Abstract
The past two decades have seen rapid developments in short-pulse X-ray sources, which have enabled the study of nuclear and electronic dynamics by ultrafast X-ray spectroscopies with unprecedented time resolution ranging from nanoseconds to attoseconds. In this Perspective, we discuss some of the major achievements in the study of nuclear and electronic dynamics with X-ray pulses produced by high-harmonic, free-electron-laser and synchrotron sources. The particular dynamic processes probed by X-ray radiation highlighted in this Perspective are electronic coherences on attosecond to femtosecond timescales, chemical reactions, such as dissociations, and pericyclic ring-openings, spin-crossover dynamics, ligand-exchange dynamics and structural deformations in excited states. X-ray spectroscopic probing of chemical dynamics holds great promise for the future owing to the ongoing developments of new spectroscopies, such as four-wave mixing, and the continuous improvements in emerging laboratory-based, high-harmonic sources and large-scale, facility-based, free-electron lasers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Reliable determination of pulse-shape instability in trains of ultrashort laser pulses using frequency-resolved optical gating
Scientific Reports Open Access 05 December 2022
-
Observation of site-selective chemical bond changes via ultrafast chemical shifts
Nature Communications Open Access 22 November 2022
-
Next generation lanthanide doped nanoscintillators and photon converters
eLight Open Access 19 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Change history
14 June 2018
In the original version of the article the authors inadvertently omitted to acknowledge funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Gas Phase Chemical Physics Program under contract no. DE-AC02-05-CH11231. This has been corrected in all versions of the published article.
References
Eigen, M. Methods for investigation of ionic reactions in aqueous solutions with half-times as short as 10–19 sec. application to neutralization and hydrolysis reactions. Discuss. Faraday Soc. 17, 194–205 (1954).
Porter, G. The absorption spectroscopy of substances of short life. Discuss. Faraday Soc. 9, 60–69 (1950).
[No authors listed.] The Nobel Prize in Chemistry 1967. Nobelprize.org https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1967/ (2018).
Dantus, M., Rosker, M. J. & Zewail, A. H. Real-time femtosecond probing of transition states in chemical reactions. J. Chem. Phys. 87, 2395–2397 (1987).
Rosker, M. J., Dantus, M. & Zewail, A. H. Femtosecond clocking of the chemical bond. Science 241, 1200–1202 (1988).
Rose, T. S., Rosker, M. J. & Zewail, A. H. Femtosecond real-time probing of reactions. iv. the reactions of alkali halides. J. Chem. Phys. 91, 7415–7436 (1989).
Mokhtari, A., Cong, P., Herek, J. & Zewail, A. Direct femtosecond mapping of trajectories in a chemical reaction. Nature 348, 225–227 (1990).
Dantus, M., Bowman, R. M., Gruebele, M. & Zewail, A. H. Femtosecond real-time probing of reactions. v. the reaction of IHgI. J. Chem. Phys. 91, 7437–7450 (1989).
[No authors listed.] The Nobel Prize in Chemistry 1999. Nobelprize.org https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1999/ (2018).
Minitti, M. et al. Imaging molecular motion: femtosecond X-ray scattering of an electro-cyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).
Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).
Glownia, J. M. et al. Self-referenced coherent diffraction X-ray movie of Ångstrom-and femtosecond-scale atomic motion. Phys. Rev. Lett. 117, 153003 (2016).
Loh, Z.-H. & Leone, S. R. Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy. J. Phys. Chem. Lett. 4, 292–302 (2013).
Hosler, E. R. & Leone, S. R. Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy. Phys. Rev. A 88, 023420 (2013).
Dutoi, A. D. & Leone, S. R. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules. Chem. Phys. 482, 249–264 (2017).
Wei, Z. et al. Elucidating the origins of multimode vibrational coherences of polyatomic molecules induced by intense laser fields. Nat. Commun. 8, 735 (2017).
Ramasesha, K., Leone, S. R. & Neumark, D. M. Real-time probing of electron dynamics using attosecond time-resolved spectroscopy. Annu. Rev. Phys. Chem. 67, 41–63 (2016).
Schoenlein, R. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000).
Mitzner, R. et al. Direct autocorrelation of soft-X-ray free-electron-laser pulses by time- resolved two-photon double ionization of he. Phys. Rev. A 80, 025402 (2009).
Moshammer, R. et al. Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He. Opt. Express 19, 21698–21706 (2011).
Helml, W. et al. Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain. Nat. Photon. 8, 950 (2014).
Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017).
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).
Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).
Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).
Cousin, S. L. et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization. Phys. Rev. X 7, 041030 (2017).
Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).
Chen, L. X. Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 56, 221–254 (2005).
Chen, L., Zhang, X. & Shelby, M. Recent advances on ultrafast X-ray spectroscopy in the chemical sciences. Chem. Sci. 5, 4136–4152 (2014).
Chan, L.-O. et al. Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray source. Phys. Rev. Lett. 103, 257402 (2009).
Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).
Jiang, C.-M. et al. Characterization of photo-induced charge transfer and hot carrier relaxation pathways in spinel cobalt oxide (Co3o4). J. Phys. Chem. C 118, 22774–22784 (2014).
Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photon. 9, 99–105 (2015).
Gierz, I. et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys. Rev. Lett. 115, 086803 (2015).
Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).
Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).
Jager, M. F. et al. Tracking the insulator-to-metal phase transition in Vo2 with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl Acad. Sci. 114, 9558–9563 (2017).
Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017).
Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017).
Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029 (2007).
Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).
Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62 (2016).
Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002).
Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).
Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).
Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).
Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).
Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).
Lein, M. Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett. 94, 053004 (2005).
Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424 (2006).
Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).
Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994).
Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).
Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010).
Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).
Vozzi, C. et al. Generalized molecular orbital tomography. Nat. Phys. 7, 822–826 (2011).
Wo¨rner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).
Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 7, 464–467 (2011).
Kraus, P. M., Baykusheva, D. & Wörner, H. J. Two-pulse field-free orientation reveals anisotropy of molecular shape resonance. Phys. Rev. Lett. 113, 023001 (2014).
Kraus, P. M. et al. Observation of laser-induced electronic structure in oriented polyatomic molecules. Nat. Commun. 6, 7039 (2015).
Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).
Tehlar, A. & Wörner, H. J. Time-resolved high-harmonic spectroscopy of the photodissociation of CH3I and CF3I. Mol. Phys. 111, 2057–2067 (2013).
Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).
Kraus, P. M. et al. Time-resolved high-harmonic spectroscopy of nonadiabatic dynamics in NO2. Phys. Rev. A 85, 043409 (2012).
Kraus, P. M. & Wörner, H. J. Time-resolved high-harmonic spectroscopy of valence electron dynamics. Chem. Phys. 414, 32–44 (2013).
Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).
Vampa, G. et al. All-optical reconstruction of crystal band structure. Phy. Rev. Lett. 115, 193603 (2015).
Silva, R., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High harmonic imaging of ultrafast many-body dynamics in strongly correlated systems. Preprint arXiv 1704.08471 (2017).
Beck, A. R., Neumark, D. M. & Leone, S. R. Probing ultrafast dynamics with attosecond transient absorption. Chem. Phys. Lett. 624, 119–130 (2015).
Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).
Pertot, Y. et al. Time-resolved X-ray absorption spectroscopy with a water window high- harmonic source. Science 355, 264–267 (2017).
Bressler, C. et al. Femtosecond xanes study of the light-induced spin crossover dynamics in an iron(ii) complex. Science 323, 489–492 (2009).
van der Veen, R. M. et al. Structural determination of a photochemically active diplatinum molecule by time-resolved EXAFS spectroscopy. Angew. Chem. Int. Ed. 48, 2711–2714 (2009).
Bergmann, U. & Glatzel, P. X-ray emission spectroscopy. Photosynth. Res. 102, 255 (2009).
Haumann, M. et al. Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310, 1019–1021 (2005).
Vaida, M. E. & Leone, S. R. Femtosecond extreme ultraviolet photoemission spectroscopy: observation of ultrafast charge transfer at the n-TiO2/p-Si (100) interface with controlled TiO2 oxygen vacancies. J. Phys. Chem. C 120, 2769–2776 (2016).
Marsh, B. M., Vaida, M. E., Cushing, S. K., Lamoureux, B. R. & Leone, S. R. Measuring the surface photovoltage of a Schottky barrier under intense light conditions: Zn/p-Zi (100) by laser time-resolved extreme ultraviolet photoelectron spectroscopy. J. Phys. Chem. C 121, 21904–21912 (2017).
Siefermann, K. R. et al. Atomic-scale perspective of ultrafast charge transfer at a dye–semiconductor interface. J. Phys. Chem. Lett. 5, 2753–2759 (2014).
Arion, T. et al. Site-specific probing of charge transfer dynamics in organic photovoltaics. Appl. Phys. Lett. 106, 121602 (2015).
Neppl, S. & Gessner, O. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics. J. Electron. Spectrosc. Related Phenomena 200, 64–77 (2015).
Gray, A. et al. Probing bulk electronic structure with hard X-ray angle-resolved photoemission. Nat. Mater. 10, 759–764 (2011).
Mathias, S. et al. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev. Sci Instruments 78, 083105 (2007).
Eich, S. et al. Time-and angle-resolved photoemission spectroscopy with optimized high- harmonic pulses using frequency-doubled Ti: Sapphire lasers. J. Electron. Spectrosc. Related Phenomena 195, 231–236 (2014).
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
Hellmann, S. et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 3, 1069 (2012).
Wang, H. et al. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV. Nat. Commun. 6, 7459 (2015).
Belshaw, L. et al. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012).
Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).
Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(Co)5 in solution. Nature 520, 78–81 (2015).
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608 (2013).
Charalambidis, D. et al. in The European Conference on Lasers and Electro-Optics CG_4_1 (Munich, Germany, 2013).
Kühn, S. et al. The eli-alps facility: the next generation of attosecond sources. J. Phys. B Atom. Mol. Opt. Phys. 50, 132002 (2017).
Young, L. et al. Roadmap of ultrafast X-ray atomic and molecular physics. J. Phys. B Atom. Mol. Opt. Phys. 51, 032003 (2018).
[No authors listed.] In Comparison. The European XFEL in international comparison. European XFEL https://www.xfel.eu/facility/comparison/index_eng.html (2018).
Arnold, C., Vendrell, O. & Santra, R. Electronic decoherence following photoionization: full quantum-dynamical treatment of the influence of nuclear motion. Phys. Rev. A 95, 033425 (2017).
Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).
Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647 (2017).
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
Cederbaum, L. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).
Breidbach, J. & Cederbaum, L. S. Migration of holes: formalism, mechanisms and illustrative applications. J. Chem. Phys. 118, 3983 (2003).
Remacle, F. & Levine, R. D. An electronic time scale in chemistry. PNAS 103, 6793–6798 (2006).
Breidbach, J. & Cederbaum, L. S. Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).
Sansone, G., Pfeifer, T., Simeonidis, K. & Kuleff, A. I. Electron correlation in real time. ChemPhysChem 13, 661–680 (2012).
Kuleff, A. I., Lünnemann, S. & Cederbaum, L. S. Electron-correlation-driven charge migration in oligopeptides. Chem. Phys. 414, 100–105 (2013).
Kuleff, A. I. & Cederbaum, L. S. Ultrafast correlation-driven electron dynamics. J. Phys. B Atom. Mol. Opt. Phys. 47, 124002 (2014).
Bhattacherjee, A., Pemmaraju, C. D., Schnorr, K., Attar, A. R. & Leone, S. R. Ultrafast intersystem crossing in acetylacetone via femtosecond X-ray transient absorption at the carbon K-edge. J. Am. Chem. Soc. 139, 16576–16583 (2017).
Lackner, F. et al. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy. J. Chem. Phys. 145, 234313 (2016).
Chatterley, A. S., Lackner, F., Neumark, D. M., Leone, S. R. & Gessner, O. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy. Phys. Chem. Chem. Phys. 18, 14644–14653 (2016).
Chatterley, A. S. et al. Dissociation dynamics and electronic structures of highly excited ferrocenium ions studied by femtosecond XUV absorption spectroscopy. J. Phys. Chem. A 120, 9509–9518 (2016).
Attar, A. R., Bhattacherjee, A. & Leone, S. R. Direct observation of the transition-state region in the photodissociation of CH3I by femtosecond extreme ultraviolet transient absorption spectroscopy. J. Phys. Chem. Lett. 6, 5072–5077 (2015).
Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).
Biegert, J. Attosecond dispersive soft x-ray absorption fine structure spectroscopy. APS Physics http://meetings.aps.org/Meeting/DAMOP18/Session/K05.2 (2017).
Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405 (2005).
McCusker, J. K. et al. Subpicosecond 1MLCT⍰5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298–307 (1993).
Monat, J. E. & McCusker, J. K. Femtosecond excited-state dynamics of an iron(ii) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000).
Gawelda, W. et al. Ultrafast nonadiabatic dynamics of [FeII(bpy)3]2+ in solution. J. Am. Chem. Soc. 129, 8199–8206 (2007).
Létard, J.-F., Guionneau, P. & Goux-Capes, L. in Spin Crossover in Transition Metal Compounds III (eds Gütlich, P. & Goodwin, H. A.) 221–249 (Springer Berlin, 2004).
Brady, C., McGarvey, J. J., McCusker, J. K., Toftlund, H. & Hendrickson, D. N. in Spin Crossover in Transition Metal Compounds III (eds Gütlich, P. & Goodwin, H. A.) 1–22 (Springer Berlin, 2004).
Khalil, M. et al. Picosecond X-ray absorption spectroscopy of a photoinduced iron(ii) spin crossover reaction in solution. J. Phys. Chem. A 110, 38–44 (2006).
Van Kuiken, B. E. et al. Probing the electronic structure of a photoexcited solar cell dye with transient X-ray absorption spectroscopy. J. Phys. Chem. Lett. 3, 1695–1700 (2012).
Kim, C. D., Pillet, S., Wu, G., Fullagar, W. K. & Coppens, P. Excited-state structure by time-resolved X-ray diffraction. Acta Crystallograph. A 58, 133–137 (2002).
Yasuda, N., Kanazawa, M., Uekusa, H. & Ohashi, Y. Excited-state structure of a platinum complex by X-ray analysis. Chem. Lett. 31, 1132–1133 (2002).
Ozawa, Y. et al. Photoexcited crystallography of diplatinum complex by multiple-exposure IP method. Chem. Lett. 32, 62–63 (2002).
Yasuda, N., Uekusa, H. & Ohashi, Y. X-ray analysis of excited-state structures of the diplatinum complex anions in five crystals with different cations. Bull. Chem. Soc. Japan 77, 933–944 (2004).
Novozhilova, I. V., Volkov, A. V. & Coppens, P. Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4− ion and comparison with time-resolved X-ray and spectroscopic results. J. Am. Chem. Soc. 125, 1079–1087 (2003).
Lockard, J. V. et al. Triplet excited state distortions in a pyrazolate bridged platinum dimer measured by X-ray transient absorption spectroscopy. J. Phys. Chem. A 114, 12780–12787 (2010).
Haldrup, K. et al. Bond shortening (1.4 Å) in the singlet and triplet excited states of [Ir2(dimen)4]2+ in solution determined by time-resolved X-ray scattering. Inorg. Chem. 50, 9329–9336 (2011).
Marinellia, A. et al. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Appl. Phys. Lett. 111, 151101 (2017).
Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013).
Faubel, M., Schlemmer, S. & Toennies, J. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D Atoms Mol. Clusters 10, 269–277 (1988).
Faubel, M., Steiner, B. & Toennies, J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 106, 9013–9031 (1997).
Faubel, M., Siefermann, K. R., Liu, Y. & Abel, B. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc. Chem. Res. 45, 120–130 (2012).
Siefermann, K. R. & Abel, B. The hydrated electron: a seemingly familiar chemical and biological transient. Angew. Chem. Int. Ed. 50, 5264–5272 (2011).
Fattahi, H. et al. Third-generation femtosecond technology. Optica 1, 45–63 (2014).
Bostedt, C. et al. Ultrafast X-ray scattering of xenon nanoparticles: Imaging transient states of matter. Phys. Rev. Lett. 108, 093401 (2012).
Rupp, D. et al. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source. Nat. Commun. 8, 493 (2017).
Bordiga, S., Groppo, E., Agostini, G., van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).
Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).
Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. 112, 14206–14211 (2015).
Beaulieu, S. et al. Attosecond-resolved photoionization of chiral molecules. Science 358, 1288–1294 (2017).
Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641 (2017).
Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).
Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56 (2010).
Kuleff, A. I., Kryzhevoi, N. V., Pernpointner, M. & Cederbaum, L. S. Core ionization initiates subfemtosecond charge migration in the valence shell of molecules. Phys. Rev. Lett. 117, 093002 (2016).
Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).
Cao, W., Warrick, E. R., Fidler, A., Leone, S. R. & Neumark, D. M. Near-resonant four-wave mixing of attosecond extreme-ultraviolet pulses with near-infrared pulses in neon: detection of electronic coherences. Phys. Rev. A 94, 021802 (2016).
Cao, W., Warrick, E. R., Fidler, A., Neumark, D. M. & Leone, S. R. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: toward multidimensional spectroscopy involving XUV excitations. Phys. Rev. A 94, 053846 (2016).
Ding, T. et al. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions. Opt. Lett. 41, 709–712 (2016).
Glover, T. et al. X-ray and optical wave mixing. Nature 488, 603 (2012).
Lam, R. K. et al. Soft X-ray second harmonic generation as an interfacial probe. Phys. Rev. Lett. 120, 023901 (2018).
Takahashi, E., Nabekawa, Y., Otsuka, T., Obara, M. & Midorikawa, K. Generation of highly coherent submicrojoule soft X-rays by high-order harmonics. Phys. Rev. A 66, 021802 (2002).
Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nat. Photon. 5, 655 (2011).
Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).
Timmers, H. et al. Polarization-assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. Optica 3, 707–710 (2016).
Hädrich, S. et al. Single-pass high harmonic generation at high repetition rate and photon flux. J. Phys. B Atom. Mol. Opt. Phys. 49, 172002 (2016).
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68 (2012).
Reid, D. T. et al. Roadmap on ultrafast optics. J. Opt. 18, 093006 (2016).
Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).
Kraus, P. M. & Wörner, H. J. Perspectives of attosecond spectroscopy for the understanding of fundamental electron correlations. Angew. Chem. Int. Ed. 57, 5228-5247 (2018).
Buades, B. et al. Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica 5, 502–506 (2018).
Wörner, H. J. et al. Charge migration and charge transfer in molecular systems. Struct. Dyn. 4, 061508 (2017).
Acknowledgements
We acknowledge funding from the Air Force Office of Scientific Research (AFOSR) (grant nos. FA9550-15-1-0037 and FA9550-14-1-0154), the Army Research Office (ARO) (WN911NF- 14-1-0383), the Office of Assistant Secretary of Defense for Research and Engineering through a National Security Science and Engineering Faculty Fellowship (NSSEFF), the W. M. Keck Foundation, the Defense Advanced Research Projects Agency PULSE program through grant W31P4Q-13-1-0017 and the National Science Foundation (NSF) through grants CHE-1361226 and CHE-1660417, and through a Foundation Major Research Instrumentation (NSF MRI) grant #1624322. Further funding was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Atomic, Molecular and Optical Sciences Program, Physical Chemistry of Inorganic Nanostructures Program and Gas Phase Chemical Physics Program under contract no. DE-AC02-05-CH11231. P.M.K. acknowledges support from the Swiss National Science Foundation (grant nos. P2EZP2 165252 and P300P2 174293). M.Z. acknowledges support from the Humboldt Foundation. S.K.C. is supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Solar Energy Technologies Office.
Reviewer information
Nature Reviews Chemistry thanks G. Cerullo and L. X. Chen for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
All authors contributed, reviewed and edited the manuscript. P.M.K., M.Z., S.K.C. and S.R.L. researched data and discussed the content of the manuscript. P.M.K. and S.R.L wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
European XFEL facilities comparison: https://www.xfel.eu/facility/comparison/index_eng.html
Rights and permissions
About this article
Cite this article
Kraus, P.M., Zürch, M., Cushing, S.K. et al. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem 2, 82–94 (2018). https://doi.org/10.1038/s41570-018-0008-8
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-018-0008-8
This article is cited by
-
Emerging ultrafast techniques for studying quantum materials
Nature Reviews Materials (2023)
-
Time-resolved transmission electron microscopy for nanoscale chemical dynamics
Nature Reviews Chemistry (2023)
-
Next generation lanthanide doped nanoscintillators and photon converters
eLight (2022)
-
Specificity of scattering of ultrashort laser pulses by molecules with polyatomic structure
Scientific Reports (2022)
-
Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale
Light: Science & Applications (2022)