Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low-dimensional catalysts for hydrogen evolution and CO2 reduction

Abstract

Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental catalytic mechanisms has enabled the rational design of catalytic nanomaterials with improved performance and selectivity. In this Review, we analyse the state of the art in the implementation of low-dimensional nanomaterials and their van der Waals heterostructures for hydrogen evolution and CO2 reduction by electrocatalysis and photocatalysis. We explore the mechanisms involved in both reactions and the different strategies to further optimize the activity, efficiency and selectivity of low-dimensional catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical properties of low-dimensional materials: 0D nanoparticles, 1D nanowires/nanotubes and 2D nanosheets with different electronic structures.
Figure 2: Properties of low-dimensional catalysts and strategies for enhancing the catalytic activity for the hydrogen evolution and CO2 reduction reactions.
Figure 3: Linear scaling relationship for the CO2 reduction reaction.
Figure 4: Optical properties of selected low-dimensional materials.
Figure 5: Photocatalytic designs for H2 production and CO2 reduction.

Similar content being viewed by others

References

  1. Yoffe, A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–262 (1993).

    Article  CAS  Google Scholar 

  2. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). A comprehensive review of the use of theoretical models and experimental work on electrocatalysis.

    Article  PubMed  Google Scholar 

  4. Sabatier, P. La Catalyse en Chimie Organique. (Paris & Liége Ch. Béranger Editeur, 1920).

    Google Scholar 

  5. Conway, B. E. & Bockris, J. O. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–541 (1957).

    Article  CAS  Google Scholar 

  6. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  7. Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).

    Article  CAS  Google Scholar 

  8. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Rossmeisl, J., Greeley, J. & Karlberg, G. S. in Fuel Cell Catalysis (ed. Koper, M. T. M. ) 57–92 (John Wiley & Sons, 2009).

    Book  Google Scholar 

  10. Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    Article  CAS  Google Scholar 

  11. Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ebina, Y., Sasaki, T., Harada, M. & Watanabe, M. Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14, 4390–4395 (2002).

    Article  CAS  Google Scholar 

  17. Compton, O. C., Carroll, E. C., Kim, J. Y., Larsen, D. S. & Osterloh, F. E. Calcium niobate semiconductor nanosheets as catalysts for photochemical hydrogen evolution from water. J. Phys. Chem. C 111, 14589–14592 (2007).

    Article  CAS  Google Scholar 

  18. Maeda, K. & Mallouk, T. E. Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J. Mater. Chem. 19, 4813–4818 (2009).

    Article  CAS  Google Scholar 

  19. Ida, S., Okamoto, Y., Matsuka, M., Hagiwara, H. & Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10–xNy, and their photocatalytic activity. J. Am. Chem. Soc. 134, 15773–15782 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Article  CAS  Google Scholar 

  21. Pandey, M., Jacobsen, K. W. & Thygesen, K. S. Atomically thin ordered alloys of transition metal dichalcogenides: stability and band structures. J. Phys. Chem. C 120, 23024–23029 (2016).

    Article  CAS  Google Scholar 

  22. Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

    Article  CAS  Google Scholar 

  23. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  CAS  Google Scholar 

  24. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Crespo-Quesada, M. et al. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Hou, W. & Cronin, S. B. A. Review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013).

    Article  CAS  Google Scholar 

  31. Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Thimsen, E., Le Formal, F., Grätzel, M. & Warren, S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J., Mubeen, S., Ji, X., Stucky, G. D. & Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Schaadt, D. M., Feng, B. & Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005).

    Article  CAS  Google Scholar 

  35. Tan, H., Santbergen, R., Smets, A. H. M. & Zeman, M. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Astruc, D. in Nanoparticles and Catalysis (ed. Astruc, D. ) I–XXIII (Wiley-VCH, 2008).

    Google Scholar 

  37. Luo, W., Nie, X., Janik, M. J. & Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016).

    Article  CAS  Google Scholar 

  38. Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2, 53–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Chhowalla, M., Voiry, D., Yang, J., Shin, H. S. & Loh, K. P. Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bull. 40, 585–591 (2015).

    Article  CAS  Google Scholar 

  40. Voiry, D., Yang, J. & Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). This study reports the first experimental evidence of the HER activity of MoS2 edges by combining scanning transmission microscopy and electrochemical measurements. This paper has opened many directions for designing novel HER catalysts based on TMDs.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

    Article  CAS  Google Scholar 

  43. Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014). This theoretical study identified the promising catalytic performance of MoS2 and MoSe2 towards the reduction of CO2. These predictions were later confirmed by Asadi and colleagues (Ref. 124).

    Article  CAS  Google Scholar 

  44. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Tuxen, A. et al. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4, 4677–4682 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Lauritsen, J. V. et al. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J. Catal. 224, 94–106 (2004).

    Article  CAS  Google Scholar 

  47. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  48. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Moniz, A. et al. Visible-light driven heterojunction photocatalysts for water splitting — a critical review. Energy Environ. Sci. 8, 731–759 (2015).

    Article  CAS  Google Scholar 

  51. Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Kang, Y. et al. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. Nanoscale 7, 4482–4488 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Petoukhoff, C. E. et al. Ultrafast charge transfer and enhanced absorption in MoS2–organic van der Waals heterojunctions using plasmonic metasurfaces. ACS Nano 10, 9899–9908 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011).

    Article  PubMed  CAS  Google Scholar 

  55. Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2010).

    Article  CAS  Google Scholar 

  57. Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A. Fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, D. et al. Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11, 2353–2357 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Oh, I., Kye, J. & Hwang, S. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 12, 298–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, J. et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 13751–13754 (2013).

    Article  CAS  Google Scholar 

  65. Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2013).

    Article  Google Scholar 

  68. Zhu, D. D., Liu, J. L. & Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Rakowski Dubois, M. & Dubois, D. L. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc. Chem. Res. 42, 1974–1982 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Takeda, H., Cometto, C., Ishitani, O. & Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 7, 70–88 (2017).

    Article  CAS  Google Scholar 

  71. Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  72. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Kibsgaard, J. et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022–3029 (2015).

    Article  CAS  Google Scholar 

  74. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013). This study is the first demonstration of the use of metal phosphide for the HER with a current density of −100 mA cm−2 at a 180 mV overpotential.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, W.-F. et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943–951 (2013).

    Article  CAS  Google Scholar 

  76. Jin, Y. et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28, 3785–3790 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Raciti, D., Livi, K. J. & Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 15, 6829–6835 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, H., Zhang, Y., Hu, F. & Wang, Q. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 15, 7616–7620 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, J. & Shin, H. S. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. J. Mater. Chem. A 2, 5979–5985 (2014).

    Article  CAS  Google Scholar 

  81. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Jiao, Y., Zheng, Y., Davey, K. & Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016).

    Article  CAS  Google Scholar 

  83. Ito, Y., Cong, W., Fujita, T., Tang, Z. & Chen, M. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2131–2136 (2015).

    Article  CAS  Google Scholar 

  84. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014). This paper is the first study demonstrating a photocatalytic efficiency higher than 12% towards H2O splitting by coupling HOIP-based photovoltaic cells with an electrolyser consisting of a NiFe layered double hydroxide.

    Article  CAS  PubMed  Google Scholar 

  85. Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005).

    Article  CAS  Google Scholar 

  87. Chen, W.-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  88. Qu, L., Liu, Y., Baek, J.-B. & Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Silva, R., Voiry, D., Chhowalla, M. & Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 135, 7823–7826 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, Z. et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, J. et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, B. et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013).

    Article  CAS  Google Scholar 

  93. Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiang, Q., Yu, J. & Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853–4861 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Zong, X. et al. Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chem. Commun. 47, 6293–6295 (2011).

    Article  CAS  Google Scholar 

  97. Ida, S., Okamoto, Y., Koga, S., Hagiwara, H. & Ishihara, T. Black-colored nitrogen-doped calcium niobium oxide nanosheets and their photocatalytic properties under visible light irradiation. RSC Adv. 3, 11521–11524 (2013).

    Article  CAS  Google Scholar 

  98. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Hoshi, N. Kawatani, S., Kudo, M. & Hori, Y. Significant enhancement of the electrochemical reduction of CO2 at the kink sites on Pt(S)-[n(110) × (100)] and Pt(S)-[n(100) × (110)]. J. Electroanal. Chem. 467, 67–73 (1999).

    Article  Google Scholar 

  105. Salehi-Khojin, A. et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 117, 1627–1632 (2013).

    Article  CAS  Google Scholar 

  106. Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J. Phys. Chem. Lett. 5, 3884–3889 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    Article  PubMed  CAS  Google Scholar 

  111. Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

    Article  CAS  Google Scholar 

  112. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  113. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). This study reports how local high electric fields can be used to increase the catalytic activity by increasing the reagent concentration. Using nanoneedles, the performance of the CO2 reduction reaction can be increased by one order of magnitude.

    Article  CAS  PubMed  Google Scholar 

  114. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    Article  CAS  Google Scholar 

  115. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Rasul, S. et al. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. 127, 2174–2178 (2015).

    Article  Google Scholar 

  118. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). This paper is the first report on the use of transition metal oxides (in this case, copper) for improving the catalytic activity towards CO2 reduction. It has opened novel directions for improving the catalytic performance and selectivity of the CO2 reduction reaction.

    Article  CAS  PubMed  Google Scholar 

  120. Chen, Y. & Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Torelli, D. A. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    Article  CAS  Google Scholar 

  122. Kortlever, R. et al. Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016). This study reports the reduction of CO2 into hydrocarbon molecules with up to five carbon atoms using non-copper-based catalysts.

    Article  CAS  Google Scholar 

  123. Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C ≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014). This is the first experimental demonstration of the catalytic activity of TMDs for the reduction of CO2. Superior carbon dioxide reduction performance was obtained by MoS2 over that of noble metals, with a high current density and low overpotential of 54 mV in an ionic liquid towards the conversion of CO2 to CO.

    Article  CAS  PubMed  Google Scholar 

  125. Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Hong, X., Chan, K., Tsai, C. & Nørskov, J. K. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6, 4428–4437 (2016).

    Article  CAS  Google Scholar 

  127. Okamoto, Y., Ida, S., Hyodo, J., Hagiwara, H. & Ishihara, T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 133, 18034–18037 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. 2nd edn (Wiley, 2001).

    Google Scholar 

  130. Liang, Y. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 134, 15849–15857 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Alves, D. C. B., Silva, R., Voiry, D., Asefa, T. & Chhowalla, M. Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater. Renew. Sustain. Energy 4, 2 (2015).

    Article  Google Scholar 

  132. Jariwala, D. et al. Near-unity absorption in van der Waals semiconductors for ultrathin optoelectronics. Nano Lett. 16, 5482–5487 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Shen, M. et al. MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50, 15447–15449 (2014).

    Article  CAS  Google Scholar 

  134. Meng, F., Li, J., Cushing, S. K., Zhi, M. & Wu, N. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135, 10286–10289 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, G. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Hata, H., Kobayashi, Y., Bojan, V., Youngblood, W. J. & Mallouk, T. E. Direct deposition of trivalent rhodium hydroxide nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution. Nano Lett. 8, 794–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Iizuka, K., Wato, T., Miseki, Y., Saito, K. & Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 133, 20863–20868 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Q. et al. In situ integration of a metallic 1T-MoS2/CdS heterostructure as a means to promote visible-light-driven photocatalytic hydrogen evolution. ChemCatChem 8, 2614–2619 (2016).

    Article  CAS  Google Scholar 

  142. Hou, Y. et al. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 52, 3621–3625 (2013).

    Article  CAS  Google Scholar 

  143. Zhou, P., Yu, J. & Jaroniec, M. All-solid-state Z-Scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  146. Awazu, K. et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Hou, W. et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011).

    Article  CAS  Google Scholar 

  148. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Zhu, M., Cai, X., Fujitsuka, M., Zhang, J. & Majima, T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. 129, 2096–2100 (2017).

    Article  Google Scholar 

  150. Su, J., Feng, X., Sloppy, J. D., Guo, L. & Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 11, 203–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Lin, C.-Y., Lai, Y.-H., Mersch, D. & Reisner, E. Cu2O|NiOX nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 3, 3482–3487 (2012).

    Article  CAS  Google Scholar 

  152. Zhang, Z. et al. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7, 1709–1717 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Kwon, K. C. et al. Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9, 2240–2248 (2016).

    Article  CAS  Google Scholar 

  154. Ding, Q. et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2 . J. Am. Chem. Soc. 136, 8504–8507 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, X. et al. Amorphous MoSXClY electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 8, 862–868 (2015).

    Article  CAS  Google Scholar 

  156. Chen, Y.-S., Manser, J. S. & Kamat, P. V. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J. Am. Chem. Soc. 137, 974–981 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Luo, J. et al. Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1-XSe2 photocathodes. Adv. Energy Mater. 5, 1501520 (2015).

    Article  CAS  Google Scholar 

  158. Jang, Y. J. et al. Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem. ACS Nano 10, 6980–6987 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Schreier, M. et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat. Commun. 6, 7326 (2015). Following Ref. 84, this is the first demonstration of the photocatalytic reduction of CO2 with an unprecedented efficiency of 6.5% using an electrolyser powered by two perovskite solar cells in tandem configuration.

    Article  CAS  PubMed  Google Scholar 

  160. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  162. Office of Energy Efficiency & Renewable Energy. DOE technical targets for hydrogen production from photoelectrochemical water splitting. Energy.govhttps://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-photoelectrochemical-water-splitting (2017).

  163. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  164. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  CAS  Google Scholar 

  165. Gerischer, H. Mechanism of electrolytic discharge of hydrogen and adsorption energy of atomic hydrogen. Bull. Soc. Chim. Belg. 67, 506 (1958). Refs 164,165 are the first studies noting the importance of the hydrogen adsorption energy in the HER. The hydrogen adsorption energy is currently known to be a powerful descriptor of HER performance.

    Article  CAS  Google Scholar 

  166. Trasatti, S. Work function, electronegativity and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  167. Pentland, N., Bockris, J. O. & Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 104, 182–194 (1957).

    Article  CAS  Google Scholar 

  168. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Article  CAS  Google Scholar 

  169. Wieckowski, A. & Norskov, J. Fuel Cell Science: Theory, Fundamentals, and Biocatalysis. (Wiley, 2011).

    Google Scholar 

  170. Wang, H. et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 556–575 (2015).

    CAS  Google Scholar 

  171. Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  CAS  Google Scholar 

  173. Lamy, E., Nadjo, L. & Saveant, J. M. Standard potential and kinetic parameters of the electrochemical reduction of carbon dioxide in dimethylformamide. J. Electroanal. Chem. Interfacial Electrochem. 78, 405–407 (1977).

    Article  Google Scholar 

  174. Rosen, B. A. et al. Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    Article  CAS  Google Scholar 

  176. Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985).

    Article  Google Scholar 

  177. Noda, H. et al. Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull. Chem. Soc. Jpn 63, 2459–2462 (1990).

    Article  CAS  Google Scholar 

  178. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E. ) 89–189 (Springer, 2008).

    Book  Google Scholar 

  179. Shi, C., Hansen, A. H., Lausche, C. A. & Nørskov, K. J. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Ma, M., Trzesniewski, B. J., Xie, J. & Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55, 9748–9752 (2016).

    Article  CAS  Google Scholar 

  182. Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    Article  CAS  Google Scholar 

  183. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    Article  CAS  Google Scholar 

  184. Peterson, A. et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  185. Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  187. Sun, X. et al. Molybdenum–bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol. Angew. Chem. Int. Ed. 55, 6771–6775 (2016).

    Article  CAS  Google Scholar 

  188. Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 6, 248–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Liang, H.-W. et al. Molecular metal–NX centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Valenti, G. et al. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nat. Commun. 7, 13549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Eilert, A. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.V. acknowledges financial support from the US Army RDECom Grant N°W911NF-17-2-0033 and the Cellule Exploratoire of CNRS. H.S.S acknowledges UNIST for financial support, 2107 research fund No. 1.170092

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Damien Voiry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (table) | S2 (table) | S3 (table)

Supplementary information Tables (PDF 1635 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voiry, D., Shin, H., Loh, K. et al. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem 2, 0105 (2018). https://doi.org/10.1038/s41570-017-0105

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing