Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Semiconducting quantum dots for artificial photosynthesis

Abstract

Sunlight is our most abundant, clean and inexhaustible energy source. However, its diffuse and intermittent nature makes it difficult to use directly, suggesting that we should instead store this energy. One of the most attractive avenues for this involves using solar energy to split H2O and afford H2 through artificial photosynthesis, the practical realization of which requires low-cost, robust photocatalysts. Colloidal quantum dots (QDs) of IIB–VIA semiconductors appear to be an ideal material from which to construct highly efficient photocatalysts for H2 photogeneration. In this Review, we highlight recent developments in QD-based artificial photosynthetic systems for H2 evolution using sacrificial reagents. These case studies allow us to introduce strategies — including size optimization, structural modification and surface design — to increase the H2 evolution activities of QD-based artificial photosystems. Finally, we describe photocatalytic biomass reforming and unassisted photoelectrochemical H2O splitting — two new pathways that could make QD-based solar-to-fuel conversion practically viable and cost-effective in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intrinsic advantages of semiconducting QDs in artificial photosynthesis.
Fig. 2: Photocatalytic H2 evolution using semiconducting QDs.
Fig. 3: Quantum confinement effect controlled photocatalytic H2 evolution.
Fig. 4: Heterostructured semiconducting QDs for photocatalytic H2 evolution.
Fig. 5: Influence of surface ligands on photocatalytic H2 evolution.
Fig. 6: Cost-effective solar H2 evolution using QDs.

Similar content being viewed by others

References

  1. Armaroli, N. & Balzani, V. The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46, 52–66 (2007).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Lubitz, W. & Tumas, W. Hydrogen: an overview. Chem. Rev. 107, 3900–3903 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Armaroli, N. & Balzani, V. The hydrogen issue. ChemSusChem 4, 21–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, D., Sakamoto, K. K., Hong, D. & Yang, P. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 54, 3259–3266 (2015).

    Article  CAS  Google Scholar 

  8. Frischmann, P. D., Mahata, K. & Würthner, F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  Google Scholar 

  11. Wu, L.-Z., Chen, B., Li, Z.-J. & Tung, C.-H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 47, 2177–2185 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Armaroli, N. & Balzani, V. Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22, 32–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Brugger, P. A., Cuendet, P. & Graetzel, M. Ultrafine and specific catalysts affording efficient hydrogen evolution from water under visible light illumination. J. Am. Chem. Soc. 103, 2923–2927 (1981).

    Article  CAS  Google Scholar 

  18. Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Romain, S., Vigara, L. & Llobet, A. Oxygen−oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944–1953 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Concepcion, J. J. et al. Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Min, S. & Lu, G. Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J. Phys. Chem. C 116, 19644–19652 (2012).

    Article  CAS  Google Scholar 

  24. Yamada, Y., Miyahigashi, T., Kotani, H., Ohkubo, K. & Fukuzumi, S. Photocatalytic hydrogen evolution under highly basic conditions by using Ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion. J. Am. Chem. Soc. 133, 16136–16145 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, C., Cao, S. & Fu, W.-F. A stable dual-functional system of visible-light-driven Ni(ii) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production. Chem. Commun. 49, 11251–11253 (2013).

    Article  CAS  Google Scholar 

  26. Willkomm, J., Muresan, N. M. & Reisner, E. Enhancing H2 evolution performance of an immobilised cobalt catalyst by rational ligand design. Chem. Sci. 6, 2727–2736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai, J.-G., Yu, Z.-T., Yuan, Y.-J., Li, F. & Zou, Z.-G. Dinuclear iridium(iii) complexes containing bibenzimidazole and their application to water photoreduction. ACS Catal. 4, 1953–1963 (2014).

    Article  CAS  Google Scholar 

  28. Cline, E. D., Adamson, S. E. & Bernhard, S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Lakshminarasimhan, N., Bokare, A. D. & Choi, W. Effect of agglomerated state in mesoporous TiO2 on the morphology of photodeposited Pt and photocatalytic activity. J. Phys. Chem. C 116, 17531–17539 (2012).

    Article  CAS  Google Scholar 

  30. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, A. M. & Nie, S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009).

    Article  CAS  Google Scholar 

  32. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2009).

    Article  CAS  Google Scholar 

  33. Zrazhevskiy, P., Sena, M. & Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalyanasundaram, K., Borgarello, E., Duonghong, D. & Grätzel, M. Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO2. Angew. Chem. Int. Ed. 20, 987–988 (1981).

    Article  Google Scholar 

  35. Wu, K. & Lian, T. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 45, 3781–3810 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Artero, V. & Fontecave, M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Piers, W. E. Future trends in organometallic chemistry: organometallic approaches to water splitting. Organometallics 30, 13–16 (2011).

    Article  CAS  Google Scholar 

  38. Han, Z. & Eisenberg, R. Fuel from water: the photochemical generation of hydrogen from water. Acc. Chem. Res. 47, 2537–2544 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Holmes, M. A., Townsend, T. K. & Osterloh, F. E. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 48, 371–373 (2012).

    Article  CAS  Google Scholar 

  40. Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6, 964–970 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tard, C. & Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245–2274 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, F. et al. Artificial photosynthetic systems based on [FeFe]-hydrogenase mimics: the road to high efficiency for light-driven hydrogen evolution. ACS Catal. 2, 407–416 (2012).

    Article  CAS  Google Scholar 

  46. Brown, K. A., Dayal, S., Ai, X., Rumbles, G. & King, P. W. Controlled assembly of hydrogenase–CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, F. et al. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew. Chem. Int. Ed. 50, 3193–3197 (2011).

    Article  CAS  Google Scholar 

  48. Wu, H. B., Xia, B. Y., Yu, L., Yu, X.-Y. & Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 6, 6512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, C., Qiu, F., Peterson, J. J. & Krauss, T. D. Aqueous photogeneration of H2 with CdSe nanocrystals and nickel catalysts: electron transfer dynamics. J. Phys. Chem. B 119, 7349–7357 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Z.-J. et al. A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci 6, 465–469 (2013).

    Article  CAS  Google Scholar 

  51. Li, Z.-J. et al. Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. J. Mater. Chem. A 5, 10365–10373 (2017).

    Article  CAS  Google Scholar 

  52. Li, Z.-J. et al. Visible light catalysis-assisted assembly of Nih-QD hollow nanospheres in situ via hydrogen bubbles. J. Am. Chem. Soc. 136, 8261–8268 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Li, Z.-J. et al. An exceptional artificial photocatalyst, Nih-CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. Adv. Mater. 25, 6613–6618 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  55. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996).

    Article  CAS  Google Scholar 

  56. Li, X.-B. et al. Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. Angew. Chem. Int. Ed. 53, 2085–2089 (2014).

    Article  CAS  Google Scholar 

  57. Huang, J., Stockwell, D., Huang, Z., Mohler, D. L. & Lian, T. Photoinduced ultrafast electron transfer from CdSe quantum dots to Re–bipyridyl complexes. J. Am. Chem. Soc. 130, 5632–5633 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, J., Holmes, M. A. & Osterloh, F. E. Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7, 4316–4325 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996).

    Article  CAS  Google Scholar 

  60. Sapra, S. & Sarma, D. D. Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B 69, 125304 (2004).

    Article  CAS  Google Scholar 

  61. Hutchison, G. R., Ratner, M. A. & Marks, T. J. Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J. Am. Chem. Soc. 127, 16866–16881 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Jian, J.-X. et al. Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution. Energy Environ. Sci. 9, 2083–2089 (2016).

    Article  CAS  Google Scholar 

  63. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Baranov, A. V. et al. Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B 68, 165306 (2003).

    Article  CAS  Google Scholar 

  65. Wu, X.-J. et al. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8, 470–475 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Fisher, A. A. E. & Osborne, M. A. Sizing up excitons in core–shell quantum dots via shell-dependent photoluminescence blinking. ACS Nano 11, 7829–7840 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, H., Song, N. & Lian, T. Controlling charge separation and recombination rates in CdSe/ZnS type I core–shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132, 15038–15045 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, J., Mulfort, K. L., Du, P. & Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 134, 16472–16475 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, H., Song, N. & Lian, T. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 133, 8762–8771 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Nan, W. et al. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 134, 19685–19693 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Thibert, A. et al. Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals. J. Phys. Chem. Lett. 2, 2688–2694 (2011).

    Article  CAS  Google Scholar 

  72. Wang, P. et al. Shell thickness engineering significantly boosts the photocatalytic H2 evolution efficiency of CdS/CdSe core/shell quantum dots. ACS Appl. Mater. Interfaces 9, 35712–35720 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Kilina, S., Ivanov, S. & Tretiak, S. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J. Am. Chem. Soc. 131, 7717–7726 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. He, C., Weinberg, D. J., Nepomnyashchii, A. B., Lian, S. & Weiss, E. A. Control of the redox activity of PbS quantum dots by tuning electrostatic interactions at the quantum dot/solvent interface. J. Am. Chem. Soc. 138, 8847–8854 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Hines, D. A. & Kamat, P. V. Recent advances in quantum dot surface chemistry. ACS Appl. Mater. Interfaces 6, 3041–3057 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Weiss, E. A. Designing the surfaces of semiconductor quantum dots for colloidal photocatalysis. ACS Energy Lett. 2, 1005–1013 (2017).

    Article  CAS  Google Scholar 

  78. Peterson, M. D. et al. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annu. Rev. Phys. Chem. 65, 317–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Weller, H. Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. 32, 41–53 (1993).

    Article  Google Scholar 

  80. Das, A., Han, Z., Haghighi, M. G. & Eisenberg, R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl Acad. Sci. USA 110, 16716–16723 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, P., Zhang, J., He, H., Xu, X. & Jin, Y. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 7, 5767–5775 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Nag, A. et al. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS3 2−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Kuehnel, M. F., Wakerley, D. W., Orchard, K. L. & Reisner, E. Photocatalytic formic acid conversion on CdS nanocrystals with controllable selectivity for H2 or CO. Angew. Chem. Int. Ed. 54, 9627–9631 (2015).

    Article  CAS  Google Scholar 

  85. Chang, C. M., Orchard, K. L., Martindale, B. C. M. & Reisner, E. Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J. Mater. Chem. A 4, 2856–2862 (2016).

    Article  CAS  Google Scholar 

  86. Wen, M. et al. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Sci. Rep. 6, 29851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, X.-B. et al. Self-assembled framework enhances electronic communication of ultrasmall-sized nanoparticles for exceptional solar hydrogen evolution. J. Am. Chem. Soc. 139, 4789–4796 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Kuehnel, M. F. & Reisner, E. Solar hydrogen generation from lignocellulose. Angew. Chem. Int. Ed. 57, 3290–3296 (2018).

    Article  CAS  Google Scholar 

  89. You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  Google Scholar 

  90. Wang, J.-J. et al. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. ChemSusChem 7, 1468–1475 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Wakerley, D. W. et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy 2, 17021 (2017).

    Article  CAS  Google Scholar 

  92. Sahai, S. et al. Quantum dots sensitization for photoelectrochemical generation of hydrogen: a review. Renew. Sust. Energ. Rev. 68, 19–27 (2017).

    Article  CAS  Google Scholar 

  93. Macdonald, T. J. & Nann, T. Quantum dot sensitized photoelectrodes. Nanomaterials 1, 79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nann, T. et al. Water splitting by visible light: a nanophotocathode for hydrogen production. Angew. Chem. Int. Ed. 49, 1574–1577 (2010).

    Article  CAS  Google Scholar 

  95. Ruberu, T. P. A., Dong, Y., Das, A. & Eisenberg, R. Photoelectrochemical generation of hydrogen from water using a CdSe quantum dot-sensitized photocathode. ACS Catal. 5, 2255–2259 (2015).

    Article  CAS  Google Scholar 

  96. Liu, B. et al. A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ. Sci. 8, 1443–1449 (2015).

    Article  CAS  Google Scholar 

  97. Li, X.-B. et al. Hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy. Adv. Sci. 3, 1500282 (2016).

    Article  CAS  Google Scholar 

  98. Wen, M. et al. Hole-transfer-layer modification of quantum dot-sensitized photocathodes for dramatically enhanced hydrogen evolution. Part. Part. Syst. Charact. 35, 1700278 (2017).

    Article  CAS  Google Scholar 

  99. Li, J. et al. Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 138, 3954–3957 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Lv, H. et al. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl Acad. Sci. USA 114, 11297–11302 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Dong, Y. et al. Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion. ACS Sustainable Chem. Eng. 3, 2429–2434 (2015).

    Article  CAS  Google Scholar 

  102. Macdonald, T. J. et al. SWCNT photocathodes sensitised with InP/ZnS core–shell nanocrystals. J. Mater. Chem. C 4, 3379–3384 (2016).

    Article  CAS  Google Scholar 

  103. Dong, Y. et al. Efficient and stable MoS2/CdSe/NiO photocathode for photoelectrochemical hydrogen generation from water. Chem. Asian J. 10, 1660–1667 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Meng, P., Wang, M., Yang, Y., Zhang, S. & Sun, L. CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H2 evolution from neutral water. J. Mater. Chem. A 3, 18852–18859 (2015).

    Article  CAS  Google Scholar 

  105. Yang, H. B. et al. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting. ACS Nano 8, 10403–10413 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Jing, L. et al. Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623–10730 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Kuehnel, M. F. et al. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water. Chem. Sci. 9, 2501–2509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jang, Y. J. et al. Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem. ACS Nano 10, 6980–6987 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Jang, Y. J., Lee, J., Lee, J. & Lee, J. S. Solar hydrogen production from zinc telluride photocathode modified with carbon and molybdenum sulfide. ACS Appl. Mater. Interfaces 8, 7748–7755 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Fang, Z. et al. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 7, 13915–13924 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Lian, Z. et al. Durian-shaped CdS@ZnSe core@mesoporous-shell nanoparticles for enhanced and sustainable photocatalytic hydrogen evolution. J. Phys. Chem. Lett. 9, 2212–2217 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Zhou, Y., Hu, W., Ludwig, J. & Huang, J. Exceptionally robust CuInS2/ZnS nanoparticles as single component photocatalysts for H2 evolution. J. Phys. Chem. C 121, 19031–19035 (2017).

    Article  CAS  Google Scholar 

  113. Gao, Y.-J. et al. Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. Chem. Commun. 54, 4858–4861 (2018).

    Article  CAS  Google Scholar 

  114. Peng, Z. A. & Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Qiu, F. et al. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 16, 5347–5352 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Gimbert-Suriñach, C. et al. Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. J. Am. Chem. Soc. 136, 7655–7661 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Han, K. et al. Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chem. Commun. 51, 7008–7011 (2015).

    Article  CAS  Google Scholar 

  118. Li, C.-B. et al. Interface-directed assembly of a simple precursor of [FeFe]-H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ. Sci. 6, 2597–2602 (2013).

    Article  CAS  Google Scholar 

  119. Wang, F. et al. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem. Int. Ed. 52, 8134–8138 (2013).

    Article  CAS  Google Scholar 

  120. Jian, J.-X. et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun. 4, 2695 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Lai, L.-H. et al. Organic–inorganic hybrid solution-processed H2-evolving photocathodes. ACS Appl. Mater. Interfaces 7, 19083–19090 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Wen, M. et al. Integrating CdSe quantum dots with a [FeFe]-hydrogenase mimic into a photocathode for hydrogen evolution at a low bias voltage. ChemPhotoChem 1, 260–264 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Ministry of Science and Technology of China (2014CB239402 and 2017YFA0206903), the National Science Foundation of China (21390404, 21861132004 and 21603248), the Strategic Priority Research Program of the Chinese Academy of Science (XDB17000000), Key Research Program of Frontier Science of the Chinese Academy of Sciences (QYZDY-SSW-JSCO29) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018031).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the article, discussing the content and writing and editing of the article.

Corresponding authors

Correspondence to Chen-Ho Tung or Li-Zhu Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XB., Tung, CH. & Wu, LZ. Semiconducting quantum dots for artificial photosynthesis. Nat Rev Chem 2, 160–173 (2018). https://doi.org/10.1038/s41570-018-0024-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0024-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing