Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Studying glycobiology at the single-molecule level

Abstract

Attempts to elucidate the roles of carbohydrate-associated structures in biology have led to the distinct field of glycobiology research. The focus of this field has been in understanding the evolution, biosynthesis and interactions of glycans, both individually and as components of larger biomolecules. However, as most approaches for studying glycans (including mass spectrometry and various binding assays) use ensemble measurements, they lack the precision required to uncover the discrete roles of glycoconjugates, which are often heterogeneous, in biomolecular processes. Single-molecule techniques can examine individual events within challenging mixtures, and they are beginning to be applied to glycobiology. For example, single-molecule force spectroscopy (SMFS) by atomic force microscopy (AFM) has enabled the molecular interactions of sugars to be studied, single-molecule fluorescence microscopy and spectroscopy have led to insight into the role of sugars in biological processes and nanopores have revealed interactions between polysaccharides and their transporters. Thus, single-molecule technology is becoming a valuable tool in glycoscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A snapshot of some cell-surface glycobiology.
Fig. 2: Comparison of ensemble measurements and single-molecule measurements in a simulated non-sugar system.
Fig. 3: Single-molecule force spectroscopy to study sugar–lectin interactions.
Fig. 4: Single-molecule cell-surface glycan ‘mapping’.
Fig. 5: The study of glycan processing and presentation using single-molecule fluorescence.
Fig. 6: Creation of artificial cytoskeletal networks on cell surfaces via glycans.
Fig. 7: Nanopore single-channel recording in glycobiology.

Similar content being viewed by others

Ieva Bagdonaite, Stacy A. Malaker, … Nichollas E. Scott

References

  1. Schnaar, R. L. Glycobiology simplified: diverse roles of glycan recognition in inflammation. J. Leukoc. Biol. 99, 825–838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article  CAS  Google Scholar 

  4. Seeberger, P. H. Chemical glycobiology: why now? Nat. Chem. Biol. 5, 368–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Imperiali, B. The chemistry–glycobiology frontier. J. Am. Chem. Soc. 134, 17835–17839 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L.-X. & Davis, B. G. Realizing the promise of chemical glycobiology. Chem. Sci. 4, 3381–3394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Krishnamoorthy, L. & Mahal, L. K. Glycomic analysis: an array of technologies. ACS Chem. Biol. 4, 715–732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dube, D. H., Champasa, K. & Wang, B. Chemical tools to discover and target bacterial glycoproteins. Chem. Comm. 47, 87–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Grice, I. D. & Wilson, J. C. in Microbial Glycobiology (eds Brennan, J. P., von Itzstein, V. & Holst, O.) 233–252 (Academic Press, 2010).

  11. Mulloy, B., Hart, G. W. & Stanley, P. in Essentials of Glycobiology 2nd edn (eds Varki, A. et al.) 661–678 (Cold Spring Harbor Laboratory Press, 2009).

  12. Gray, C. J. et al. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim. Biophys. Acta 1860, 1688–1709 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann, J., Hahm, H. S., Seeberger, P. H. & Pagel, K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature 526, 241–244 (2015). This is a striking proof of principle that ion mobility mass spectrometry can rapidly identify different glycan regioisomers and stereoisomers (here with an emphasis on synthetic products), even at low proportions.

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg, D. et al. Automated N-glycopeptide identification using a combination of single- and tandem-MS. J. Proteome Res. 6, 3995–4005 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Novotny, M. V., Alley, W. R. & Mann, B. F. Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj. J. 30, 89–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Gaunitz, S., Nagy, G., Pohl, N. L. B. & Novotny, M. V. Recent advances in the analysis of complex glycoproteins. Anal. Chem. 89, 389–413 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Both, P. et al. Discrimination of epimeric glycans and glycopeptides using IM–MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65–74 (2014). This study complements reference 13 as it explores the application of ion mobility mass spectrometry to model glycopeptides and oligosaccharides (with an emphasis on future ‘sequencing’ of naturally derived samples).

    Article  CAS  PubMed  Google Scholar 

  18. Nagy, G. & Pohl, N. L. B. Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers. Anal. Chem. 87, 4566–4571 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Nagy, G. & Pohl, N. L. B. Complete hexose isomer identification with mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 677–685 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Schindler, B. et al. Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat. Commun. 8, 973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rees, D. A. & Welsh, E. J. Secondary and tertiary structure of polysaccharides in solutions and gels. Angew. Chem. Int. Ed. Engl. 16, 214–224 (1977).

    Article  Google Scholar 

  22. Yuriev, E., Farrugia, W., Scott, A. M. & Ramsland, P. A. Three-dimensional structures of carbohydrate determinants of Lewis system antigens: implications for effective antibody targeting of cancer. Immunol. Cell Biol. 83, 709 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Yaffe, N. R., Almond, A. & Blanch, E. W. A. New route to carbohydrate secondary and tertiary structure using raman spectroscopy and raman optical activity. J. Am. Chem. Soc. 132, 10654–10655 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Johannessen, C., Pendrill, R., Widmalm, G., Hecht, L. & Barron, L. D. Glycan structure of a high-mannose glycoprotein from raman optical activity. Angew. Chem. Int. Ed. 50, 5349–5351 (2011).

    Article  CAS  Google Scholar 

  25. Barry, C. S. et al. ‘Naked’ and hydrated conformers of the conserved core pentasaccharide of N-linked glycoproteins and its building blocks. J. Am. Chem. Soc. 135, 16895–16903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seeberger, P. H. The logic of automated glycan assembly. Acc. Chem. Res. 48, 1450–1463 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  28. Griffin, M. E. & Hsieh-Wilson, L. C. Synthetic probes of glycosaminoglycan function. Curr. Opin. Chem. Biol. 17, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Griffin, M. E. & Hsieh-Wilson, L. C. Glycan engineering for cell and developmental biology. Cell Chem. Biol. 23, 108–121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krasnova, L. & Wong, C.-H. Understanding the chemistry and biology of glycosylation with glycan synthesis. Ann. Rev. Biochem. 85, 599–630 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Berti, F. & Adamo, R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. 8, 1653–1663 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Bernardi, A. et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 42, 4709–4727 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Astronomo, R. D. & Burton, D. R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discov. 9, 308–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, W., Du, Y., Zhu, Y. & Chen, X. A. cis-Membrane FRET-based method for protein-specific imaging of cell-surface glycans. J. Am. Chem. Soc. 136, 679–687 (2014).

    Article  CAS  Google Scholar 

  35. Belardi, B., O’Donoghue, G. P., Smith, A. W., Groves, J. T. & Bertozzi, C. R. Investigating cell surface galectin-mediated cross-linking on glycoengineered cells. J. Am. Chem. Soc. 134, 9549–9552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adibekian, A. et al. Comparative bioinformatics analysis of the mammalian and bacterial glycomes. Chem. Sci. 2, 337–344 (2011).

    Article  CAS  Google Scholar 

  37. Laine, R. A. Invited commentary: a calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4, 759–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  39. Lundquist, J. J. & Toone, E. J. The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    Article  CAS  Google Scholar 

  41. Geissner, A. & Seeberger, P. H. Glycan arrays: from basic biochemical research to bioanalytical and biomedical applications. Ann. Rev. Anal. Chem. 9, 223–247 (2016).

    Article  CAS  Google Scholar 

  42. Laurent, N., Voglmeir, J. & Flitsch, S. L. Glycoarrays-tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem. Commun. 37, 4400–4412 (2008).

    Article  CAS  Google Scholar 

  43. Fais, M. et al. Surface plasmon resonance imaging of glycoarrays identifies novel and unnatural carbohydrate-based ligands for potential ricin sensor development. Chem. Sci. 2, 1952–1959 (2011).

    Article  CAS  Google Scholar 

  44. Dam, T. K. & Brewer, C. F. Thermodynamic studies of lectin–carbohydrate interactions by isothermal titration calorimetry. Chem. Rev. 102, 387–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Gestwicki, J. E., Cairo, C. W., Strong, L. E., Oetjen, K. A. & Kiessling, L. L. Influencing receptor–ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Kitov, P. I. & Bundle, D. R. On the nature of the multivalency effect: a thermodynamic model. J. Am. Chem. Soc. 125, 16271–16284 (2003). This is a prescient and unduly underappreciated analysis of the contribution that degeneracy of states could make in the thermodynamics behind the multivalent effect; such detailed analyses (and the experiments to test them) remain rare.

    Article  CAS  PubMed  Google Scholar 

  47. Mulder, A., Huskens, J. & Reinhoudt, D. N. Multivalency in supramolecular chemistry and nanofabrication. Org. Biomol. Chem. 2, 3409–3424 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Tinoco, I. & Gonzalez, R. L. Biological mechanisms, one molecule at a time. Genes Dev. 25, 1205–1231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sauer, M. M. et al. Catch-bond mechanism of the bacterial adhesin FimH. Nat. Commun. 7, 10738 (2016). This is a multi-technique study that combines structural biology and molecular dynamics with binding kinetic analyses to propose the basis of a negatively regulated, lectin-containing assembly used by pathogenic bacteria. Such molecularly detailed mechanistic proposals remain rare in glycobiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scholl, Z. N., Li, Q. & Marszalek, P. E. Single molecule mechanical manipulation for studying biological properties of proteins, DNA, and sugars. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 211–229 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Marszalek, P. E. & Dufrene, Y. F. Stretching single polysaccharides and proteins using atomic force microscopy. Chem. Soc. Rev. 41, 3523–3534 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, W., Cai, M., Xu, H., Jiang, J. & Wang, H. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells. Nanoscale 5, 3226–3229 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Li, Y. et al. Molecular recognition force spectroscopy study of the specific lectin and carbohydrate interaction in a living cell. Chem. Phys. Chem. 12, 909–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. 6, 849 (2006).

  56. Hecht, M.-L., Stallforth, P., Silva, D. V., Adibekian, A. & Seeberger, P. H. Recent advances in carbohydrate-based vaccines. Curr. Opin. Chem. Biol. 13, 354–359 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Anish, C., Schumann, B., Pereira, C. L. & Seeberger, P. H. Chemical biology approaches to designing defined carbohydrate vaccines. Chem. Biol. 21, 38–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Joyce, J. G. et al. An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc. Nat. Acad. Sci. USA 105, 15684–15689 (2008).

    Article  PubMed  Google Scholar 

  59. Pashov, A., Garimalla, S., Monzavi-Karbassi, B. & Kieber-Emmons, T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 1, 777–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Martines, E., García, I., Marradi, M., Padro, D. & Penadés, S. Dissecting the carbohydrate specificity of the Anti-HIV-1 2G12 antibody by single-molecule force spectroscopy. Langmuir 28, 17726–17732 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Hearty, S., Conroy, P. J., Ayyar, B. V., Byrne, B. & O’Kennedy, R. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev. Vaccines 9, 645–664 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Lynch, H. E., Stewart, S. M., Kepler, T. B., Sempowski, G. D. & Alam, S. M. Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen. J. Immunol. Methods 404, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Haugstad, K. E. et al. Enhanced self-association of mucins possessing the T and Tn carbohydrate cancer antigens at the single-molecule level. Biomacromolecules 13, 1400–1409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Manyes, S. et al. Proteoglycan mechanics studied by single-molecule force spectroscopy of allotypic cell adhesion glycans. J. Biol. Chem. 281, 5992–5999 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Vilanova, E. et al. Carbohydrate–carbohydrate interactions mediated by sulfate esters and calcium provide the cell adhesion required for the emergence of early metazoans. J. Biol. Chem. 291, 9425–9437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beaussart, A. et al. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae. Nanoscale 6, 14820–14827 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. El-Kirat-Chatel, S. et al. Single-molecule analysis of the major glycopolymers of pathogenic and non-pathogenic yeast cells. Nanoscale 5, 4855–4863 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, M., Wang, B. & Xu, B. Measurements of single molecular affinity interactions between carbohydrate-binding modules and crystalline cellulose fibrils. Phys. Chem. Chem. Phys. 15, 6508–6515 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, M., Wang, B. & Xu, B. Mapping single molecular binding kinetics of carbohydrate-binding module with crystalline cellulose by atomic force microscopy recognition imaging. J. Phys. Chem. B 118, 6714–6720 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, M., Wu, S.-C., Zhou, W. & Xu, B. Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose. J. Phys. Chem. B 116, 9949–9956 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, S., Mandic, J. & Van Vliet, K. J. Chemomechanical mapping of ligand–receptor binding kinetics on cells. Proc. Nat. Acad. Sci. USA 104, 9609–9614 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Q. & Marszalek, P. E. Identification of sugar isomers by single-moleculef force spectroscopy. J. Am. Chem. Soc. 128, 5596–5597 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Björnham, O., Bugaytsova, J., Borén, T. & Schedin, S. Dynamic force spectroscopy of the Helicobacter pylori BabA–Lewis b Binding. Biophys. Chem. 143, 102–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Choi, Y. et al. Single-molecule dynamics of lysozyme processing distinguishes linear and cross-linked peptidoglycan substrates. J. Am. Chem. Soc. 134, 2032–2035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. La Clair, J. J. Selective detection of the carbohydrate-bound state of concanvalin A at the single molecule level. J. Am. Chem. Soc. 119, 7676–7684 (1997).

    Article  Google Scholar 

  77. Dagel, D. J. et al. In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J. Phys. Chem. B 115, 635–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Li, G.-W. & Xie, X. S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Choi, P. J., Cai, L., Frieda, K. & Xie, X. S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Majumdar, D. S. et al. Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc. Nat. Acad. Sci. USA 104, 12640–12645 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Abramson, J. et al. The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett. 555, 96–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Komura, N. et al. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016). This paper highlights that the synthesis of appropriately labelled glycans (here gangliosides) that retain function (creating ‘rules’ that inform) can support single-molecule (TIRF in this study) methods.

    Article  CAS  PubMed  Google Scholar 

  85. Spiegel, S., Kassis, S., Wilchek, M. & Fishman, P. H. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol. 99, 1575–1581 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Möckl, L., Lindhorst, T. K. & Bräuchle, C. Artificial formation and tuning of glycoprotein networks on live cell membranes: a single-molecule tracking study. ChemPhysChem 17, 829–835 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Zhao, W. et al. Studying the nucleated mammalian cell membrane by single molecule approaches. PLOS ONE 9, e91595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, J. et al. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci. Rep. 6, 30247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Letschert, S. et al. Super-resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed. 53, 10921–10924 (2014).

    Article  CAS  Google Scholar 

  90. Jiang, H., English, B. P., Hazan, R. B., Wu, P. & Ovryn, B. Tracking surface glycans on live cancer cells with single-molecule sensitivity. Angew. Chem. Int. Ed. 54, 1765–1769 (2015).

    Article  CAS  Google Scholar 

  91. Fox, J. M. et al. A single-molecule analysis reveals morphological targets for cellulase synergy. Nat. Chem. Biol. 9, 356–361 (2013). Using photoactivatable mEos2–CBM fusions, this study describes how PALM enabled the derivation of order parameters (using principal component analysis of super-resolution images) that quantified CBM organization on different cellulosic substrates. The findings move beyond the current crystalline versus amorphous classifications.

    Article  CAS  PubMed  Google Scholar 

  92. Howorka, S., Nam, J., Bayley, H. & Kahne, D. Stochastic detection of monovalent and bivalent protein–ligand interactions. Angew. Chem. Int. Ed. 43, 842–846 (2004). This study describes a prescient model system that allowed the observation of lectin–sugar binding events to a glycan-modified nanopore.

    Article  CAS  Google Scholar 

  93. Kong, L., Almond, A., Bayley, H. & Davis, B. G. Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export. Nat. Chem. 8, 461–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Kong, L. et al. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat. Chem. 5, 651–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Kong, L. et al. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2. Nat. Chem. 8, 242–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Suginta, W. & Smith, M. F. Single-molecule trapping dynamics of sugar-uptake channels in marine bacteria. Phys. Rev. Lett. 110, 238102 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Q., Goldsmith, R. H., Jiang, Y., Bockenhauer, S. D. & Moerner, W. E. Probing single biomolecules in solution using the anti-brownian electrokinetic (ABEL) trap. Acc. Chem. Res. 45, 1955–1964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Im, J. et al. Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nat. Commun. 7, 13868 (2016). This study demonstrates that the creation of a tunnel junction that is functionalized with molecules that may interact with glycans (here the 2-carboxamide of imidazole) leads to current fluctuations that may be analysed with principal component analysis to distinguish configurational isomers. This study also highlights that even quite nonspecific ‘binders’ may be used in principle to dissect glycan composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dufrene, Y. F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Varki, A. et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 25, 1323–1324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, Y. et al. Molecular recognition force spectroscopy of a specific lectin–carbohydrate interaction at single-molecule level. J. Struct. Biol. 176, 46–51 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Faulkner, M. Bilyard and K. Wals for proofreading and useful comments.

Reviewer information

Nature Reviews Chemistry thanks Xing Chen, Isabelle Compagnon, Lara Mahal and Bingqian Xu for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.L., M.R. and B.G.D. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Benjamin G. Davis.

Ethics declarations

Competing interests

B.G.D. is named as an inventor on patents that describe new antibiotics based on some of the Wza science described in this Review. If licensed, these would afford B.G.D. royalties in line with normal university practice.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Force–distance cycles

The repeated measurement of force as a function of distance in atomic force microscopy.

Total internal reflection fluorescence

(TIRF). Microscopy examining a thin region of a specimen (~100 nm) that uses internal reflection at a surface–sample interface for the selective excitation of surface-associated fluorophores, thereby removing contributions from the background.

Stochastic optical reconstruction microscopy

(STORM). Dilute fluorophores are switched on and off through switching or bleaching, and the ‘centres’ of their location are ascertained using point-spread of photon emission based on a widefield image. After several rounds, a ‘super-resolution’ image is assembled by plotting the measured positions of these centres of the fluorescent probes.

Photoactivated localization microscopy

(PALM). Similar to STORM but has typically used photoactivation and then bleaching to switch fluorophores on and off. It is more often associated with the use of protein fluorophores such as photoactivatable fluorescent proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshminarayanan, A., Richard, M. & Davis, B.G. Studying glycobiology at the single-molecule level. Nat Rev Chem 2, 148–159 (2018). https://doi.org/10.1038/s41570-018-0019-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0019-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing