Low-dimensional catalysts for hydrogen evolution and CO2 reduction

Abstract

Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental catalytic mechanisms has enabled the rational design of catalytic nanomaterials with improved performance and selectivity. In this Review, we analyse the state of the art in the implementation of low-dimensional nanomaterials and their van der Waals heterostructures for hydrogen evolution and CO2 reduction by electrocatalysis and photocatalysis. We explore the mechanisms involved in both reactions and the different strategies to further optimize the activity, efficiency and selectivity of low-dimensional catalysts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Physical properties of low-dimensional materials: 0D nanoparticles, 1D nanowires/nanotubes and 2D nanosheets with different electronic structures.
Figure 2: Properties of low-dimensional catalysts and strategies for enhancing the catalytic activity for the hydrogen evolution and CO2 reduction reactions.
Figure 3: Linear scaling relationship for the CO2 reduction reaction.
Figure 4: Optical properties of selected low-dimensional materials.
Figure 5: Photocatalytic designs for H2 production and CO2 reduction.

References

  1. 1

    Yoffe, A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–262 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). A comprehensive review of the use of theoretical models and experimental work on electrocatalysis.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Sabatier, P. La Catalyse en Chimie Organique. (Paris & Liége Ch. Béranger Editeur, 1920).

    Google Scholar 

  5. 5

    Conway, B. E. & Bockris, J. O. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–541 (1957).

    CAS  Article  Google Scholar 

  6. 6

    Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Rossmeisl, J., Greeley, J. & Karlberg, G. S. in Fuel Cell Catalysis (ed. Koper, M. T. M. ) 57–92 (John Wiley & Sons, 2009).

    Google Scholar 

  10. 10

    Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    CAS  Article  Google Scholar 

  11. 11

    Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Ebina, Y., Sasaki, T., Harada, M. & Watanabe, M. Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14, 4390–4395 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Compton, O. C., Carroll, E. C., Kim, J. Y., Larsen, D. S. & Osterloh, F. E. Calcium niobate semiconductor nanosheets as catalysts for photochemical hydrogen evolution from water. J. Phys. Chem. C 111, 14589–14592 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Maeda, K. & Mallouk, T. E. Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J. Mater. Chem. 19, 4813–4818 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Ida, S., Okamoto, Y., Matsuka, M., Hagiwara, H. & Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10–xNy, and their photocatalytic activity. J. Am. Chem. Soc. 134, 15773–15782 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Article  CAS  Google Scholar 

  21. 21

    Pandey, M., Jacobsen, K. W. & Thygesen, K. S. Atomically thin ordered alloys of transition metal dichalcogenides: stability and band structures. J. Phys. Chem. C 120, 23024–23029 (2016).

    CAS  Article  Google Scholar 

  22. 22

    Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

    Article  CAS  Google Scholar 

  23. 23

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Crespo-Quesada, M. et al. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Hou, W. & Cronin, S. B. A. Review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Thimsen, E., Le Formal, F., Grätzel, M. & Warren, S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Lee, J., Mubeen, S., Ji, X., Stucky, G. D. & Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Schaadt, D. M., Feng, B. & Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005).

    Article  CAS  Google Scholar 

  35. 35

    Tan, H., Santbergen, R., Smets, A. H. M. & Zeman, M. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Astruc, D. in Nanoparticles and Catalysis (ed. Astruc, D. ) I–XXIII (Wiley-VCH, 2008).

    Google Scholar 

  37. 37

    Luo, W., Nie, X., Janik, M. J. & Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2, 53–58 (2007).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Chhowalla, M., Voiry, D., Yang, J., Shin, H. S. & Loh, K. P. Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bull. 40, 585–591 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Voiry, D., Yang, J. & Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). This study reports the first experimental evidence of the HER activity of MoS2 edges by combining scanning transmission microscopy and electrochemical measurements. This paper has opened many directions for designing novel HER catalysts based on TMDs.

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014). This theoretical study identified the promising catalytic performance of MoS2 and MoSe2 towards the reduction of CO2. These predictions were later confirmed by Asadi and colleagues (Ref. 124).

    CAS  Article  Google Scholar 

  44. 44

    Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Tuxen, A. et al. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4, 4677–4682 (2010).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Lauritsen, J. V. et al. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J. Catal. 224, 94–106 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Article  Google Scholar 

  48. 48

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Moniz, A. et al. Visible-light driven heterojunction photocatalysts for water splitting — a critical review. Energy Environ. Sci. 8, 731–759 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Kang, Y. et al. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. Nanoscale 7, 4482–4488 (2015).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Petoukhoff, C. E. et al. Ultrafast charge transfer and enhanced absorption in MoS2–organic van der Waals heterojunctions using plasmonic metasurfaces. ACS Nano 10, 9899–9908 (2016).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55

    Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2010).

    CAS  Article  Google Scholar 

  57. 57

    Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A. Fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Wang, D. et al. Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11, 2353–2357 (2011).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Oh, I., Kye, J. & Hwang, S. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 12, 298–302 (2012).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Yang, J. et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 13751–13754 (2013).

    CAS  Article  Google Scholar 

  65. 65

    Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2013).

    Article  Google Scholar 

  68. 68

    Zhu, D. D., Liu, J. L. & Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Rakowski Dubois, M. & Dubois, D. L. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc. Chem. Res. 42, 1974–1982 (2009).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Takeda, H., Cometto, C., Ishitani, O. & Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 7, 70–88 (2017).

    CAS  Article  Google Scholar 

  71. 71

    Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    CAS  Article  Google Scholar 

  72. 72

    Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Kibsgaard, J. et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022–3029 (2015).

    CAS  Article  Google Scholar 

  74. 74

    Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013). This study is the first demonstration of the use of metal phosphide for the HER with a current density of −100 mA cm−2 at a 180 mV overpotential.

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Chen, W.-F. et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943–951 (2013).

    CAS  Article  Google Scholar 

  76. 76

    Jin, Y. et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28, 3785–3790 (2016).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Raciti, D., Livi, K. J. & Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 15, 6829–6835 (2015).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Yang, H., Zhang, Y., Hu, F. & Wang, Q. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 15, 7616–7620 (2015).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Yang, J. & Shin, H. S. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. J. Mater. Chem. A 2, 5979–5985 (2014).

    CAS  Article  Google Scholar 

  81. 81

    Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Jiao, Y., Zheng, Y., Davey, K. & Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016).

    CAS  Article  Google Scholar 

  83. 83

    Ito, Y., Cong, W., Fujita, T., Tang, Z. & Chen, M. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2131–2136 (2015).

    CAS  Article  Google Scholar 

  84. 84

    Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014). This paper is the first study demonstrating a photocatalytic efficiency higher than 12% towards H2O splitting by coupling HOIP-based photovoltaic cells with an electrolyser consisting of a NiFe layered double hydroxide.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005).

    CAS  Article  Google Scholar 

  87. 87

    Chen, W.-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    CAS  Article  Google Scholar 

  88. 88

    Qu, L., Liu, Y., Baek, J.-B. & Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Silva, R., Voiry, D., Chhowalla, M. & Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 135, 7823–7826 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Yang, Z. et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Wu, J. et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Kumar, B. et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013).

    Article  CAS  Google Scholar 

  93. 93

    Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Xiang, Q., Yu, J. & Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853–4861 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Zong, X. et al. Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chem. Commun. 47, 6293–6295 (2011).

    CAS  Article  Google Scholar 

  97. 97

    Ida, S., Okamoto, Y., Koga, S., Hagiwara, H. & Ishihara, T. Black-colored nitrogen-doped calcium niobium oxide nanosheets and their photocatalytic properties under visible light irradiation. RSC Adv. 3, 11521–11524 (2013).

    CAS  Article  Google Scholar 

  98. 98

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100

    Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Hoshi, N. Kawatani, S., Kudo, M. & Hori, Y. Significant enhancement of the electrochemical reduction of CO2 at the kink sites on Pt(S)-[n(110) × (100)] and Pt(S)-[n(100) × (110)]. J. Electroanal. Chem. 467, 67–73 (1999).

    Article  Google Scholar 

  105. 105

    Salehi-Khojin, A. et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 117, 1627–1632 (2013).

    CAS  Article  Google Scholar 

  106. 106

    Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J. Phys. Chem. Lett. 5, 3884–3889 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    PubMed  Article  CAS  Google Scholar 

  111. 111

    Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

    CAS  Article  Google Scholar 

  112. 112

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  113. 113

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). This study reports how local high electric fields can be used to increase the catalytic activity by increasing the reagent concentration. Using nanoneedles, the performance of the CO2 reduction reaction can be increased by one order of magnitude.

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Article  Google Scholar 

  115. 115

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Rasul, S. et al. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. 127, 2174–2178 (2015).

    Article  Google Scholar 

  118. 118

    Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). This paper is the first report on the use of transition metal oxides (in this case, copper) for improving the catalytic activity towards CO2 reduction. It has opened novel directions for improving the catalytic performance and selectivity of the CO2 reduction reaction.

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Chen, Y. & Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121

    Torelli, D. A. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    CAS  Article  Google Scholar 

  122. 122

    Kortlever, R. et al. Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016). This study reports the reduction of CO2 into hydrocarbon molecules with up to five carbon atoms using non-copper-based catalysts.

    CAS  Article  Google Scholar 

  123. 123

    Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C ≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124

    Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014). This is the first experimental demonstration of the catalytic activity of TMDs for the reduction of CO2. Superior carbon dioxide reduction performance was obtained by MoS2 over that of noble metals, with a high current density and low overpotential of 54 mV in an ionic liquid towards the conversion of CO2 to CO.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126

    Hong, X., Chan, K., Tsai, C. & Nørskov, J. K. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6, 4428–4437 (2016).

    CAS  Article  Google Scholar 

  127. 127

    Okamoto, Y., Ida, S., Hyodo, J., Hagiwara, H. & Ishihara, T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 133, 18034–18037 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. 2nd edn (Wiley, 2001).

    Google Scholar 

  130. 130

    Liang, Y. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 134, 15849–15857 (2012).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Alves, D. C. B., Silva, R., Voiry, D., Asefa, T. & Chhowalla, M. Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater. Renew. Sustain. Energy 4, 2 (2015).

    Article  Google Scholar 

  132. 132

    Jariwala, D. et al. Near-unity absorption in van der Waals semiconductors for ultrathin optoelectronics. Nano Lett. 16, 5482–5487 (2016).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Shen, M. et al. MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50, 15447–15449 (2014).

    CAS  Article  Google Scholar 

  134. 134

    Meng, F., Li, J., Cushing, S. K., Zhi, M. & Wu, N. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135, 10286–10289 (2013).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Wang, G. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013).

    CAS  PubMed  Article  Google Scholar 

  137. 137

    Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Hata, H., Kobayashi, Y., Bojan, V., Youngblood, W. J. & Mallouk, T. E. Direct deposition of trivalent rhodium hydroxide nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution. Nano Lett. 8, 794–799 (2008).

    CAS  PubMed  Article  Google Scholar 

  139. 139

    Iizuka, K., Wato, T., Miseki, Y., Saito, K. & Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 133, 20863–20868 (2011).

    CAS  PubMed  Article  Google Scholar 

  140. 140

    Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008).

    CAS  PubMed  Article  Google Scholar 

  141. 141

    Liu, Q. et al. In situ integration of a metallic 1T-MoS2/CdS heterostructure as a means to promote visible-light-driven photocatalytic hydrogen evolution. ChemCatChem 8, 2614–2619 (2016).

    CAS  Article  Google Scholar 

  142. 142

    Hou, Y. et al. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 52, 3621–3625 (2013).

    CAS  Article  Google Scholar 

  143. 143

    Zhou, P., Yu, J. & Jaroniec, M. All-solid-state Z-Scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).

    CAS  PubMed  Article  Google Scholar 

  145. 145

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    CAS  Article  Google Scholar 

  146. 146

    Awazu, K. et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Hou, W. et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011).

    CAS  Article  Google Scholar 

  148. 148

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    CAS  PubMed  Article  Google Scholar 

  149. 149

    Zhu, M., Cai, X., Fujitsuka, M., Zhang, J. & Majima, T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. 129, 2096–2100 (2017).

    Article  Google Scholar 

  150. 150

    Su, J., Feng, X., Sloppy, J. D., Guo, L. & Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 11, 203–208 (2011).

    CAS  PubMed  Article  Google Scholar 

  151. 151

    Lin, C.-Y., Lai, Y.-H., Mersch, D. & Reisner, E. Cu2O|NiOX nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 3, 3482–3487 (2012).

    CAS  Article  Google Scholar 

  152. 152

    Zhang, Z. et al. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7, 1709–1717 (2013).

    CAS  PubMed  Article  Google Scholar 

  153. 153

    Kwon, K. C. et al. Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9, 2240–2248 (2016).

    CAS  Article  Google Scholar 

  154. 154

    Ding, Q. et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2 . J. Am. Chem. Soc. 136, 8504–8507 (2014).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Zhang, X. et al. Amorphous MoSXClY electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 8, 862–868 (2015).

    CAS  Article  Google Scholar 

  156. 156

    Chen, Y.-S., Manser, J. S. & Kamat, P. V. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J. Am. Chem. Soc. 137, 974–981 (2015).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Luo, J. et al. Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1-XSe2 photocathodes. Adv. Energy Mater. 5, 1501520 (2015).

    Article  CAS  Google Scholar 

  158. 158

    Jang, Y. J. et al. Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem. ACS Nano 10, 6980–6987 (2016).

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Schreier, M. et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat. Commun. 6, 7326 (2015). Following Ref. 84, this is the first demonstration of the photocatalytic reduction of CO2 with an unprecedented efficiency of 6.5% using an electrolyser powered by two perovskite solar cells in tandem configuration.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160

    Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161

    Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    CAS  Article  Google Scholar 

  162. 162

    Office of Energy Efficiency & Renewable Energy. DOE technical targets for hydrogen production from photoelectrochemical water splitting. Energy.govhttps://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-photoelectrochemical-water-splitting (2017).

  163. 163

    Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    CAS  Article  Google Scholar 

  164. 164

    Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    CAS  Article  Google Scholar 

  165. 165

    Gerischer, H. Mechanism of electrolytic discharge of hydrogen and adsorption energy of atomic hydrogen. Bull. Soc. Chim. Belg. 67, 506 (1958). Refs 164,165 are the first studies noting the importance of the hydrogen adsorption energy in the HER. The hydrogen adsorption energy is currently known to be a powerful descriptor of HER performance.

    CAS  Article  Google Scholar 

  166. 166

    Trasatti, S. Work function, electronegativity and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    CAS  Article  Google Scholar 

  167. 167

    Pentland, N., Bockris, J. O. & Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 104, 182–194 (1957).

    CAS  Article  Google Scholar 

  168. 168

    Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    CAS  Article  Google Scholar 

  169. 169

    Wieckowski, A. & Norskov, J. Fuel Cell Science: Theory, Fundamentals, and Biocatalysis. (Wiley, 2011).

    Google Scholar 

  170. 170

    Wang, H. et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 556–575 (2015).

    CAS  Google Scholar 

  171. 171

    Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    CAS  PubMed  Article  Google Scholar 

  172. 172

    Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  CAS  Google Scholar 

  173. 173

    Lamy, E., Nadjo, L. & Saveant, J. M. Standard potential and kinetic parameters of the electrochemical reduction of carbon dioxide in dimethylformamide. J. Electroanal. Chem. Interfacial Electrochem. 78, 405–407 (1977).

    Article  Google Scholar 

  174. 174

    Rosen, B. A. et al. Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    CAS  PubMed  Article  Google Scholar 

  175. 175

    Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    CAS  Article  Google Scholar 

  176. 176

    Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985).

    Article  Google Scholar 

  177. 177

    Noda, H. et al. Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull. Chem. Soc. Jpn 63, 2459–2462 (1990).

    CAS  Article  Google Scholar 

  178. 178

    Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E. ) 89–189 (Springer, 2008).

    Google Scholar 

  179. 179

    Shi, C., Hansen, A. H., Lausche, C. A. & Nørskov, K. J. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180

    Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181

    Ma, M., Trzesniewski, B. J., Xie, J. & Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55, 9748–9752 (2016).

    CAS  Article  Google Scholar 

  182. 182

    Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    CAS  Article  Google Scholar 

  183. 183

    Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    CAS  Article  Google Scholar 

  184. 184

    Peterson, A. et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  185. 185

    Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186

    Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    CAS  Article  Google Scholar 

  187. 187

    Sun, X. et al. Molybdenum–bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol. Angew. Chem. Int. Ed. 55, 6771–6775 (2016).

    CAS  Article  Google Scholar 

  188. 188

    Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 6, 248–253 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  189. 189

    Liang, H.-W. et al. Molecular metal–NX centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  190. 190

    Valenti, G. et al. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nat. Commun. 7, 13549 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  191. 191

    Eilert, A. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.V. acknowledges financial support from the US Army RDECom Grant N°W911NF-17-2-0033 and the Cellule Exploratoire of CNRS. H.S.S acknowledges UNIST for financial support, 2107 research fund No. 1.170092

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Damien Voiry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (table) | S2 (table) | S3 (table)

Supplementary information Tables (PDF 1635 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voiry, D., Shin, H., Loh, K. et al. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem 2, 0105 (2018). https://doi.org/10.1038/s41570-017-0105

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing