and second coordination spheres. In this Perspective, we discuss a series of molecular Ni catalysts for H2 production and oxidation that exhibit electrochemical reversibility. Study of these catalysts allows us to identify important first, second and outer coordination sphere features necessary for efficient conversions of H2 and provides direction for the rational design of electrocatalysts that operate on other small molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: X-ray crystal structure of the [FeFe]-hydrogenase active site and surrounding residues.
Fig. 2: Simulated voltammograms for molecular catalysts.
Fig. 3: The square planar complexes [NiII(PR2NRʹ2)2]2+ heterolyse H2 to afford [Ni0(PR2NRʹ2H)2]2+.
Fig. 4: Amino acid-containing [NiII(PCy2NAminoacid2)2]2+ complexes feature a catalytically relevant H+ transfer chain.
Fig. 5: Reversible H2 oxidation mediated by bis(diphosphine)nickel complexes with pendant amino acids.
Fig. 6: The catalytic cycle for H2 oxidation and evolution mediated by [NiII(PCy2NAminoacid2)2]2+ complexes.
Fig. 7: [NiII(PCy2NAminoacid2)2]2+ complexes with interacting side chains exhibit high activity for H2 oxidation.
Fig. 8: CyAminoacid can be incorporated into a H2/air fuel cell.

References

  1. 1.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Lewis, N. S. & Nocera, D. G. The solar opportunity. Bridge 45, 41–47 (2015).

    Google Scholar 

  3. 3.

    Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Pegis, M. L., Wise, C. F., Martin, D. J. & Mayer, J. M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 118, 2340–2391 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 50, 9903–9906 (2011).

    Article  CAS  Google Scholar 

  8. 8.

    Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Jones, A. K., Sillery, E., Albracht, S. P. J. & Armstrong, F. A. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun. 866–867 (2002).

  11. 11.

    Knörzer, P. et al. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J. Biol. Chem. 287, 1489–1499 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    Article  PubMed  Google Scholar 

  13. 13.

    Pandey, A. S., Harris, T. V., Giles, L. J., Peters, J. W. & Szilagyi, R. K. Dithiomethylether as a ligand in the hydrogenase H-cluster. J. Am. Chem. Soc. 130, 4533–4540 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Abou Hamdan, A. et al. Understanding and tuning the catalytic bias of hydrogenase. J. Am. Chem. Soc. 134, 8368–8371 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Bachmeier, A. & Armstrong, F. Solar-driven proton and carbon dioxide reduction to fuels — lessons from metalloenzymes. Curr. Opin. Chem. Biol. 25, 141–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Faunce, T. A. et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698 (2013).

    Article  Google Scholar 

  17. 17.

    Xu, L. & Armstrong, F. A. Pushing the limits for enzyme-based membrane-less hydrogen fuel cells — achieving useful power and stability. RSC Adv. 5, 3649–3656 (2014).

    Article  Google Scholar 

  18. 18.

    Gloaguen, F. & Rauchfuss, T. B. Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 38, 100–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Simmons, T. R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Mimicking hydrogenases: from biomimetics to artificial enzymes. Coord. Chem. Rev. 270–271, 127–150 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    Barton, B. E., Whaley, C. M., Rauchfuss, T. B. & Gray, D. L. Nickel–iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site. J. Am. Chem. Soc. 131, 6942–6943 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Darensbourg, M. Y. Hydrogenase active sites: a new paradigm for natural product-inspired synthesis based on organometallic chemistry. Comments Inorg. Chem. 31, 144–152 (2010).

    Article  CAS  Google Scholar 

  22. 22.

    Gan, L. et al. A nickel phosphine complex as a fast and efficient hydrogen production catalyst. J. Am. Chem. Soc. 137, 1109–1115 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Gärtner, F. et al. Light-driven hydrogen generation: efficient iron-based water reduction catalysts. Angew. Chem. Int. Ed. 48, 9962–9965 (2009).

    Article  CAS  Google Scholar 

  24. 24.

    Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Guttentag, M. et al. Photocatalytic H2 production with a rhenium/cobalt system in water under acidic conditions. Eur. J. Inorg. Chem. 2012, 59–64 (2012).

    Article  CAS  Google Scholar 

  26. 26.

    Hsieh, C.-H. et al. Redox active iron nitrosyl units in proton reduction electrocatalysis. Nat. Commun. 5, 3684 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Hsieh, C.-H. et al. Structural and spectroscopic features of mixed valent FeIIFeI complexes and factors related to the rotated configuration of diiron hydrogenase. J. Am. Chem. Soc. 134, 13089–13102 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Leung, C.-F. et al. A cobalt(II) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energy Environ. Sci. 5, 7903–7907 (2012).

    Article  CAS  Google Scholar 

  29. 29.

    Liu, T. & Darensbourg, M. Y. A mixed-valent, Fe(II)Fe(I), diiron complex reproduces the unique rotated state of the [FeFe]hydrogenase active site. J. Am. Chem. Soc. 129, 7008–7009 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Lomoth, R. & Ott, S. Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes. Dalton Trans. 9952–9959 (2009).

    Article  CAS  Google Scholar 

  31. 31.

    Probst, B., Guttentag, M., Rodenberg, A., Hamm, P. & Alberto, R. Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 3404–3412 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ulloa, O. A. et al. Mechanism of H2 production by models for the [NiFe]-hydrogenases: role of reduced hydrides. J. Am. Chem. Soc. 138, 9234–9245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zhang, P. et al. Phosphine coordination to a cobalt diimine–dioxime catalyst increases stability during light-driven H2 production. Inorg. Chem. 51, 2115–2120 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 53, 3935–3960 (2014).

    Article  CAS  Google Scholar 

  36. 36.

    Wilson, A. D. et al. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Helm, M. L., Stewart, M. P., Bullock, R. M., Rakowski DuBois, M. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Appel, A. M. et al. [Ni(PPh 2NBn 2)2(CH3CN)]2+ as an electrocatalyst for H2 production: dependence on acid strength and isomer distribution. ACS Catal. 1, 777–785 (2011).

    Article  CAS  Google Scholar 

  39. 39.

    Smith, S. E., Yang, J. Y., DuBois, D. L. & Bullock, R. M. Reversible electrocatalytic production and oxidation of hydrogen at low overpotentials by a functional hydrogenase mimic. Angew. Chem. Int. Ed. 51, 3152–3155 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    Cardenas, A. J. P. et al. Controlling proton delivery through catalyst structural dynamics. Angew. Chem. Int. Ed. 55, 13509–13513 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    Boralugodage, N. P., Arachchige, R. J., Dutta, A., Buchko, G. W. & Shaw, W. J. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H2 oxidation. Catal. Sci. Technol. 7, 1108–1121 (2017).

    Article  CAS  Google Scholar 

  42. 42.

    Dutta, A., DuBois, D. L., Roberts, J. A. S. & Shaw, W. J. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Proc. Natl Acad. Sci. USA 111, 16286–16291 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Priyadarshani, N. et al. Achieving reversible H2/H+ interconversion at room temperature with enzyme-inspired molecular complexes: a mechanistic study. ACS Catal. 6, 6037–6049 (2016).

    Article  CAS  Google Scholar 

  44. 44.

    Saveant, J. M. & Vianello, E. Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents). Electrochim. Acta 10, 905–920 (1965).

    Article  CAS  Google Scholar 

  45. 45.

    Savéant, J. M. & Vianello, E. Potential-sweep voltammetry: general theory of chemical polarization. Electrochim. Acta 12, 629–646 (1967).

    Article  Google Scholar 

  46. 46.

    Galan, B. R. et al. Electrocatalytic oxidation of formate by [Ni(PR 2NR′ 2)2(CH3CN)]2+ complexes. J. Am. Chem. Soc. 133, 12767–12779 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Nicholson, R. S. & Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36, 706–723 (1964).

    Article  CAS  Google Scholar 

  48. 48.

    Rakowski DuBois, M. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2008).

    Article  PubMed  Google Scholar 

  49. 49.

    Yang, J. Y. et al. Mechanistic insights into catalytic H2 oxidation by Ni complexes containing a diphosphine ligand with a positioned amine base. J. Am. Chem. Soc. 131, 5935–5945 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Izutsu, K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents (Wiley-Blackwell, 1991).

  51. 51.

    Lense, S., Dutta, A., Roberts, J. A. S. & Shaw, W. J. A proton channel allows a hydrogen oxidation catalyst to operate at a moderate overpotential with water acting as a base. Chem. Commun. 50, 792–795 (2013).

    Article  Google Scholar 

  52. 52.

    Dutta, A., Lense, S., Roberts, J. A. S., Helm, M. L. & Shaw, W. J. The role of solvent and the outer coordination sphere on H2 oxidation using [Ni(PCy 2NPyz 2)2]2+. Eur. J. Inorg. Chem. 2015, 5218–5225 (2015).

    Article  CAS  Google Scholar 

  53. 53.

    Curtis, C. J. et al. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a functional model for hydrogenases. Inorg. Chem. 42, 216–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    O’Hagan, M. et al. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. J. Am. Chem. Soc. 133, 14301–14312 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    O’Hagan, M. et al. Proton delivery and removal in [Ni(PR 2NR′ 2)2]2+ hydrogen production and oxidation catalysts. J. Am. Chem. Soc. 134, 19409–19424 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Horvath, S., Fernandez, L. E., Soudackov, A. V. & Hammes-Schiffer, S. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production. Proc. Natl Acad. Sci. USA 109, 15663–15668 (2012).

  57. 57.

    Raugei, S. et al. The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes. Chem. Eur. J. 18, 6493–6506 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Cox, B. G. Acids and Bases: Solvent Effects on Acid–Base Strength (Oxford Univ. Press, 2013).

  59. 59.

    Dutta, A., Ginovska, B., Raugei, S., Roberts, J. A. S. & Shaw, W. J. Optimizing conditions for utilization of an H2 oxidation catalyst with outer coordination sphere functionalities. Dalton Trans. 45, 9786–9793 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Sarmini, K. & Kenndler, E. Ionization constants of weak acids and bases in organic solvents. J. Biochem. Biophys. Methods 38, 123–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Dutta, A. et al. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. J. Am. Chem. Soc. 135, 18490–18496 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Williams, R. J. P. Catalysis by metallo-enzymes: the entatic state. Inorganica Chimica Acta Reviews 5, 137–155 (1971).

  63. 63.

    Comba, P. et al. A bispidine iron(IV)–oxo complex in the entatic state. Angew. Chem. Int. Ed. 55, 11129–11133 (2016).

    Article  CAS  Google Scholar 

  64. 64.

    Hoffmann, A. et al. Catching an entatic state — a pair of copper complexes. Angew. Chem. Int. Ed. 53, 299–304 (2013).

    Article  CAS  Google Scholar 

  65. 65.

    Mara, M. W., Fransted, K. A. & Chen, L. X. Interplays of excited state structures and dynamics in copper(I) diimine complexes: implications and perspectives. Coord. Chem. Rev. 282–283, 2–18 (2015).

    Article  CAS  Google Scholar 

  66. 66.

    Dicke, B. et al. Transferring the entatic-state principle to copper photochemistry. Nat. Chem. 10, 355–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Rodríguez-Maciá, P. et al. Covalent attachment of the water-insoluble Ni(PCy 2NPhe 2)2 electrocatalyst to electrodes showing reversible catalysis in aqueous solution. Electroanalysis 28, 2452–2458 (2016).

    Article  CAS  Google Scholar 

  69. 69.

    Gentil, S. et al. Carbon-nanotube-supported bio-inspired nickel catalyst and its integration in hybrid hydrogen/air fuel cells. Angew. Chem. Int. Ed. 56, 1845–1849 (2017).

    Article  CAS  Google Scholar 

  70. 70.

    Yang, J. Y. et al. Reduction of oxygen catalyzed by nickel diphosphine complexes with positioned pendant amines. Dalton Trans. 39, 3001–3010 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Rodriguez-Maciá, P., Dutta, A., Lubitz, W., Shaw, W. J. & Rüdiger, O. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes. Angew. Chem. Int. Ed. 54, 12303–12307 (2015).

    Article  CAS  Google Scholar 

  72. 72.

    Oughli, A. A. et al. Dual properties of a hydrogen oxidation Ni-catalyst entrapped within a polymer promote self-defense against oxygen. Nat. Commun. 9, 864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Chabolla, S. A. et al. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups. Faraday Discuss. 198, 279–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Fourmond, V. et al. Mechanism of protection of catalysts supported in redox hydrogel films. J. Am. Chem. Soc. 137, 5494–5505 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Artero, V. & Fontecave, M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Queyriaux, N., Jane, R. T., Massin, J., Artero, V. & Chavarot-Kerlidou, M. Recent developments in hydrogen evolving molecular cobalt(II)–polypyridyl catalysts. Coord. Chem. Rev. 304–305, 3–19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Cammack, R., Frey, M. & Robson, R. Hydrogen as a Fuel: Learning from Nature (CRC Press, 2001).

  80. 80.

    Artero, V. & Saveant, J.-M. Toward the rational benchmarking of homogeneous H2-evolving catalysts. Energy Environ. Sci. 7, 3808–3814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. S. Wiedner and D. L. DuBois for helpful discussions in the preparation of this document and E. Wiedner for assistance in providing electrochemical models. This Perspective reviews previously published work supported by the Office of Science Early Career Research Program through the US Department of Energy (DoE), Basic Energy Sciences (BES); US DoE BES, Chemical Sciences, Geoscience and Biosciences; US DoE BES, Physical Biosciences; and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DoE, Office of Science, Office of BES. Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the US DoE. A.D. also acknowledges Indian Institute of Technology (IIT) Gandhinagar for their support.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Arnab Dutta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Appel, A.M. & Shaw, W.J. Designing electrochemically reversible H2 oxidation and production catalysts. Nat Rev Chem 2, 244–252 (2018). https://doi.org/10.1038/s41570-018-0032-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing