Visualizing biologically active small molecules in cells using click chemistry

Abstract

Natural products and synthetic small molecules can be used to perturb, dissect and manipulate biological processes, thereby providing the basis for drug development. Over the past decades, the evolution of molecular biology protocols and microscopy techniques has made it possible to visually detect proteins in living systems with valuable spatiotemporal resolution, in which dynamic topological information has proved to be insightful. By contrast, although small molecules have become essential for biological studies, general methods to track them in cells remain underexplored. In this Review, we discuss how bioorthogonal chemistry, and click chemistry in particular, can be exploited to label and visualize almost any biologically active small molecule in cells and tissues. We review recent developments, highlighting cases in which visualizing small molecules has provided crucial mechanistic insights. This methodology is facile to implement, is versatile and is illuminating.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of major innovations in bioorthogonal chemistry and associated biological discoveries.
Fig. 2: Visualizing fluorescent natural products and probes in cells.
Fig. 3: Visualizing a clickable small molecule targeting the viral protein NS5A.
Fig. 4: Visualizing a clickable small molecule that stabilizes microtubules.
Fig. 5: Visualizing clickable small molecules that target proteins with enzymatic activity or chromatin-docking properties.
Fig. 6: Visualizing clickable small molecules that target genomic DNA.
Fig. 7: Visualizing a clickable small molecule that targets lysosomal iron.

References

  1. 1.

    Schreiber, S. L. Small molecules: the missing link in the central dogma. Nat. Chem. Biol. 1, 64–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Helms, J. B. & Rothman, J. E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360, 352–354 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Elkin, S. R. et al. Ikarugamycin: a natural product inhibitor of clathrin-mediated endocytosis. Traffic 17, 1139–1149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    De Azevedo, W. F. et al. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem. 243, 518–526 (1997).

    Article  PubMed  Google Scholar 

  6. 6.

    De Brabander, M. J., Van de Veire, R. M., Aerts, F. E., Borgers, M. & Janssen, P. A. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer. Res. 36, 905–916 (1976).

    PubMed  Google Scholar 

  7. 7.

    Schneider-Poetsch, T. et al. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chafin, D. R., Guo, H. & Price, D. H. Action of α-amanitin during pyrophosphorolysis and elongation by RNA polymerase II. J. Biol. Chem. 270, 19114–19119 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Ikegami, S. et al. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275, 458–460 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  CAS  Google Scholar 

  11. 11.

    Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).

    Article  CAS  Google Scholar 

  14. 14.

    Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  15. 15.

    Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. & Schreiber, S. L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Spencer, D. M. et al. Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr. Biol 6, 839–847 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Stockwell, B. R. & Schreiber, S. L. Probing the role of homomeric and heteromeric receptor interactions in TGF-β signaling using small molecule dimerizers. Curr. Biol. 8, 761–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  28. 28.

    Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Plamont, M. A. et al. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. Proc. Natl Acad. Sci. USA 113, 497–502 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  32. 32.

    Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  33. 33.

    Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  35. 35.

    Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  37. 37.

    Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ning, X. et al. Protein modification by strain-promoted alkyne–nitrone cycloaddition. Angew. Chem. Int. Ed. 49, 3065–3068 (2010).

    Article  CAS  Google Scholar 

  39. 39.

    Gutsmiedl, K., Wirges, C. T., Ehmke, V. & Carell, T. Copper-free “click” modification of DNA via nitrile oxide–norbornene 1,3-dipolar cycloaddition. Org. Lett. 11, 2405–2408 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    van Berkel, S. S. et al. Metal-free triazole formation as a tool for bioconjugation. ChemBioChem 8, 1504–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    van Berkel, S. S. et al. Application of metal-free triazole formation in the synthesis of cyclic RGD-DTPA conjugates. ChemBioChem 9, 1805–1815 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Stockmann, H., Neves, A. A., Stairs, S., Brindle, K. M. & Leeper, F. J. Exploring isonitrile-based click chemistry for ligation with biomolecules. Org. Biomol. Chem. 9, 7303–7305 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem. 19, 2297–2299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Han, H. S. et al. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. J. Am. Chem. Soc. 132, 7838–7839 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Patterson, D. M., Nazarova, L. A., Xie, B., Kamber, D. N. & Prescher, J. A. Functionalized cyclopropenes as bioorthogonal chemical reporters. J. Am. Chem. Soc. 134, 18638–18643 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Dommerholt, J. et al. Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed Engl. 49, 9422–9425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Taylor, M. T., Blackman, M. L., Dmitrenko, O. & Fox, J. M. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. J. Am. Chem. Soc. 133, 9646–9649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lang, K. et al. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Song, W., Wang, Y., Qu, J. & Lin, Q. Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J. Am. Chem. Soc. 130, 9654–9655 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Liu, H. et al. Ultrafast click chemistry with fluorosydnones. Angew. Chem. Int. Ed. 55, 12073–12077 (2016).

    Article  CAS  Google Scholar 

  51. 51.

    Sletten, E. M. & Bertozzi, C. R. A bioorthogonal quadricyclane ligation. J. Am. Chem. Soc. 133, 17570–17573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Nguyen, D. P., Elliott, T., Holt, M., Muir, T. W. & Chin, J. W. Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J. Am. Chem. Soc. 133, 11418–11421 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Shangguan, N., Katukojvala, S., Greenberg, R. & Williams, L. J. The reaction of thio acids with azides: a new mechanism and new synthetic applications. J. Am. Chem. Soc. 125, 7754–7755 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Namelikonda, N. K. & Manetsch, R. Sulfo-click reaction via in situ generated thioacids and its application in kinetic target-guided synthesis. Chem. Comm. 48, 1526–1528 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(vi) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    Article  CAS  Google Scholar 

  56. 56.

    Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article  PubMed  Google Scholar 

  58. 58.

    Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Row, R. D. & Prescher, J. A. Tetrazine marks the spot. ACS Cent. Sci. 2, 493–494 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008).

    Article  PubMed  Google Scholar 

  61. 61.

    Jao, C. Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl Acad. Sci. USA 105, 15779–15784 (2008).

    Article  PubMed  Google Scholar 

  62. 62.

    Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  CAS  Google Scholar 

  64. 64.

    Kiick, K. L., Saxon, E., Tirrell, D. A. & Bertozzi, C. R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Balasubramanian, S. Decoding genomes at high speed: implications for science and medicine. Angew. Chem. Int. Ed. 50, 12406–12410 (2011).

    Article  CAS  Google Scholar 

  67. 67.

    Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide–alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Li, X. et al. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J. Am. Chem. Soc. 134, 1982–1985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Manetsch, R. et al. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126, 12809–12818 (2004).

    Article  CAS  Google Scholar 

  70. 70.

    Huc, I. & Lehn, J. M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl Acad. Sci. USA 94, 2106–2110 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Di Antonio, M. et al. Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angew. Chem. Int. Ed. 51, 11073–11078 (2012).

    Article  CAS  Google Scholar 

  72. 72.

    Baskin, J. M., Dehnert, K. W., Laughlin, S. T., Amacher, S. L. & Bertozzi, C. R. Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proc. Natl Acad. Sci. USA 107, 10360–10365 (2010).

    Article  PubMed  Google Scholar 

  73. 73.

    Ziegler, S., Pries, V., Hedberg, C. & Waldmann, H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed. 52, 2744–2792 (2013).

    Article  CAS  Google Scholar 

  74. 74.

    Wagner, B. K. & Schreiber, S. L. The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem. Biol. 23, 3–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Schurmann, M., Janning, P., Ziegler, S. & Waldmann, H. Small-molecule target engagement in cells. Cell Chem. Biol. 23, 435–441 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Ong, S. E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl Acad. Sci. USA 106, 4617–4622 (2009).

    Article  PubMed  Google Scholar 

  77. 77.

    Anders, L. et al. Genome-wide localization of small molecules. Nat. Biotechnol. 32, 92–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Rodriguez, R. & Miller, K. M. Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat. Rev. Genet. 15, 783–796 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Martin, G. D. et al. Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J. Nat. Prod. 70, 1406–1409 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Cañeque, T. et al. Synthesis of marmycin A and investigation into its cellular activity. Nat. Chem. 7, 744–751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Tanious, F. A., Veal, J. M., Buczak, H., Ratmeyer, L. S. & Wilson, W. D. DAPI (4´,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry 31, 3103–3112 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Wang, H.-H., Xue, L., Fang, Z.-J., Liab, G.-P. & Jiang, H. A colorimetric and fluorescent chemosensor for copper ions in aqueous media and its application in living cells. New J. Chem. 34, 1239–1242 (2010).

    Article  CAS  Google Scholar 

  83. 83.

    Minta, A. & Tsien, R. Y. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449–19457 (1989).

    CAS  PubMed  Google Scholar 

  84. 84.

    Rutkowska, A. et al. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11, 2541–2550 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Shi, H., Cheng, X., Sze, S. K. & Yao, S. Q. Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe. Chem. Comm. 47, 11306–11308 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Abell, N. S., Mercado, M., Cañeque, T., Rodriguez, R. & Xhemalce, B. Click quantitative mass spectrometry identifies PIWIL3 as a mechanistic target of RNA interference activator enoxacin in cancer cells. J. Am. Chem. Soc. 139, 1400–1403 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Li, Z. et al. “Minimalist” cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. J. Am. Chem. Soc. 136, 9990–9998 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. 88.

    Ding, S. et al. Using fluorescent post-labeling to probe the subcellular localization of DNA-targeted platinum anticancer agents. Angew. Chem. Int. Ed. 52, 3350–3354 (2013).

    Article  CAS  Google Scholar 

  89. 89.

    Wirth, R. et al. Azide versus alkyne functionalization in Pt(ii) complexes for post-treatment click modification: solid-state structure, fluorescent labeling, and cellular fate. J. Am. Chem. Soc. 137, 15169–15175 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Lee, K. et al. Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes. Angew. Chem. Int. Ed. 52, 10286–10289 (2013).

    Article  CAS  Google Scholar 

  91. 91.

    Wiedner, S. D. et al. Organelle-specific activity-based protein profiling in living cells. Angew. Chem. Int. Ed. 53, 2919–2922 (2014).

    Article  CAS  Google Scholar 

  92. 92.

    Hoglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl Acad. Sci. USA 114, 1566–1571 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Gao, M. et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96–100 (2010).

    Article  CAS  Google Scholar 

  94. 94.

    Jones, L. H. et al. In-cell click labelling of small molecules to determine subcellular localisation. J. Chem. Biol. 4, 49–53 (2011).

    Article  PubMed  Google Scholar 

  95. 95.

    Devaraj, N. K., Hilderbrand, S., Upadhyay, R., Mazitschek, R. & Weissleder, R. Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew. Chem. Int. Ed. 49, 2869–2872 (2010).

    Article  CAS  Google Scholar 

  96. 96.

    Bevilacqua, V. et al. Copper-chelating azides for efficient click conjugation reactions in complex media. Angew. Chem. Int. Ed. 53, 5872–5876 (2014).

    Article  CAS  Google Scholar 

  97. 97.

    De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    Article  PubMed  Google Scholar 

  98. 98.

    Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  Google Scholar 

  99. 99.

    Larrieu, D., Britton, S., Demir, M., Rodriguez, R. & Jackson, S. P. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344, 527–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  Google Scholar 

  101. 101.

    Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356, 1397–1401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Neidle, S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat. Rev. Chem. 1, 1–10 (2017).

    Article  CAS  Google Scholar 

  104. 104.

    Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Bugaut, A. & Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47, 689–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. 106.

    Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Müller, S., Kumari, S., Rodriguez, R. & Balasubramanian, S. Small-molecule-mediated G-quadruplex isolation from human cells. Nat. Chem. 2, 1095–1098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    Article  Google Scholar 

  111. 111.

    Hänsel-Hertsch, R. et al. G-Quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. 112.

    Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Zacharioudakis, E. et al. Chromatin regulates genome targeting with cisplatin. Angew. Chem. Int. Ed. 56, 6483–6487 (2017).

    Article  CAS  Google Scholar 

  114. 114.

    Alt, A. et al. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase η. Science 318, 967–970 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. 115.

    Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial–mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Pattabiraman, D. R. & Weinberg, R. A. Tackling the cancer stem cells — what challenges do they pose? Nat. Rev. Drug Discov. 13, 497–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  Google Scholar 

  118. 118.

    Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Mai, T. T. et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Granotier, C. et al. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res. 33, 4182–4190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Legin, A. A. et al. NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem. Sci. 5, 3135–3143 (2014).

    Article  CAS  Google Scholar 

  123. 123.

    Lee, R. F. et al. NanoSIMS analysis of an isotopically labelled organometallic ruthenium(ii) drug to probe its distribution and state in vitro. Chem. Comm 51, 16486–16489 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. 124.

    Lee, R. F. S. et al. Differences in cisplatin distribution in sensitive and resistant ovarian cancer cells: a TEM/NanoSIMS study. Metallomics 9, 1413–1420 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. 125.

    Tipping, W. J., Lee, M., Serrels, A., Brunton, V. G. & Hulme, A. N. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev. 45, 2075–2089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    El-Mashtoly, S. F. et al. Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst 139, 1155–1161 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. 127.

    Rodriguez-Rivera, F. P., Zhou, X., Theriot, J. A. & Bertozzi, C. R. Visualization of mycobacterial membrane dynamics in live cells. J. Am. Chem. Soc. 139, 3488–3495 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Ngo, J. T. et al. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nat. Chem. Biol. 12, 459–465 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Michael, A. Über die einwirkung von diazobenzolimid auf acetylendicarbonsauremethylester. J. Prakt. Chem. 48, 94–95 (1893).

    Article  Google Scholar 

  130. 130.

    Staudinger, H. & Meyer, J. Uber neue organische Phosphorverbindungen III. Phosphinmethylenederivate und Phosphinimine. Helv. Chim. Acta 2, 635–646 (1919).

    Article  CAS  Google Scholar 

  131. 131.

    Wittig, G. & Krebs, A. Zur existenz niedergliedriger cycloalkine I. Chem. Ber. 94, 3260–3275 (1961).

    Article  CAS  Google Scholar 

  132. 132.

    Huisgen, R. 1,3-dipolar cycloadditions past and future. Angew. Chem. Int. Ed. 2, 565–632 (1963).

    Article  Google Scholar 

  133. 133.

    Cuatrecasas, P. Affinity chromatography and purification of the insulin receptor of liver cell membranes. Proc. Natl Acad. Sci. USA 69, 1277–1281 (1972).

    Article  CAS  PubMed  Google Scholar 

  134. 134.

    Lin, F. L., Hoyt, H. M., van Halbeek, H., Bergman, R. G. & Bertozzi, C. R. Mechanistic investigation of the Staudinger ligation. J. Am. Chem. Soc. 127, 2686–2695 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. 135.

    Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. 136.

    Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. 137.

    Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Worrell, B. T., Malik, J. A. & Fokin, V. V. Direct evidence of a dinuclear copper intermediate in Cu(i)-catalyzed azide–alkyne cycloadditions. Science 340, 457–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all those whose work could not be cited owing to space limitations. The authors thank M. Dawson, S. Britton, D. Larrieu, K. Miller, E. Zacharioudakis, A. Hienzsch and T. Mai for their contribution to the primary research described in this article. The authors thank their colleagues who developed bioorthogonal chemistry, as well as those who solidly established the use of small molecules in cell biology studies. R.R. thanks S. Balasubramanian for insightful discussions and support. R.R. is supported by the European Research Council (grant number 647973).

Reviewer information

Nature Reviews Chemistry thanks A. Huczyński and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

T.C., S.M. and R.R. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Raphaël Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cañeque, T., Müller, S. & Rodriguez, R. Visualizing biologically active small molecules in cells using click chemistry. Nat Rev Chem 2, 202–215 (2018). https://doi.org/10.1038/s41570-018-0030-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing