Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The plasticity of redox cofactors: from metalloenzymes to redox-active DNA

Abstract

Metal cofactors considerably widen the catalytic space of naturally occurring enzymes whose specific and enantioselective catalytic activity constitutes a blueprint for economically relevant chemical syntheses. To optimize natural enzymes and uncover novel reactivity, we need a detailed understanding of cofactor–protein interactions, which can be challenging to obtain in the case of enzymes with sophisticated cofactors. As a case study, we summarize recent research on the [FeFe]-hydrogenases, which interconvert protons, electrons and dihydrogen at a unique iron-based active site. We can now chemically synthesize the complex cofactor and incorporate it into an apo-protein to afford functional enzymes. By varying both the cofactor and the polypeptide components, we have obtained detailed knowledge on what is required for a metal cluster to process H2. In parallel, the design of artificial proteins and catalytically active nucleic acids are advancing rapidly. In this Perspective, we introduce these fields and outline how chemists and biologists can use this knowledge to develop novel tailored semisynthetic catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The active site structures of Fe-SOD and Mn-SOD.
Fig. 2: The primary coordination sphere affects metalloprotein redox potentials.
Fig. 3: Members of the three hydrogenase classes feature cofactors with Fe ions anchored to Cys residues and ligated to CO and additional π-acids.
Fig. 4: Some synthetic [FeFe]-hydrogenase active site mimics amenable to artificial maturation.
Fig. 5: The H-cluster of [FeFe]-hydrogenase and neighbouring amino acid residues.
Fig. 6: Engineering the haem–copper centre of cytochrome c oxidase into a myoglobin.
Fig. 7: Structure of the Diels–Alder ribozyme with its cycloaddition product.

Similar content being viewed by others

References

  1. Yannone, S. M., Hartung, S., Menon, A. L., Adams, M. W. & Tainer, J. A. Metals in biology: defining metalloproteomes. Curr. Opin. Biotechnol. 23, 89–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Waldron, K. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metal sensing. Nature 460, 823–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L. & Thornton, J. M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Österberg, R. Origins of metal ions in biology. Nature 249, 382–383 (1974).

    Article  PubMed  Google Scholar 

  5. Anbar, A. D. Elements and evolution. Science 322, 1481–1483 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, J. et al. Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hosseinzadeh, P. & Lu, Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochim. Biophys. Acta 1857, 557–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Valdez, C. E., Smith, Q. A., Nechay, M. R. & Alexandrova, A. N. Mysteries of metals in metalloenzymes. Acc. Chem. Res. 47, 3110–3117 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Kepp, K. P. Heme: from quantum spin crossover to oxygen manager of life. Coord. Chem. Rev. 344, 363–374 (2017).

    Article  CAS  Google Scholar 

  10. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Esselborn, J. et al. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat. Chem. Biol. 9, 607–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Esselborn, J. et al. A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem. Sci. 7, 959–968 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Siebel, J. F. et al. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity. Biochemistry 54, 1474–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Sheng, Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854–3918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vallee, B. L. & Williams, R. J. Metalloenzymes: the entatic nature of their active sites. Proc. Natl Acad. Sci. USA 59, 498–505 (1968).

    Article  CAS  PubMed  Google Scholar 

  19. Kounosu, A. et al. Engineering a three-cysteine, one-histidine ligand environment into a new hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin from Sulfolobus solfataricus. J. Biol. Chem. 279, 12519–12528 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Bak, D. W. & Elliott, S. J. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr. Opin. Chem. Biol. 19, 50–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, L. J., Kahraman, A. & Thornton, J. M. Heme proteins — diversity in structural characteristics, function, and folding. Proteins 78, 2349–2368 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Colquhoun, H. M., Stoddart, J. F. & Williams, D. J. Second-sphere coordination — a novel role for molecular receptors. Angew. Chem. Int. Ed. 25, 487–507 (1986).

    Article  Google Scholar 

  23. Meyer, J. Iron–sulfur protein folds, iron–sulfur chemistry, and evolution. J. Biol. Inorg. Chem. 13, 157–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Paddock, M. L. et al. MitoNEET is a uniquely folded 2Fe−2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc. Natl Acad. Sci. USA 104, 14342–14347 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Zuris, J. A. et al. Engineering the redox potential over a wide range within a new class of FeS proteins. J. Am. Chem. Soc. 132, 13120–13122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bak, D. W., Zuris, J. A., Paddock, M. L., Jennings, P. A. & Elliott, S. J. Redox characterization of the FeS protein MitoNEET and impact of thiazolidinedione drug binding. Biochemistry 48, 10193–10195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  Google Scholar 

  28. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Miller, G. T., Zhang, B., Hardman, J. K. & Timkovich, R. Converting a c-type to a b-type cytochrome: Met61 to His61 mutant of Pseudomonas cytochrome c-551. Biochemistry 39, 9010–9017 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Raphael, A. L. & Gray, H. B. Axial ligand replacement in horse heart cytochrome c by semisynthesis. Proteins 6, 338–340 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Kroll, T. et al. Resonant inelastic X-ray scattering on ferrous and ferric bis-imidazole porphyrin and cytochrome c: nature and role of the axial methionine–Fe bond. J. Am. Chem. Soc. 136, 18087–18099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mara, M. W. et al. Metalloprotein entatic control of ligand–metal bonds quantified by ultrafast x-ray spectroscopy. Science 356, 1276–1280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kagan, V. E. et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic. Biol. Med. 46, 1439–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kapralov, A. A. et al. The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells. Biochemistry 46, 14232–14244 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Vance, C. K. & Miller, A.-F. Novel insights into the basis for Escherichia coli superoxide dismutase’s metal ion specificity from Mn-substituted FeSOD and its very high Em. Biochemistry 40, 13079–13087 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Vance, C. K. & Miller, A.-F. A simple proposal that can explain the inactivity of metal-substituted superoxide dismutases. J. Am. Chem. Soc. 120, 461–467 (1998).

    Article  CAS  Google Scholar 

  37. Miller, A. F. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase. Acc. Chem. Res. 41, 501–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Fernández-Gacio, A., Codina, A., Fastrez, J., Riant, O. & Soumillion, P. Transforming carbonic anhydrase into epoxide synthase by metal exchange. ChemBioChem 7, 1013–1016 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Okrasa, K. & Kazlauskas, R. J. Manganese-substituted carbonic anhydrase as a new peroxidase. Chem. Eur. J. 12, 1587–1596 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Oohora, K., Kihira, Y., Mizohata, E., Inoue, T. & Hayashi, T. C(sp3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135, 17282–17285 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571–574 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hiromoto, T. et al. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl–iron ligation in the active site iron complex. FEBS Lett. 583, 585–590 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Shima, S. et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321, 572–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Ogata, H. et al. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Structure 13, 1635–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Volbeda, A. et al. Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas. Nature 373, 580 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-Ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Nicolet, Y. et al. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596–1601 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Shima, S. & Thauer, R. K. A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 7, 37–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Peters, J. W. et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1853, 1350–1369 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Winkler, M., Esselborn, J. & Happe, T. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Biochim. Biophys. Acta 1827, 974–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Meyer, J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell. Mol. Life Sci. 64, 1063–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Silakov, A., Wenk, B., Reijerse, E. & Lubitz, W. 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys. Chem. Chem. Phys. 11, 6592–6599 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Tard, C. & Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245–2274 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Mulder, D. W. et al. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Mulder, D. W. et al. Activation of HydAΔEFG requires a preformed [4Fe-4S] cluster. Biochemistry 48, 6240–6248 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Li, H. & Rauchfuss, T. B. Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases. J. Am. Chem. Soc. 124, 726–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Roy, S. & Jones, A. K. Metalloenzymes: cutting out the middleman. Nat. Chem. Biol. 9, 603–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Kertess, L. et al. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalton Trans. 46, 16947–16958 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Winkler, M. & Happe, T. in Biohydrogen (ed. Rögner, M.) 41–60 (de Gruyter, 2015).

  64. Greco, C. et al. Structural insights into the active-ready form of [FeFe]-hydrogenase and mechanistic details of its inhibition by carbon monoxide. Inorg. Chem. 46, 7256–7258 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Knörzer, P. et al. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J. Biol. Chem. 287, 1489–1499 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lampret, O. et al. Interplay between CN ligands and the secondary coordination sphere of the H-cluster in [FeFe]-hydrogenases. J. Am. Chem. Soc. 139, 18222–18230 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Morra, S. et al. Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS ONE 7, e48400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cornish, A. J., Gärtner, K., Yang, H., Peters, J. W. & Hegg, E. L. Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J. Biol. Chem. 286, 38341–38347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hong, G., Cornish, A. J., Hegg, E. L. & Pachter, R. On understanding proton transfer to the biocatalytic [Fe-Fe]H sub-cluster in [Fe-Fe]H2ases: QM/MM MD simulations. Biochim. Biophys. Acta 1807, 510–517 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Sode, O. & Voth, G. A. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase. J. Chem. Phys. 141, 22D527 (2014).

    Article  CAS  Google Scholar 

  71. Megarity, C. F. et al. Electrochemical investigations of the mechanism of assembly of the active-site H-cluster of [FeFe]-hydrogenases. J. Am. Chem. Soc. 138, 15227–15233 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Kertess, L. et al. Influence of the [4Fe−4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Chem. Sci. 8, 8127–8137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noth, J. et al. [FeFe]-Hydrogenase with chalcogenide substitutions at the H-cluster maintains full H2 evolution activity. Angew. Chem. Int. Ed. 55, 8396–8400 (2016).

    Article  CAS  Google Scholar 

  74. Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Reijerse, E. J. et al. Direct observation of an iron-bound terminal hydride in [FeFe]-hydrogenase by nuclear resonance vibrational spectroscopy. J. Am. Chem. Soc. 139, 4306–4309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Winkler, M. et al. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat. Commun. 8, 16115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adamska-Venkatesh, A. et al. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Phys. Chem. Chem. Phys. 17, 5421–5430 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Adamska-Venkatesh, A. et al. New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. J. Am. Chem. Soc. 136, 11339–11346 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Mulder, D. W., Guo, Y., Ratzloff, M. W. & King, P. W. Identification of a catalytic iron-hydride at the H-Cluster of [FeFe]-Hydrogenase. J. Am. Chem. Soc. 139, 83–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Shafaat, H. S., Rüdiger, O., Ogata, H. & Lubitz, W. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Biochim. Biophys. Acta 1827, 986–1002 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Perotto, C. U. et al. Heterobimetallic [NiFe] complexes containing mixed CO/CN ligands: analogs of the active site of the [NiFe] hydrogenases. Inorg. Chem. 57, 2558–2569 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Kaur-Ghumaan, S. & Stein, M. [NiFe] hydrogenases: how close do structural and functional mimics approach the active site? Dalton Trans. 43, 9392–9405 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Senger, M., Stripp, S. T. & Soboh, B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J. Biol. Chem. 292, 11670–11681 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soboh, B. et al. [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins. Biochem. J. 464, 169–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Buurman, G., Shima, S. & Thauer, R. K. The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett. 485, 200–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Bai, L. et al. Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase. Faraday Discuss. 198, 37–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Shima, S. et al. Reconstitution of [Fe]-hydrogenase using model complexes. Nat. Chem. 7, 995–1002 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 567–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54, 3351–3367 (2015).

    Article  CAS  Google Scholar 

  91. Koder, R. L. & Dutton, P. L. Intelligent design: the de novo engineering of proteins with specified functions. Dalton Trans. 0, 3045–3051 (2006).

    Article  CAS  Google Scholar 

  92. Fehl, C. & Davis, B. G. Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis. Proc. Math. Phys. Eng. Sci. 472, 20160078 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jeschek, M., Panke, S. & Ward, T. R. Artificial metalloenzymes on the verge of new-to-nature metabolism. Trends Biotechnol. 36, 60–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Lichtenstein, B. R. et al. Engineering oxidoreductases: maquette proteins designed from scratch. Biochem. Soc. Trans. 40, 561–566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sommer, D. J. et al. Reengineering cyt b 562 for hydrogen production: a facile route to artificial hydrogenases. Biochim. Biophys. Acta 1857, 598–603 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Sommer, D. J., Vaughn, M. D. & Ghirlanda, G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin IX. Chem. Commun. 50, 15852–15855 (2014).

    Article  CAS  Google Scholar 

  98. Sano, Y., Onoda, A. & Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: photochemical hydrogen evolution in aqueous media. Chem. Commun. 47, 8229–8231 (2011).

    Article  CAS  Google Scholar 

  99. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Salgado, E. N., Faraone-Mennella, J. & Tezcan, F. A. Controlling protein−protein interactions through metal coordination: assembly of a 16-helix bundle protein. J. Am. Chem. Soc. 129, 13374–13375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brodin, J. D. et al. Evolution of metal selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sigman, J. A., Kwok, B. C. & Lu, Y. From myoglobin to heme–copper oxidase: design and engineering of a CuB center into sperm whale myoglobin. J. Am. Chem. Soc. 122, 8192–8196 (2000).

    Article  CAS  Google Scholar 

  103. Miner, K. D. et al. A designed functional metalloenzyme that reduces O2 to H2O with over one thousand turnovers. Angew. Chem. Int. Ed. 51, 5589–5592 (2012).

    Article  CAS  Google Scholar 

  104. Yu, Y. et al. A designed metalloenzyme achieving the catalytic rate of a native enzyme. J. Am. Chem. Soc. 137, 11570–11573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Onoda, A., Kihara, Y., Fukumoto, K., Sano, Y. & Hayashi, T. Photoinduced hydrogen evolution catalyzed by a synthetic diiron dithiolate complex embedded within a protein matrix. ACS Catal. 4, 2645–2648 (2014).

    Article  CAS  Google Scholar 

  106. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Ljubetič, A., Gradišar, H. & Jerala, R. Advances in design of protein folds and assemblies. Curr. Opin. Chem. Biol. 40, 65–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Ljubetič, A. et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol 35, 1094–1101 (2017).

    CAS  PubMed  Google Scholar 

  109. Dou, J. et al. Sampling and energy evaluation challenges in ligand binding protein design. Protein Sci. 26, 2426–2437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550, 74–79 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tinberg, C. E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zanghellini, A. et al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15, 2785–2794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Butlerow, A. Formation synthétique d’une substance sucrée. CR Acad. Sci. 53, 145–147 (1861).

    Google Scholar 

  114. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).

    CAS  PubMed  Google Scholar 

  115. Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Grzyb, J. et al. De novo design of a non-natural fold for an iron–sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim. Biophys. Acta 1797, 406–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Grzyb, J. et al. Empirical and computational design of iron–sulfur cluster proteins. Biochim. Biophys. Acta 1817, 1256–1262 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Antonkine, M. L. et al. Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe−4S] clusters in photosystem I. Biochim. Biophys. Acta 1787, 995–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Scott, M. P. & Biggins, J. Introduction of a [4Fe-4S (S-cys)4]+1,+2 iron-sulfur center into a four-α helix protein using design parameters from the domain of the Fx cluster in the Photosystem I reaction center. Protein Sci. 6, 340–346 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roy, A., Sarrou, I., Vaughn, M. D., Astashkin, A. V. & Ghirlanda, G. De novo design of an artificial bis[4Fe-4S] binding protein. Biochemistry 52, 7586–7594 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Roy, A. et al. A de novo designed 2[4Fe-4S] ferredoxin mimic mediates electron transfer. J. Am. Chem. Soc. 136, 17343–17349 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Jones, A. K., Lichtenstein, B. R., Dutta, A., Gordon, G. & Dutton, P. L. Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. J. Am. Chem. Soc. 129, 14844–14845 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl Acad. Sci. USA 97, 6298–6305 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Calhoun, J. R. et al. Computational design and characterization of a monomeric helical dinuclear metalloprotein. J. Mol. Biol. 334, 1101–1115 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Reig, A. J. et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat. Chem. 4, 900–906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Hu, C., Chan, S. I., Sawyer, E. B., Yu, Y. & Wang, J. Metalloprotein design using genetic code expansion. Chem. Soc. Rev. 43, 6498–6510 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Mills, J. H. et al. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J. Am. Chem. Soc. 135, 13393–13399 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, X. et al. Significant increase of oxidase activity through the genetic incorporation of a tyrosine–histidine cross-link in a myoglobin model of heme–copper oxidase. Angew. Chem. Int. Ed. 51, 4312–4316 (2012).

    Article  CAS  Google Scholar 

  130. Kaes, C., Katz, A. & Hosseini, M. W. Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 100, 3553–3590 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Drienovská, I. et al. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem. Sci. 8, 7228–7235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Roy, S., Shinde, S., Hamilton, G. A., Hartnett, H. E. & Jones, A. K. Artificial [FeFe]-hydrogenase: on resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. Eur. J. Inorg. Chem. 2011, 1050–1055 (2011).

    Article  CAS  Google Scholar 

  133. Roy, A., Madden, C. & Ghirlanda, G. Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic. Chem. Commun. 48, 9816–9818 (2012).

    Article  CAS  Google Scholar 

  134. Roy, S., Nguyen, T.-A. D., Gan, L. & Jones, A. K. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Dalton Trans. 44, 14865–14876 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Hyster, T. K. & Ward, T. R. Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions. Angew. Chem. Int. Ed. 55, 7344–7357 (2016).

    Article  CAS  Google Scholar 

  136. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Khanna, N., Esmieu, C., Mészáros, L. S., Lindblad, P. & Berggren, G. In vivo activation of an [FeFe] hydrogenase using synthetic cofactors. Energy Environ. Sci. 10, 1563–1567 (2017).

    Article  CAS  Google Scholar 

  138. Mészáros, L. S., Németh, B., Esmieu, C., Ceccaldi, P. & Berggren, G. In vivo EPR characterization of semi-synthetic [FeFe] hydrogenases. Angew. Chem. Int. Ed. 130, 2626–2629 (2018).

    Article  Google Scholar 

  139. Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

    Article  CAS  Google Scholar 

  140. Darmostuk, M., Rimpelova, S., Gbelcova, H. & Ruml, T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 33, 1141–1161 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, F., Liu, X. & Willner, I. DNA switches: from principles to applications. Angew. Chem. Int. Ed. 54, 1098–1129 (2015).

    Article  CAS  Google Scholar 

  142. Lu, C.-H., Cecconello, A. & Willner, I. Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J. Am. Chem. Soc. 138, 5172–5185 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Hu, Y., Cecconello, A., Idili, A., Ricci, F. & Willner, I. Triplex DNA nanostructures: from basic properties to applications. Angew. Chem. Int. Ed. 56, 15210–15233 (2017).

    Article  CAS  Google Scholar 

  144. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  147. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  Google Scholar 

  148. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  149. Cech, T. R. The ribosome is a ribozyme. Science 289, 878–879 (2000).

    Article  CAS  Google Scholar 

  150. Ward, W. L., Plakos, K. & DeRose, V. J. Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chem. Rev. 114, 4318–4342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  152. Wilson, T. J., Liu, Y. & Lilley, D. M. J. Ribozymes and the mechanisms that underlie RNA catalysis. Front. Chem. Sci. Eng. 10, 178–185 (2016).

    Article  CAS  Google Scholar 

  153. Felletti, M. & Hartig, J. S. Ligand-dependent ribozymes. Wiley Interdiscip. Rev. RNA 8, e1395 (2017).

    Google Scholar 

  154. Hollenstein, M. DNA catalysis: the chemical repertoire of DNAzymes. Molecules 20, 20777–20804 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Seelig, B. & Jäschke, A. A small catalytic RNA motif with Diels–Alderase activity. Chem. Biol. 6, 167–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Seelig, B., Keiper, S., Stuhlmann, F. & Jäschke, A. Enantioselective ribozyme catalysis of a bimolecular cycloaddition reaction. Angew. Chem. Int. Ed. 39, 4576–4579 (2000).

    Article  CAS  Google Scholar 

  157. Murray, J. M. & Doudna, J. A. Creative catalysis: pieces of the RNA world jigsaw. Trends Biochem. Sci. 26, 699–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Talini, G., Gallori, E. & Maurel, M.-C. Natural and unnatural ribozymes: back to the primordial RNA world. Res. Microbiol. 160, 457–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Boersma, A. J., Megens, R. P., Feringa, B. L. & Roelfes, G. DNA-based asymmetric catalysis. Chem. Soc. Rev. 39, 2083–2092 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Serganov, A. et al. Structural basis for Diels–Alder ribozyme-catalyzed carbon–carbon bond formation. Nat. Struct. Mol. Biol. 12, 218–224 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Emahi, I., Gruenke, P. R. & Baum, D. A. Effect of aptamer binding on the electron-transfer properties of redox cofactors. J. Mol. Evol. 81, 186–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Emahi, I., Mulvihill, I. M. & Baum, D. A. Pyrroloquinoline quinone maintains redox activity when bound to a DNA aptamer. RSC Adv. 5, 7450–7453 (2015).

    Article  CAS  Google Scholar 

  163. Thoa, T. T. T., Minagawa, N., Aigaki, T., Ito, Y. & Uzawa, T. Regulation of photosensitisation processes by an RNA aptamer. Sci. Rep. 7, 43272 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  Google Scholar 

  165. Ferré-D’Amaré, A. R. The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. Q. Rev. Biophys. 43, 423–447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bingaman, J. L. et al. The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. Nat. Chem. Biol. 13, 439–445 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Carmi, N., Shultz, L. A. & Breaker, R. R. In vitro selection of self-cleaving DNAs. Chem. Biol. 3, 1039–1046 (1996).

    Article  CAS  PubMed  Google Scholar 

  168. Hsiao, C. et al. RNA with iron(II) as a cofactor catalyses electron transfer. Nat. Chem. 5, 525–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Tsukiji, S., Pattnaik, S. B. & Suga, H. An alcohol dehydrogenase ribozyme. Nat. Struct. Biol. 10, 713–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Sen, D. & Poon, L. C. RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit. Rev. Biochem. Mol. Biol. 46, 478–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Golub, E., Albada, H. B., Liao, W.-C., Biniuri, Y. & Willner, I. Nucleoapzymes: hemin/G-quadruplex DNAzyme–aptamer binding site conjugates with superior enzyme-like catalytic functions. J. Am. Chem. Soc. 138, 164–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Saito, K., Tai, H., Hemmi, H., Kobayashi, N. & Yamamoto, Y. Interaction between the heme and a G-quartet in a heme–DNA complex. Inorg. Chem. 51, 8168–8176 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Poon, L. C.-H. et al. Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J. Am. Chem. Soc. 133, 1877–1884 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Kong, D., Lei, Y., Yeung, W. & Hili, R. Enzymatic synthesis of sequence-defined synthetic nucleic acid polymers with diverse functional groups. Angew. Chem. Int. Ed. 55, 13164–13168 (2016).

    Article  CAS  Google Scholar 

  175. Sefah, K. et al. In vitro selection with artificial expanded genetic information systems. Proc. Natl Acad. Sci. USA 111, 1449–1454 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Kimoto, M., Yamashige, R., Matsunaga, K.-i., Yokoyama, S. & Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Zhou, C. et al. DNA-catalyzed amide hydrolysis. J. Am. Chem. Soc. 138, 2106–2109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122, 2433–2439 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Andersen, E. S. Prediction and design of DNA and RNA structures. New Biotechnol. 27, 184–193 (2010).

    Article  CAS  Google Scholar 

  180. Gong, S., Wang, Y., Wang, Z. & Zhang, W. Computational methods for modeling aptamers and designing riboswitches. Int. J. Mol. Sci. 18, e2442 (2017).

    Article  PubMed  Google Scholar 

  181. Lah, M. S. et al. Structure–function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry 34, 1646–1660 (1995).

    Article  CAS  PubMed  Google Scholar 

  182. Borgstahl, G. E. O., Pokross, M., Chehab, R., Sekher, A. & Snell, E. H. Cryo-trapping the six-coordinate, distorted-octahedral active site of manganese superoxide dismutase. J. Mol. Biol. 296, 951–959 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Carrell, C. J., Zhang, H., Cramer, W. A. & Smith, J. L. Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5, 1613–1625 (1997).

    Article  CAS  PubMed  Google Scholar 

  184. van den Heuvel, R. H. H. et al. The active conformation of glutamate synthase and its binding to ferredoxin. J. Mol. Biol. 330, 113–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, H. et al. Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron–sulfur protein. J. Biol. Chem. 271, 31360–31366 (1996).

    Article  CAS  PubMed  Google Scholar 

  186. Bottin, H. & Lagoutte, B. Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp PCC 6803. Biochim. Biophys. Acta 1101, 48–56 (1992).

    Article  CAS  PubMed  Google Scholar 

  187. Lederer, F., Glatigny, A., Bethge, P. H., Bellamy, H. D. & Mathews, F. S. Improvement of the 2.5 Å resolution model of cytochrome b 562 by redetermining the primary structure and using molecular graphics. J. Mol. Biol. 148, 427–448 (1981).

    Article  CAS  PubMed  Google Scholar 

  188. Durley, R. C. E. & Mathews, F. S. Refinement and structural analysis of bovine cytochrome b 5 at 1.5 Å resolution. Acta Cryst. 52, D65–D76 (1996).

    Google Scholar 

  189. Poulos, T. L., Finzel, B. C. & Howard, A. J. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25, 5314–5322 (1986).

    Article  CAS  PubMed  Google Scholar 

  190. Barker, P. D., Butler, J. L., de Oliveira, P., Hill, H. A. O. & Hunt, N. I. Direct electrochemical studies of cytochromes b 562. Inorg. Chim. Acta 252, 71–77 (1996).

    Article  CAS  Google Scholar 

  191. Reid, L. S., Taniguchi, V. T., Gray, H. B. & Mauk, A. G. Oxidation-reduction equilibrium of cytochrome b 5. J. Am. Chem. Soc. 104, 7516–7519 (1982).

    Article  CAS  Google Scholar 

  192. Sligar, S. G. & Gunsalus, I. C. A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc. Natl Acad. Sci. USA 73, 1078–1082 (1976).

    Article  CAS  PubMed  Google Scholar 

  193. Conlan, A. R. et al. Mutation of the His ligand in mitoNEET stabilizes the 2Fe−2S cluster despite conformational heterogeneity in the ligand environment. Acta Cryst. 67, D516–D523 (2011).

    Google Scholar 

  194. Tsukihara, T. et al. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc. Natl Acad. Sci. USA 100, 15304–15309 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Vojtěchovský, J., Chu, K., Berendzen, J., Sweet, R. M. & Schlichting, I. Crystal structures of myoglobin–ligand complexes at near-atomic resolution. Biophys. J. 77, 2153–2174 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate funding from the VolkswagenStiftung (Design of [FeS]-cluster containing Metallo-DNAzymes (Az 93412)) and the Deutsche Forschungsgemeinschaft (DFG) (the Cluster of Excellence RESOLV EXC1069 and GRK 2341: Microbial Substrate Conversion).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the article, discussing the content and writing and editing of the article.

Corresponding authors

Correspondence to Anja Hemschemeier or Thomas Happe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-lactamase

An enzyme that hydrolyses β-lactam-containing antibiotics, such as penicillins or cephalosporins. Most β-lactam antibiotics inhibit biosynthesis of the bacterial cell wall. Bacteria expressing genes that encode for β-lactamase are resistant to such antibiotics.

Chlorophycean microalgae

The Chlorophyta (green algae) diverged from land plants over a billion years ago. Some unicellular green algae, such as the model organism Chlamydomonas reinhardtii, synthesize [FeFe]-hydrogenase enzymes that are located within their chloroplasts — the organelles in which photosynthesis takes place. In C. reinhardtii, [FeFe]-hydrogenases accept electrons from ferredoxin, which, in turn, can be reduced by photosynthetic electron transport. The alga can thus dispose of excess light energy through H+ reduction.

Directed evolution

A molecular biology technique that mimics the process of natural evolution — mutagenesis and selection. A sequence that encodes a protein whose characteristics are to be altered is randomly mutagenized (for example, by error-prone PCR), and the resulting proteins are screened for optimized features, such as optimum temperature or solvent stability. Several rounds of mutagenesis and selection are usually performed.

Entatic state

Translated literally, entatic means under tension or stretched. In the case of metalloenzymes, the ‘entatic state’ refers to an unusual geometric or electronic configuration of a metal ion that would not occur in the presence of unrestrained ligands. This poised state is enforced by the protein and enables the protein-specific reactivity of a given metal centre.

Error-prone PCR

The DNA sequence that codes for a protein can be randomly mutated by modulating the PCR conditions such that DNA polymerase introduces mistakes into the newly polymerized DNA strand. Thereby, random changes in the amino acid composition of the encoded protein are generated. The technique is usually coupled with (high-throughput) screening techniques to identify proteins with desired variations in their properties.

Genetic code expansion

One can enable organisms to introduce unnatural amino acid residues into proteins using their natural translation machinery. For this purpose, a novel (orthogonal) tRNA is evolved together with its aminoacyl-tRNA synthetase, which couples the respective (unnatural) amino acid to the tRNA. The tRNA is designed to recognize a stop codon, which can then be introduced into the sequence that encodes the protein whose amino acid content is to be changed. Most often, the rare amber stop codon is utilized.

G-quadruplex

A specific structure of guanine-rich nucleic acids in which so-called G-tetrads are stacked. G-tetrads are built from four guanine bases that form a square planar structure.

Hydrogenases

These enzymes can oxidize H2 or produce H2 from protons. Organisms utilize hydrogenases to make use of the energy content of H2 (for example, through the Knallgas reaction) or to dispose of excess electrons (for example, during fermentation).

Pleiotropic effects

This term was originally used to describe genes that had more than one effect. However, its general meaning in biology refers to something that has multiple, often unrelated impacts. The exchange of an amino acid in a protein by site-directed mutagenesis can have a structural effect, for example, when the two residues differ in size, or a functional effect, when the chemical properties of the residues differ. If both effects are observed, the mutation is said to have pleiotropic effects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemschemeier, A., Happe, T. The plasticity of redox cofactors: from metalloenzymes to redox-active DNA. Nat Rev Chem 2, 231–243 (2018). https://doi.org/10.1038/s41570-018-0029-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0029-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing