Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Streamlining bioactive molecular discovery through integration and automation

Abstract

The discovery of bioactive small molecules is generally driven via iterative design–make–purify–test cycles. Automation is routinely harnessed at individual stages of these cycles to increase the productivity of drug discovery. Here, we describe recent progress to automate and integrate two or more adjacent stages within discovery workflows. Examples of such technologies include microfluidics, liquid-handling robotics and affinity-selection mass spectrometry. The value of integrated technologies is illustrated in the context of specific case studies in which modulators of targets, such as protein kinases, nuclear hormone receptors and protein–protein interactions, were discovered. We note that to maximize impact on the productivity of discovery, each of the integrated stages would need to have both high and matched throughput. We also consider the longer-term goal of realizing the fully autonomous discovery of bioactive small molecules through the integration and automation of all stages of discovery.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Current features and future aspirations in drug discovery workflows.
Fig. 2: Platforms for high-throughput reaction optimization to yield highly functionalized products.
Fig. 3: Platforms that integrate synthesis and biological evaluation to enable the discovery of bioactive small molecules.
Fig. 4: Integration of active learning, synthesis, purification and evaluation in the discovery of ABL kinase inhibitors.
Fig. 5: Activity-directed synthesis of androgen receptor agonists.

References

  1. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Ley, S. V., Fitzpatrick, D. E., Ingham, R. J. & Myers, R. M. Organic synthesis: march of the machines. Angew. Chem. Int. Ed. 54, 3449–3464 (2015).

    Article  CAS  Google Scholar 

  5. Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 27, 675–679 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Lipkus, A. H. et al. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J. Org. Chem. 73, 4443–4451 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Langdon, S. R., Brown, N. & Blagg, J. Scaffold diversity of exemplified medicinal chemistry space. J. Chem. Inf. Model. 51, 2174–2185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug. Discov. Today Technol. 1, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Foley, D. J., Nelson, A. & Marsden, S. P. Evaluating new chemistry to drive molecular discovery: fit for purpose? Angew. Chem. Int. Ed. 55, 13650–13657 (2016).

    Article  CAS  Google Scholar 

  12. Walters, W. P., Green, J., Weiss, J. R. & Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 54, 6405–6416 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, D. G. & Bostrom, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  Google Scholar 

  16. Cooper, T. W., Campbell, I. B. & Macdonald, S. J. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew, Chem. Int. Ed. 49, 8082–8091 (2010).

    Article  CAS  Google Scholar 

  17. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Goodnow, R. A. Jr, Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ley, S. V. et al. Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation. J. Chem. Soc. Perkin Trans. 1, 3815–4195 (2000).

    Article  Google Scholar 

  21. Carpintero, M., Cifuentes, M., Ferritto, R., Haro, R. & Toledo, M. A. Automated liquid-liquid extraction workstation for library synthesis and its use in the parallel and chromatography-free synthesis of 2-alkyl-3-alkyl-4-(3H)-quinazolinones. J. Comb. Chem. 9, 818–822 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ghislieri, D., Gilmore, K. & Seeberger, P. H. Chemical assembly systems: layered control for divergent, continuous, multistep syntheses of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54, 678–682 (2015).

    CAS  Google Scholar 

  23. Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. 51, 1114–1122 (2012).

    Article  CAS  Google Scholar 

  24. Hwang, Y. J. J. et al. A segmented flow platform for on-demand medicinal chemistry and compound synthesis in oscillating droplets. Chem. Comm. 53, 6649–6652 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Reizman, B. J., Wang, Y. M., Buchwald, S. L. & Jensen, K. F. Suzuki-Miyaura cross-coupling optimization enabled by automated feedback. React. Chem. Eng. 1, 658–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cernak, T. et al. Microscale high-throughput experimentation as an enabling technology in drug discovery: application in the discovery of (Piperidinyl)pyridinyl-1H-benzimidazole diacylglycerol acyltransferase 1 inhibitors. J. Med. Chem. 60, 3594–3605 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Murray, P. M., Tyler, S. N. G. & Moseley, J. D. Beyond the numbers: charting chemical reaction space. Org. Process Res. Dev. 17, 40–46 (2013).

    Article  CAS  Google Scholar 

  30. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  31. Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Troshin, K. & Hartwig, J. F. Snap deconvolution: an informatics approach to high-throughput discovery of catalytic reactions. Science 357, 175–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Hawkes, S. Y. F., Chapela, M. J. V. & Montembault, M. Leveraging the advantages offered by microfluidics to enhance the drug discovery process. QSAR Comb. Sci. 24, 712–721 (2005).

    Article  CAS  Google Scholar 

  35. Wang, J. et al. Integrated microfluidics for parallel screening of an in situ click chemistry library. Angew. Chem. Int. Ed. 45, 5276–5281 (2006).

    Article  CAS  Google Scholar 

  36. Baranczak, A. et al. Integrated platform for expedited synthesis−purification−testing of small molecule libraries. ACS Med. Chem. Lett. 8, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Czechtizky, W. et al. Integrated synthesis and testing of substituted xanthine based DPP4 inhibitors: application to drug discovery. ACS Med. Chem. Lett. 4, 768–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guetzoyan, L. et al. Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. Med. Chem. Commun. 5, 540 (2014).

    Article  CAS  Google Scholar 

  39. Guetzoyan, L., Nikbin, N., Bexandale, I. R. & Ley, S. V. Flow chemistry synthesis of zolpidem, alpidem and other GABAA agonists and their biological evaluation through the use of in-line frontal affinity chromatography. Chem. Sci. 4, 764–769 (2013).

    Article  CAS  Google Scholar 

  40. Werner, M. et al. Seamless integration of dose-response screening and flow chemistry: efficient generation of structure–activity relationship data of b-secretase (BACE1) inhibitors. Angew. Chem. Int. Ed. 53, 1704–1708 (2014).

    Article  CAS  Google Scholar 

  41. Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Desai, B. et al. Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. J. Med. Chem. 56, 3033–3047 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Reker, D. & Schneider, G. Active-learning strategies in computer-assisted drug discovery. Drug Discov. Today 20, 458–465 (2015).

    Article  PubMed  Google Scholar 

  44. Murray, J. B., Roughley, S. D., Matassova, N. & Brough, P. A. Off-rate screening (ORS) by surface plasmon resonance. An efficient method to kinetically sample hit to lead chemical space from unpurified reaction products. J. Med. Chem. 57, 2845–2850 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Maplestone, R. A., Stone, M. J. & Williams, D. H. The evolutionary role of secondary metabolites — a review. Gene 115, 151–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Firn, R. D. & Jones, C. G. Natural products — a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod 75, 311–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karageorgis, G., Warriner, S. & Nelson, A. Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nat. Chem. 6, 872–876 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Karageorgis, G., Dow, M., Aimon, A., Warriner, S. & Nelson, A. Activity-directed synthesis with intermolecular reactions: development of a fragment into a range of androgen receptor agonists. Angew. Chem. Int. Ed. 54, 13538–13544 (2015).

    Article  CAS  Google Scholar 

  50. Huang, Y. L. & Bode, J. W. Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents. Nat. Chem. 6, 877–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Mondal, M. & Hirsch, A. K. H. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chem. Soc. Rev. 44, 2455–2488 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H. & Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci. 3, 434–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  Google Scholar 

  54. Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533–543 (2018).

    Article  CAS  Google Scholar 

  55. Pickett, S. D., Green, D. V. S., Hunt, D. L., Pardoe, D. A. & Hughes, I. Automated lead optimization of MMP-12 inhibitors using a genetic algorithm. ACS Med. Chem. Lett. 2, 28–33 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC; EP/N025652/1) for support.

Reviewer information

Nature Reviews Chemistry thanks D. Brown, D. Winkler and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and S.L. researched data for the article. All authors made substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Adam Nelson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chow, S., Liver, S. & Nelson, A. Streamlining bioactive molecular discovery through integration and automation. Nat Rev Chem 2, 174–183 (2018). https://doi.org/10.1038/s41570-018-0025-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0025-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing