Perspective | Published:

Metal–ligand interactions in drug design

Nature Reviews Chemistryvolume 2pages100112 (2018) | Download Citation

Abstract

The fast-growing body of experimental data on metalloenzymes and organometallic compounds is fostering the exploitation of metal–ligand interactions for the design of new drugs. Atomistic understanding of the metal–ligand interactions will help us identify potent metalloenzyme inhibitors and metallodrugs. Static docking calculations have proved effective in identifying hit compounds that target metalloproteins. However, the flexibility, dynamics and electronic structure of metal-centred complexes pose difficult challenges for shaping metal–ligand interactions in structure-based drug design. In this respect, once-prohibitive quantum mechanics-based strategies and extensive molecular simulations are rapidly becoming practical approaches for fast-paced drug discovery. These methods account for ligand exchange and structural flexibility at metal-centred complexes and provide good estimates of the thermodynamics and kinetics of metal-aided drug binding. This Perspective examines the successes, limitations and new avenues for modelling metalloenzyme inhibitors and metallodrugs to further explore and expand the unconventional chemical space of these distinctive drugs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Mjos, K. D. & Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 114, 4540–4563 (2014).

  2. 2.

    Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol. 11, 287–292 (2007).

  3. 3.

    Rosenberg, B., Van Camp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

  4. 4.

    Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 116, 3436–3486 (2016).

  5. 5.

    Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

  6. 6.

    Messori, L. & Merlino, A. Cisplatin binding to proteins: a structural perspective. Coord. Chem. Rev. 315, 67–89 (2016).

  7. 7.

    Jamieson, E. R. & Lippard, S. J. Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev. 99, 2467–2498 (1999).

  8. 8.

    Dörr, M. & Meggers, E. Metal complexes as structural templates for targeting proteins. Curr. Opin. Chem. Biol. 19, 76–81 (2014).

  9. 9.

    Dyson, P. J. & Sava, G. Metal-based antitumour drugs in the post genomic era. Dalton Trans. 2006, 1929–1933 (2006).

  10. 10.

    Hambley, T. W. Developing new metal-based therapeutics: Challenges and opportunities. Dalton Trans. 2007, 4929–4937 (2007).

  11. 11.

    Haas, K. L. & Franz, K. J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 109, 4921–4960 (2009).

  12. 12.

    Barry, N. P. E. & Sadler, P. J. Exploration of the medical periodic table: towards new targets. Chem. Commun. 49, 5106–5131 (2013).

  13. 13.

    Sasmal, P. K., Streu, C. N. & Meggers, E. Metal complex catalysis in living biological systems. Chem. Commun. 49, 1581–1587 (2013).

  14. 14.

    Soldevila-Barreda, J. J. & Sadler, P. J. Approaches to the design of catalytic metallodrugs. Curr. Opin. Chem. Biol. 25, 172–183 (2015).

  15. 15.

    Cohen, S. M. A bioinorganic approach to fragment-based drug discovery targeting metalloenzymes. Acc. Chem. Res. 50, 2007–2016 (2017).

  16. 16.

    Yang, Y. et al. Metalloprotein inhibitors for the treatment of human diseases. Curr. Top. Med. Chem. 16, 384–396 (2015).

  17. 17.

    Martin, D. P., Puerta, D. T. & Cohen, S. M. in Ligand Design in Medicinal Inorganic Chemistry (ed. Storr, T.) 375–403 (Wiley, Chichester, 2014).

  18. 18.

    Supuran, C. T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov. 12, 61–88 (2017).

  19. 19.

    Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T. & De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem. Rev. 112, 4421–4468 (2012).

  20. 20.

    Levin, M., Udi, Y., Solomonov, I. & Sagi, I. Next generation matrix metalloproteinase inhibitors — novel strategies bring new prospects. Biochim. Biophys. Acta Mol. Cell Res. 1864, 1927–1939 (2017).

  21. 21.

    Hu, J., Van den Steen, P. E., Sang, Q.-X. A. & Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov. 6, 480–498 (2007).

  22. 22.

    Cathcart, J., Pulkoski-Gross, A. & Cao, J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2, 26–34 (2015).

  23. 23.

    Coates, D. The angiotensin converting enzyme (ACE). Int. J. Biochem. Cell Biol. 35, 769–773 (2003).

  24. 24.

    Hai, Y. & Christianson, D. W. Histonedeacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 12, 741–747 (2016).

  25. 25.

    Xu, W. S., Parmigiani, R. B. & Marks, P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552 (2007).

  26. 26.

    Gryder, B. E., Sodji, Q. H. & Oyelere, A. K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem. 4, 505–524 (2012).

  27. 27.

    Di Santo, R. Inhibiting the HIV integration process: past, present, and the future. J. Med. Chem. 57, 539–566 (2014).

  28. 28.

    Quashie, P. K., Sloan, R. D. & Wainberg, M. A. Novel therapeutic strategies targeting HIV integrase. BMC Med. 10, 34 (2012).

  29. 29.

    Anzellotti, A. I. & Farrell, N. P. Zinc metalloproteins as medicinal targets. Chem. Soc. Rev. 37, 1629–1651 (2008).

  30. 30.

    Pommier, Y., Johnson, A. A. & Marchand, C. Integrase inhibitors to treat HIV/Aids. Nat. Rev. Drug Discov. 4, 236–248 (2005).

  31. 31.

    Russo, N. Salahub, D. R. (eds). Metal–Ligand Interactions (Springer, Netherlands, 1996).

  32. 32.

    Thompson, K. H. Boon and bane of metal ions in medicine. Science 300, 936–939 (2003).

  33. 33.

    Adhireksan, Z. et al. Allosteric cross-talk in chromatin can mediate drug-drug synergy. Nat. Commun. 8, 14860 (2017).

  34. 34.

    Exell, J. C. et al. Cellularly active N-hydroxyurea FEN1 inhibitors block substrate entry to the active site. Nat. Chem. Biol. 12, 815–821 (2016).

  35. 35.

    Summa, V. et al. Discovery of Raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 51, 5843–5855 (2008).

  36. 36.

    Leonard, P. G. et al. SF2312 is a natural phosphonate inhibitor of enolase. Nat. Chem. Biol. 12, 1053–1058 (2016).

  37. 37.

    Johansson, C. et al. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat. Chem. Biol. 12, 539–545 (2016).

  38. 38.

    Puerta, D. T., Schames, J. R., Henchman, R. H., McCammon, J. A. & Cohen, S. M. From model complexes to metalloprotein inhibition: a synergistic approach to structure-based drug discovery. Angew. Chemie Int. Edn 42, 3772–3774 (2003).

  39. 39.

    Jorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).

  40. 40.

    De Vivo, M., Masetti, M., Bottegoni, G. & Cavalli, A. The role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 59, 4035–4061 (2016).

  41. 41.

    Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004).

  42. 42.

    Bruno, E. et al. Probing molecular interactions between human carbonic anhydrases (hCAs) and a novel class of benzenesulfonamides. J. Med. Chem. 60, 4316–4326 (2017).

  43. 43.

    Choi, J. Y. et al. Structure-based design and synthesis of potent and selective matrix metalloproteinase 13 inhibitors. J. Med. Chem. 60, 5816–5825 (2017).

  44. 44.

    Vernekar, S. K. V. et al. Double-winged 3-hydroxypyrimidine-2,4-diones: Potent and selective inhibition against HIV-1 RNase H with significant antiviral activity. J. Med. Chem. 60, 5045–5056 (2017).

  45. 45.

    De Vivo, M. & Cavalli, A. Recent advances in dynamic docking for drug discovery. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1320 (2017).

  46. 46.

    De Vivo, M. Bridging quantum mechanics and structure-based drug design. Front. Biosci. (Landmark Edn) 16, 1619–1633 (2011).

  47. 47.

    Meggers, E. Targeting proteins with metal complexes. Chem. Commun. 2009, 1001–1010 (2009).

  48. 48.

    Louie, A. Y. & Meade, T. J. Metal complexes as enzyme inhibitors. Chem. Rev. 99, 2711–2734 (1999).

  49. 49.

    Meggers, E. Exploiting octahedral stereocenters: From enzyme inhibition to asymmetric photoredox catalysis. Angew. Chemie Int. Edn 56, 5668–5675 (2017).

  50. 50.

    Guo, Z. & Sadler, P. J. Metals in Medicine. Angew. Chemie Int. Edn 38, 1512–1531 (1999).

  51. 51.

    Ellahioui, Y., Prashar, S. & Gómez-Ruiz, S. Anticancer applications and recent investigations of metallodrugs based on gallium, tin and titanium. Inorganics 5, 4 (2017).

  52. 52.

    Bullock, A. N. et al. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. PLOS ONE 4, e7112 (2009).

  53. 53.

    Bregman, H., Carroll, P. J. & Meggers, E. Rapid access to unexplored chemical space by ligand scanning around a ruthenium center: discovery of potent and selective protein kinase inhibitors. J. Am. Chem. Soc. 128, 877–884 (2006).

  54. 54.

    Maksimoska, J. et al. Similar biological activities of two isostructural ruthenium and osmium complexes. Chem. A Eur. J. 14, 4816–4822 (2008).

  55. 55.

    Patra, M. & Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 1, 66 (2017).

  56. 56.

    Salmon, A. J., Williams, M. L., Hofmann, A. & Poulsen, S. Protein crystal structures with ferrocene and ruthenocene-based enzyme inhibitors. Chem. Commun. 48, 2328 (2012).

  57. 57.

    Trondl, R. et al. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 5, 2925–2932 (2014).

  58. 58.

    Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: The impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

  59. 59.

    Jacobsen, J. A., Fullagar, J. L., Miller, M. T. & Cohen, S. M. Identifying chelators for metalloprotein inhibitors using a fragment-based approach. J. Med. Chem. 54, 591–602 (2011).

  60. 60.

    Martin, D. P., Hann, Z. S. & Cohen, S. M. Metalloprotein–inhibitor binding: human carbonic anhydrase II as a model for probing metal–ligand interactions in a metalloprotein active site. Inorg. Chem. 52, 12207–12215 (2013).

  61. 61.

    Congreve, M., Chessari, G., Tisi, D. & Woodhead, A. J. Recent developments in fragment-based drug discovery. J. Med. Chem. 51, 3661–3680 (2008).

  62. 62.

    Li, J. et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol. 13, 486–493 (2017).

  63. 63.

    Perez, C. et al. Discovery of an inhibitor of the proteasome subunit Rpn11. J. Med. Chem. 60, 1343–1361 (2017).

  64. 64.

    Day, J. A. & Cohen, S. M. Investigating the selectivity of metalloenzyme inhibitors. J. Med. Chem. 56, 7997–8007 (2013).

  65. 65.

    Chen, Y. & Cohen, S. M. Investigating the selectivity of metalloenzyme inhibitors in the presence of competing metalloproteins. ChemMedChem 10, 1733–1738 (2015).

  66. 66.

    Martin, D. P., Blachly, P. G., McCammon, J. A. & Cohen, S. M. Exploring the influence of the protein environment on metal-binding pharmacophores. J. Med. Chem. 57, 7126–7135 (2014).

  67. 67.

    Supuran, C. T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem. 31, 345–360 (2016).

  68. 68.

    Cadoni, R. et al. Exploring heteroaryl-pyrazole carboxylic acids as human carbonic anhydrase XII inhibitors. ACS Med. Chem. Lett. 8, 941–946 (2017).

  69. 69.

    Forli, S. & Olson, A. J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 55, 623–638 (2012).

  70. 70.

    Hsu, K. et al. Novel class IIa-selective histone deacetylase inhibitors discovered using an in silico virtual screening approach. Sci. Rep 7, 3228 (2017).

  71. 71.

    Negmeldin, A. T., Padige, G., Bieliauskas, A. V. & Pflum, M. K. H. Structural requirements of HDAC inhibitors: SAHA analogues modified at the C2 position display HDAC6/8 selectivity. ACS Med. Chem. Lett. 8, 281–286 (2017).

  72. 72.

    Carcelli, M. et al. N-Acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Sci. Rep. 6, 31500 (2016).

  73. 73.

    Liénard, B. M. R. et al. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org. Biomol. Chem. 6, 2282 (2008).

  74. 74.

    Liu, X.-L., Shi, Y., Kang, J. S., Oelschlaeger, P. & Yang, K.-W. Amino acid thioester derivatives: a highly promising scaffold for the development of metallo-β-lactamase L1 inhibitors. ACS Med. Chem. Lett. 6, 660–664 (2015).

  75. 75.

    Yang, S.-K., Kang, J. S., Oelschlaeger, P. & Yang, K.-W. Azolylthioacetamide: a highly promising scaffold for the development of metallo-β-lactamase inhibitors. ACS Med. Chem. Lett. 6, 455–460 (2015).

  76. 76.

    Chang, Y.-N. et al. Carbamylmethyl mercaptoacetate thioether: a novel scaffold for the development of L1 metallo-β-lactamase inhibitors. ACS Med. Chem. Lett. 8, 527–532 (2017).

  77. 77.

    Cain, R. et al. In silico fragment-based design identifies subfamily B1 metallo-β-lactamase inhibitors. J. Med. Chem. 61, 1255–1260 (2018).

  78. 78.

    Hu, X. & Shelver, W. H. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. J. Mol. Graph. Model. 22, 115–126 (2003).

  79. 79.

    Irwin, J. J., Raushel, F. M. & Shoichet, B. K. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 44, 12316–12328 (2005).

  80. 80.

    Chen, D. et al. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins 67, 593–605 (2007).

  81. 81.

    Santos-Martins, D., Forli, S., Ramos, M. J. & Olson, A. J. AutoDock4Zn: an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model. 54, 2371–2379 (2014).

  82. 82.

    Tamames, B., Sousa, S. F., Tamames, J., Fernandes, P. A. & Ramos, M. J. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns. Proteins 69, 466–475 (2007).

  83. 83.

    Röhrig, U. F., Grosdidier, A., Zoete, V. & Michielin, O. Docking to heme proteins. J. Comput. Chem. 28, 2305–2315 (2009).

  84. 84.

    Caporuscio, F., Rastelli, G., Imbriano, C. & Del Rio, A. Structure-based design of potent aromatase inhibitors by high-throughput docking. J. Med. Chem. 54, 4006–4017 (2011).

  85. 85.

    Zheng, Z. & Merz, K. M. Ligand identification scoring algorithm (LISA). J. Chem. Inf. Model. 51, 1296–1306 (2011).

  86. 86.

    Bai, F. et al. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy. J. Chem. Inf. Model. 55, 833–847 (2015).

  87. 87.

    Adeniyi, A. A. & Soliman, M. E. S. Implementing QM in docking calculations: is it a waste of computational time? Drug Discov. Today 22, 1216–1223 (2017).

  88. 88.

    Raha, K. et al. The role of quantum mechanics in structure-based drug design. Drug Discov. Today 12, 725–731 (2007).

  89. 89.

    Dick, B. L., Patel, A., McCammon, J. A. & Cohen, S. M. Effect of donor atom identity on metal-binding pharmacophore coordination. JBIC J. Biol. Inorg. Chem. 22, 605–613 (2017).

  90. 90.

    Sousa, S. F., Fernandes, P. A. & Ramos, M. J. The carboxylate shift in zinc enzymes: a computational study. J. Am. Chem. Soc. 129, 1378–1385 (2007).

  91. 91.

    Laitaoja, M., Valjakka, J. & Jänis, J. Zinc coordination spheres in protein structures. Inorg. Chem. 52, 10983–10991 (2013).

  92. 92.

    Ribeiro, A. J. M., Ramos, M. J. & Fernandes, P. A. The catalytic mechanism of HIV-1 integrase for DNA 3ʹ-end processing established by QM/MM calculations. J. Am. Chem. Soc. 134, 13436–13447 (2012).

  93. 93.

    Cavalli, A., De Vivo, M. & Recanatini, M. Density functional study of the enzymatic reaction catalyzed by a cyclin-dependent kinase. Chem. Commun. 0, 1308–1309 (2003).

  94. 94.

    Sousa, S. F. et al. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1281 (2017).

  95. 95.

    Van Der Kamp, M. W. & Mulholland, A. J. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52, 2708–2728 (2013).

  96. 96.

    Dreyer, J. et al. in Simulating Enzyme Reactivity (eds Tunon, I. & Moliner, V.) 294–339 (Royal Society of Chemistry, London, 2016).

  97. 97.

    Schramm, V. L. Transition states and transition state analogue interactions with enzymes. Acc. Chem. Res. 48, 1032–1039 (2015).

  98. 98.

    Roston, D. & Cui, Q. QM/MM analysis of transition states and transition state analogues in metalloenzymes. Methods Enzymol. 21, 213–250 (2016).

  99. 99.

    Raha, K. & Merz, K. M. A quantum mechanics-based scoring function: study of zinc ion-mediated ligand binding. J. Am. Chem. Soc. 126, 1020–1021 (2004).

  100. 100.

    Cho, A. E. & Rinaldo, D. Extension of QM/MM docking and its applications to metalloproteins. J. Comput. Chem. 30, 2609–2616 (2009).

  101. 101.

    Hayik, S. A., Dunbrack, R. & Merz, K. M. Mixed quantum mechanics/molecular mechanics scoring function to predict protein–ligand binding affinity. J. Chem. Theory Comput. 6, 3079–3091 (2010).

  102. 102.

    Chaskar, P., Zoete, V. & Röhrig, U. F. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: development and benchmark of a scoring function. J. Chem. Inf. Model. 54, 3137–3152 (2014).

  103. 103.

    Chaskar, P., Zoete, V. & Röhrig, U. F. On-the-fly QM/MM docking with attracting cavities. J. Chem. Inf. Model. 57, 73–84 (2017).

  104. 104.

    Pecina, A. et al. The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein–ligand interactions and implicit COSMO solvation. Chem. Commun. 52, 3312–3315 (2016).

  105. 105.

    Schwarz, G., Mendel, R. R. & Ribbe, M. W. Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847 (2009).

  106. 106.

    Khandelwal, A. et al. A Combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem. 48, 5437–5447 (2005).

  107. 107.

    Martin, D. P. et al. ‘Unconventional’ coordination chemistry by metal chelating fragments in a metalloprotein active site. J. Am. Chem. Soc. 136, 5400–5406 (2014).

  108. 108.

    Adeniyi, A. A. & Ajibade, P. A. Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules 18, 3760–3778 (2013).

  109. 109.

    Vyas, N. A. et al. Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors. Eur. J. Med. Chem. 121, 793–802 (2016).

  110. 110.

    Sciortino, G. et al. Elucidation of binding site and chiral specificity of oxidovanadium drugs with lysozyme through theoretical calculations. Inorg. Chem. 56, 12938–12951 (2017).

  111. 111.

    Yang, C. et al. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Sci. Rep. 7, 42860 (2017).

  112. 112.

    Bradford, S. S., Ross, M. J., Fidai, I. & Cowan, J. A. Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA. ChemMedChem 9, 1275–1285 (2014).

  113. 113.

    Casini, A. et al. Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)–arene compounds. J. Med. Chem. 51, 6773–6781 (2008).

  114. 114.

    Ortega-Carrasco, E., Lledós, A. & Maréchal, J.-D. Assessing protein-ligand docking for the binding of organometallic compounds to proteins. J. Comput. Chem. 35, 192–198 (2014).

  115. 115.

    Sciortino, G., Rodríguez-Guerra Pedregal, J., Lledós, A., Garribba, E. & Maréchal, J.-D. Prediction of the interaction of metallic moieties with proteins: an update for protein-ligand docking techniques. J. Comput. Chem. 39, 42–51 (2018).

  116. 116.

    Karplus, M. Development of multiscale models for complex chemical systems: from H+H2 to biomolecules (Nobel lecture). Angew. Chemie Int. Edn 53, 9992–10005 (2014).

  117. 117.

    Levitt, M. Birth and future of multiscale modeling for macromolecular systems (Nobel lecture). Angew. Chemie Int. Edn 53, 10006–10018 (2014).

  118. 118.

    Warshel, A. Multiscale modeling of biological functions: From enzymes to molecular machines (Nobel lecture). Angew. Chemie Int. Edn 53, 10020–10031 (2014).

  119. 119.

    Jorgensen, W. L. Foundations of biomolecular modeling. Cell 155, 1199–1202 (2013).

  120. 120.

    McGeagh, J. D., Ranaghan, K. E. & Mulholland, A. J. Protein dynamics and enzyme catalysis: insights from simulations. Biochim. Biophys. Acta Proteins Proteom. 1814, 1077–1092 (2011).

  121. 121.

    Lonsdale, R., Rouse, S. L., Sansom, M. S. P. & Mulholland, A. J. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes. PLOS Comput. Biol. 10, e1003714 (2014).

  122. 122.

    Cournia, Z., Allen, B. & Sherman, W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J. Chem. Inf. Model. 57, 2911–2937 (2017).

  123. 123.

    Amaral, M. et al. Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat. Commun. 8, 2276 (2017).

  124. 124.

    Buch, I., Giorgino, T. & De Fabritiis, G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl Acad. Sci. USA 108, 10184–10189 (2011).

  125. 125.

    Shan, Y. et al. How does a drug molecule find its target binding site? J. Am. Chem. Soc. 133, 9181–9183 (2011).

  126. 126.

    Gaspari, R. et al. Kinetic and structural insights into the mechanism of binding of sulfonamides to human carbonic anhydrase by computational and experimental studies. J. Med. Chem. 59, 4245–4256 (2016).

  127. 127.

    Taylor, P. W., King, R. W. & Burgen, A. S. V. Kinetics of complex formation between human carbonic anhydrases and aromatic sulfonamides. Biochemistry 9, 2638–2645 (1970).

  128. 128.

    Gao, J., Qiao, S. & Whitesides, G. M. Increasing binding constants of ligands to carbonic anhydrase by using ‘greasy tails’. J. Med. Chem. 38, 2292–2301 (1995).

  129. 129.

    Mecinovic, J. et al. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the ‘hydrophobic wall’ of carbonic anhydrase. J. Am. Chem. Soc. 133, 14017–14026 (2011).

  130. 130.

    Galindo-Murillo, R. et al. Intercalation processes of copper comlexes in DNA. Nucleic Acids Res. 43, 5364–5376 (2015).

  131. 131.

    Ma, Z. et al. An organometallic compound which exhibits a DNA topology-dependent one-stranded intercalation mode. Angew. Chemie Int. Edn 55, 7441–7444 (2016).

  132. 132.

    Meier-Menches, S. M., Gerner, C., Berger, W., Hartinger, C. G. & Keppler, B. K. Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development. Chem. Soc. Rev. 47, 909–928 (2018).

  133. 133.

    Parsonage, D. et al. X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. J. Struct. Biol. 194, 180–190 (2016).

  134. 134.

    Palermo, G. et al. Fighting cancer with transition metal complexes: from naked DNA to protein and chromatin targeting strategies. ChemMedChem 11, 1199–1210 (2016).

  135. 135.

    Weber, D. K. et al. Membrane insertion of a dinuclear polypyridylruthenium(II) complex revealed by solid-state NMR and molecular dynamics simulation: Implications for selective antibacterial activity. J. Am. Chem. Soc. 138, 15267–15277 (2016).

  136. 136.

    Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

  137. 137.

    Ensing, B., De Vivo, M., Liu, Z., Moore, P. & Klein, M. L. Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc. Chem. Res. 39, 73–81 (2006).

  138. 138.

    Jorgensen, W. L. & Thomas, L. L. Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput. 4, 869–876 (2008).

  139. 139.

    Durrant, J. D. & McCammon, J. A. Molecular dynamics simulations and drug discovery. BMC Biol. 9, 71 (2011).

  140. 140.

    Zhang, B., D’Erasmo, M. P., Murelli, R. P. & Gallicchio, E. Free energy-based virtual screening and optimization of RNase H inhibitors of HIV-1 reverse transcriptase. ACS Omega 1, 435–447 (2016).

  141. 141.

    Adhireksan, Z. et al. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity. Nat. Commun. 5, 3462 (2014).

  142. 142.

    Czapla-Masztafiak, J. et al. Direct determination of metal complexes’ interaction with DNA by atomic telemetry and multiscale molecular dynamics. J. Phys. Chem. Lett. 8, 805–811 (2017).

  143. 143.

    Gkionis, K, Mutter, S. T. & Platts, J.a. QM/MM description of platinum–DNA interactions: comparison of binding and DNA distortion of five drugs. RSC Adv. 3, 4066–4073 (2013).

  144. 144.

    Calandrini, V. et al. Structural biology of cisplatin complexes with cellular targets: the adduct with human copper chaperone Atox1 in aqueous solution. Chem. A Eur. J. 20, 11719–11725 (2014).

  145. 145.

    Calandrini, V., Rossetti, G., Arnesano, F., Natile, G. & Carloni, P. Computational metallomics of the anticancer drug cisplatin. J. Inorg. Biochem. 153, 231–238 (2015).

  146. 146.

    Spinello, A. & Magistrato, A. An omics perspective to the molecular mechanisms of anticancer metallo-drugs in the computational microscope era. Expert Opin. Drug Discov. 8, 813–825 (2017).

  147. 147.

    Lisa, M. et al. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Commun. 8, 538 (2017).

  148. 148.

    Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasio, F. L. & Carloni, P. Investigating biological systems using first principles Car–Parrinello molecular dynamics simulations. Curr. Opin. Struct. Biol. 17, 149–156 (2007).

  149. 149.

    Dal Peraro, M., Vila, A. J., Carloni, P. & Klein, M. L. Role of zinc content on the catalytic efficiency of B1 metallo β-lactamases. J. Am. Chem. Soc. 129, 2808–2816 (2007).

  150. 150.

    Dal Peraro, M., Llarrull, L. I., Rothlisberger, U., Vila, A. J. & Carloni, P. Water-assisted reaction mechanism of monozinc β-lactamases. J. Am. Chem. Soc. 126, 12661–12668 (2004).

  151. 151.

    Brem, J. et al. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun. 7, 12406 (2016).

  152. 152.

    Palermo, G., Stenta, M., Cavalli, A., Dal Peraro, M. & De Vivo, M. Molecular simulations highlight the role of metals in catalysis and inhibition of type II topoisomerase. J. Chem. Theory Comput. 9, 857–862 (2013).

  153. 153.

    Genna, V., Vidossich, P., Ippoliti, E., Carloni, P. & De Vivo, M. A self-activated mechanism for nucleic acid polymerization catalyzed by DNA/RNA polymerases. J. Am. Chem. Soc. 138, 14592–14598 (2016).

  154. 154.

    Genna, V., Carloni, P. & De Vivo, M. A strategically located Arg/Lys residue promotes correct base paring during nucleic acid biosynthesis in polymerases. J. Am. Chem. Soc. 140, 3312–3321 (2018).

  155. 155.

    Pavlin, M., Rossetti, G., De Vivo, M. & Carloni, P. Carnosine and homocarnosine degradation mechanisms by the human carnosinase enzyme CN1: insights from multiscale simulations. Biochemistry 55, 2772–2784 (2016).

  156. 156.

    Vidossich, P. & Magistrato, A. QM/MM molecular dynamics studies of metal binding proteins. Biomolecules 4, 616–645 (2014).

  157. 157.

    Ho, M.-H., De Vivo, M., Dal Peraro, M. & Klein, M. L. Understanding the effect of magnesium ion concentration on the catalytic activity of ribonuclease H through computation: does a third metal binding site modulate endonuclease catalysis? J. Am. Chem. Soc. 132, 13702–13712 (2010).

  158. 158.

    Ho, M.-H., De Vivo, M., Dal Peraro, M. & Klein, M. L. Unraveling the catalytic pathway of metalloenzyme farnesyltransferase through QM/MM computation. J. Chem. Theory Comput. 5, 1657–1666 (2009).

  159. 159.

    Rojas-Cervellera, V., Raich, L., Akola, J. & Rovira, C. The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. Nanoscale 9, 3121–3127 (2017).

  160. 160.

    Ryde, U. & Söderhjelm, P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem. Rev. 116, 5520–5566 (2016).

  161. 161.

    Ciancetta, A., Genheden, S. & Ryde, U. A. QM/MM study of the binding of RAPTA ligands to cathepsin B. J. Comput. Aided Mol. Des. 25, 729–742 (2011).

  162. 162.

    Waldron, K. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metal sensing. Nature 460, 823–830 (2009).

  163. 163.

    Sinharay, S. & Pagel, M. D. Advances in magnetic resonance imaging contrast agents for biomarker detection. Annu. Rev. Anal. Chem. 9, 95–115 (2016).

  164. 164.

    Morrow, J. R. & Tóth, É. Next-generation magnetic resonance imaging contrast agents. Inorg. Chem. 56, 6029–6034 (2017).

  165. 165.

    Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).

  166. 166.

    Pollet, R. & Marx, D. Ab initio simulation of a gadolinium-based magnetic resonance imaging contrast agent in aqueous solution. J. Chem. Phys. 126, 181102 (2007).

  167. 167.

    Jeanvoine, Y., Miró, P., Martelli, F., Cramer, C. J. & Spezia, R. Electronic structure and bonding of lanthanoid(III) carbonates. Phys. Chem. Chem. Phys. 14, 14822–14831 (2012).

  168. 168.

    Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

  169. 169.

    Su, S. et al. Design and applications of gold nanoparticle conjugates by exploiting biomolecule–gold nanoparticle interactions. Nanoscale 5, 2589–2599 (2013).

  170. 170.

    Giljohann, D. A. et al. Gold nanoparticles for biology and medicine. Angew. Chemie Int. Edn 49, 3280–3294 (2010).

  171. 171.

    Mancin, F., Scrimin, P. & Tecilla, P. Progress in artificial metallonucleases. Chem. Commun. 48, 5545–5559 (2012).

  172. 172.

    Riccardi, L. et al. Nanoparticle-based receptors mimic protein-ligand recognition. Chem 3, 92–109 (2017).

  173. 173.

    Lu, Y., Berry, S. M. & Pfister, T. D. Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. Chem. Rev. 101, 3047–3080 (2001).

  174. 174.

    Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chemie Int. Edn 56, 2–8 (2017).

  175. 175.

    Yu, F. et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).

  176. 176.

    Muñoz Robles, V. et al. Toward the computational design of artificial metalloenzymes: from protein-ligand docking to multiscale approaches. ACS Catal. 5, 2469–2480 (2015).

  177. 177.

    Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

  178. 178.

    Tobin, P., Richards, D., Callender, R. & Wilson, C. Protein engineering: a new frontier for biological therapeutics. Curr. Drug Metab. 15, 743–756 (2015).

  179. 179.

    Drienovská, I. et al. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem. Sci. 8, 7228–7235 (2017).

  180. 180.

    Bozkurt, E., Perez, M. A. S., Hovius, R., Browning, N. J. & Rothlisberger, U. Genetic algorithm based design and experimental characterization of a highly thermostable metalloprotein. J. Am. Chem. Soc. 140, 4517–4521 (2018).

  181. 181.

    Amaro, R. E. & Mulholland, A. J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2, 148 (2018).

  182. 182.

    Liu, J. & Wang, R. Classification of current scoring functions. J. Chem. Inf. Model. 55, 475–482 (2015).

  183. 183.

    Nichols, S. E., Baron, R. & McCammon, J. A. in Computational Drug Discovery and Design (ed. Baron, R.) 93–103 (Springer, New York, NY, 2012).

  184. 184.

    Grübmuller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin biotin rupture force. Science 271, 997–999 (1996).

  185. 185.

    Colizzi, F., Perozzo, R., Scapozza, L., Recanatini, M. & Cavalli, A. Single-molecule pulling simulations can discern ctive from inactive enzyme inhibitors. J. Am. Chem. Soc. 132, 7361–7371 (2010).

  186. 186.

    Gervasio, F. L., Laio, A. & Parrinello, M. Flexible docking in solution using metadynamics. J. Am. Chem. Soc. 127, 2600–2607 (2005).

  187. 187.

    Nechay, M. R., Valdez, C. E. & Alexandrova, A. N. Computational treatment of metalloproteins. J. Phys. Chem. B 119, 5945–5956 (2015).

  188. 188.

    Dal Peraro, M. et al. Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations. J. Struct. Biol. 157, 444–453 (2007).

  189. 189.

    Li, P. & Merz, K. M. Metal ion modeling using classical mechanics. Chem. Rev. 117, 1564–1686 (2017).

  190. 190.

    Rasmussen, H. S. & McCann, P. P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol. Ther. 75, 69–75 (1997).

  191. 191.

    Rademaker-Lakhai, J. M. A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin. Cancer Res. 10, 3717–3727 (2004).

  192. 192.

    Hartinger, C. G. et al. KP1019, a new redox-active anticancer agent - preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers. 5, 2140–2155 (2008).

  193. 193.

    Antonarakis, E. S. & Emadi, A. Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother. Pharmacol. 66, 1–9 (2010).

  194. 194.

    Hare, S. et al. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc. Natl Acad. Sci. USA 107, 20057–20062 (2010).

  195. 195.

    Pochetti, G. et al. Structural insight into the stereoselective inhibition of MMP-8 by enantiomeric sulfonamide phosphonates. J. Med. Chem. 49, 923–931 (2006).

  196. 196.

    Lauffer, B. E. L. et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem. 288, 26926–26943 (2013).

  197. 197.

    Natesh, R., Schwager, S. L. U., Sturrock, E. D. & Acharya, K. R. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 421, 551–554 (2003).

  198. 198.

    Natesh, R., Schwager, S. L. U., Evans, H. R., Sturrock, E. D. & Acharya, K. R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry 43, 8718–8724 (2004).

  199. 199.

    Fisher, S. Z., Aggarwal, M., Kovalevsky, A. Y., Silverman, D. N. & McKenna, R. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding. J. Am. Chem. Soc. 134, 14726–14729 (2012).

  200. 200.

    Casini, A., Temperini, C., Gabbiani, C., Supuran, C. T. & Messori, L. The X-ray structure of the adduct between NAMI-A and carbonic anhydrase provides insights into the reactivity of this metallodrug with proteins. ChemMedChem 5, 1989–1994 (2010).

  201. 201.

    Mast, N. et al. In silico and intuitive predictions of CYP46A1 inhibition by marketed drugs with subsequent enzyme crystallization in complex with fluvoxamine. Mol. Pharmacol. 82, 824–834 (2012).

  202. 202.

    Ummat, A. et al. Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy. Nat. Struct. Mol. Biol. 19, 628–632 (2012).

  203. 203.

    Streib, M. et al. An organometallic inhibitor for the human repair enzyme 7,8-dihydro-8-oxoguanosine triphosphatase. Angew. Chemie Int. Edn 53, 305–309 (2014).

  204. 204.

    Ang, W. H. et al. Rational design of an organometallic glutathione transferase inhibitor. Angew. Chemie Int. Edn 48, 3854–3857 (2009).

  205. 205.

    Towbin, H. et al. Proteomics-based target identification. J. Biol. Chem. 278, 52964–52971 (2003).

  206. 206.

    Ha, N.-C. et al. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol. 8, 505–509 (2001).

Download references

Acknowledgements

M.D.V. thanks the Italian Association for Cancer Research (AIRC) for financial support (IG 18883).

Author information

Affiliations

  1. Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genoa, Italy

    • Laura Riccardi
    • , Vito Genna
    •  & Marco De Vivo

Authors

  1. Search for Laura Riccardi in:

  2. Search for Vito Genna in:

  3. Search for Marco De Vivo in:

Contributions

All authors researched data and contributed equally to the discussion of the content of the article. L.R. and M.D.V. wrote the article.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Marco De Vivo.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41570-018-0018-6