Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving science of phytocannabinoids

Abstract

The cannabis plant has had a tumultuous past. Once revered for its medicinal properties, it then became a banned narcotic and now the perceived medical benefits of cannabis see it receiving renewed attention. The active ingredients in cannabis plant extracts — phytocannabinoids — are now being investigated, both as formulations and in isolation, for pharmaceutical applications. The most abundant phytocannabinoid is (−)-trans9-tetrahydrocannabinol, a compound readily extracted from Cannabis sativa. There are over 100 known phytocannabinoids, some of which are present in such low concentrations that chemical syntheses are necessary to advance their medicinal potential. In this Review, we examine phytocannabinoids in terms of their mode of action, biosynthesis, and various total syntheses and derivatizations. Finally, we describe the policy issues surrounding the possession, use and control of phytocannabinoids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History of phytocannabinoids.
Figure 2: X-ray crystal structures of CB1 complexes of exogenous ligands.
Figure 3: Biosynthetic pathways to phytocannabinoids.
Figure 4: Synthetic approaches to Δ9-tetrahydrocannabinol.
Figure 5: Preparation of CBN (13a) by dimethylation of biaryl lactone derivatives.
Figure 6: Synthetic methods for phytocannabinoids from the CBG (8), CBC (9) and CBL (10) families, as well as metabolites of related compounds.

Similar content being viewed by others

References

  1. Farnsworth, N. R. Pharmacognosy and chemistry of ‘Cannabis sativa’. J. Am. Pharm. Assoc. 9, 410–440 (1969).

    CAS  PubMed  Google Scholar 

  2. Russo, E. B. in Handbook of Cannabis (ed. Pertwee, R. G. ) 23–43 (Oxford Scholarship Online, 2014).

    Book  Google Scholar 

  3. Doyle, E. & Spence, A. A. Cannabis as a medicine? Br. J. Anaesth. 74, 359–361 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Crean, R. D., Crane, N. A. & Mason, B. J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 5, 1–8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S. & Howlett, A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988).

    CAS  PubMed  Google Scholar 

  6. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Sugiura, T. et al. 2-Arachidonoylgylcerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1 . Cell 167, 750–762.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shao, Z. et al. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540, 602–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1 . Nature 547, 468–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaoni, Y. & Mechoulam, R. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647 (1964).

    Article  CAS  Google Scholar 

  13. Mechoulam, R. & Shvo, Y. Hashish. I. The structure of cannabidiol. Tetrahedron 19, 2073–2078 (1963).

    Article  CAS  PubMed  Google Scholar 

  14. Aizpurua-Olaizola, O. et al. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J. Nat. Prod. 79, 324–331 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed, S. A. et al. Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 117, 194–199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. ElSohly, M. A., Radwan, M. M., Gul, W., Chandra, S. & Galal, A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 103, 1–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Englund, A. et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J. Psychopharmacol. 27, 19–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Sastre-Garriga, J., Vila, C., Clissold, S. & Montalban, X. THC and CBD oromucosal spray (Sativex®) in the management of spasticity associated with multiple sclerosis. Expert Rev. Neurother. 11, 627–637 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Morgan, C. J. A., Schafer, G., Freeman, T. P. & Curran, H. V. Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study. Br. J. Psychiatry 197, 285–290 (2010).

    Article  PubMed  Google Scholar 

  20. Karniol, I. G., Shirakawa, I., Kasinski, N., Pfeferman, A. & Carlini, E. A. Cannabidiol interferes with the effects of Δ9-tetrahydrocannabinol in man. Eur. J. Pharmacol. 28, 172–177 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Hanuš, L. O., Meyer, S. M., Muñoz, E., Taglialatela-Scafati, O. & Appendino, G. Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 33, 1357–1392 (2016).

    Article  PubMed  Google Scholar 

  22. Shoyama, Y., Yagi, M., Nishioka, I. & Yamauchi, T. Biosynthesis of cannabinoid acids. Phytochemistry 14, 2189–2192 (1975).

    Article  CAS  Google Scholar 

  23. Taura, F., Morimoto, S., Shoyama, Y. & Mechoulam, R. First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J. Am. Chem. Soc. 117, 9766–9767 (1995).

    Article  CAS  Google Scholar 

  24. Chemical Abstracts Service. SciFinder. American Chemical Societyhttps://scifinder.cas.org (accessed 29 Oct 2017).

  25. Petrzilka, T., Haefliger, W. & Sikemeier, C. Synthese von Haschisch-Inhaltsstoffen. 4. Mitteilung. Helv. Chim. Acta 52, 1102–1134 (1969).

    Article  CAS  Google Scholar 

  26. Wilkinson, S. M., Price, J. & Kassiou, M. Improved accessibility to the desoxy analogues of Δ9-tetrahydrocannabinol and cannabidiol. Tetrahedron Lett. 54, 52–54 (2013).

    Article  CAS  Google Scholar 

  27. Rickards, R. W. & Watson, W. P. Conversion of (+)-(R )-Limonene into (+)-(1S, 4R)-p-mentha-2,8-dien-1-ol, an intermediate in the synthesis of tetrahydrocannabinoids. Aust. J. Chem. 33, 451–454 (1980).

    Article  CAS  Google Scholar 

  28. Schenck, G. O., Gollnick, K., Buchwald, G., Schroeter, S. & Ohloff, G. Zur chemischen und sterischen Selektivität der photosensibilisierten O2-Übertragung auf (+)-Limonen und (+)-Carvomenthen [German]. Justus Liebigs Ann. Chem. 674, 93–117 (1964).

    Article  CAS  Google Scholar 

  29. Razdan, R. K., Dalzell, H. C. & Handrick, G. R. Hashish. X. Simple one-step synthesis of (−)-Δ1-tetrahydrocannabinol (THC) from p-mentha-2,8-dien-1-ol and olivetol. J. Am. Chem. Soc. 96, 5860–5865 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Petrzilka, T., Haefliger, W., Sikemeier, C., Ohloff, G. & Eschenmoser, A. Synthese und Chiralität des (−)-Cannabidiols Vorläufige Mitteilung. Helv. Chim. Acta 50, 719–723 (1967).

    Article  CAS  PubMed  Google Scholar 

  31. Baek, S.-H., Srebnik, M. & Mechoulam, R. Boron triflouride etherate on alimina — a modified Lewis acid reagent. Tetrahedron Lett. 26, 1083–1086 (1985).

    Article  CAS  Google Scholar 

  32. Rickards, R. W. & Roenneberg, H. Synthesis of (−)-Δ9-6a, 10a-trans-tetrahydrocannabinol. Boron trifluoride catalyzed arylation by a homocuprate. J. Org. Chem. 49, 572–573 (1984).

    Article  CAS  Google Scholar 

  33. Stoss, P. & Merrath, P. A useful approach towards Δ9-tetrahydrocannabinol. Synlett 1991, 553–554 (1991).

    Article  Google Scholar 

  34. Razdan, R. K. & Handrick, G. R. Hashish. V. A stereospecific synthesis of (−)-Δ1- and (−)-Δ1(6)-tetrahydrocannabinols. J. Am. Chem. Soc. 92, 6061–6062 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. William, A. D. & Kobayashi, Y. A method to accomplish a 1,4-addition reaction of bulky nucleophiles to enones and subsequent formation of reactive enolates. Org. Lett. 3, 2017–2020 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. William, A. D. & Kobayashi, Y. Synthesis of tetrahydrocannabinols based on an indirect 1,4-addition strategy. J. Org. Chem. 67, 8771–8782 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi, Y., Takeuchi, A. & Wang, Y.-G. Synthesis of cannabidiols via alkenylation of cyclohexenyl monoacetate. Org. Lett. 8, 2699–2702 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Cheng, L.-J., Xie, J.-H., Chen, Y., Wang, L.-X. & Zhou, Q.-L. Enantioselective total synthesis of (−)-Δ8-THC and (−)-Δ9-THC via catalytic asymmetric hydrogenation and SNAr cyclization. Org. Lett. 15, 764–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Petrzilka, T. & Sikemeier, C. Über Inhaltsstoffe des Haschisch. 3., vorläufige Mitteilung. Umwandlung von (−)-Δ6,1-3,4-trans-tetrahydrocannabinol in (−)-Δ1,2-3,4-trans tetrahydrocannabinol. Helv. Chim. Acta 50, 2111–2113 (1967).

    Article  CAS  PubMed  Google Scholar 

  40. Evans, D. A., Shaughnessy, E. A. & Barnes, D. M. Cationic bis(oxazoline)Cu(II) Lewis acid catalysts. Application to the asymmetric synthesis of ent1-tetrahydrocannabinol. Tetrahedron Lett. 38, 3193–3194 (1997).

    Article  CAS  Google Scholar 

  41. Evans, D. A. et al. Bis(oxazoline) and bis(oxazolinyl)pyridine copper complexes as enantioselective Diels–Alder catalysts: reaction scope and synthetic applications. J. Am. Chem. Soc. 121, 7582–7594 (1999).

    Article  CAS  Google Scholar 

  42. Pearson, E. L., Kanizaj, N., Willis, A. C., Paddon-Row, M. N. & Sherburn, M. S. Experimental and computational studies into an ATPH-promoted exo-selective IMDA reaction: a short total synthesis of Δ9-THC. Chem. Eur. J. 16, 8280–8284 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Trost, B. M. & Dogra, K. Synthesis of (−)-Δ9-trans-tetrahydrocannabinol: stereocontrol via Mo-catalyzed asymmetric allylic alkylation reaction. Org. Lett. 9, 861–863 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schafroth, M. A., Zuccarello, G., Krautwald, S., Sarlah, D. & Carreira, E. M. Stereodivergent total synthesis of Δ9-tetrahydrocannabinols. Angew. Chem. Int. Ed. 53, 13898–13901 (2014).

    Article  CAS  Google Scholar 

  45. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Krautwald, S., Schafroth, M. A., Sarlah, D. & Carreira, E. M. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis. J. Am. Chem. Soc. 136, 3020–3023 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Shani, A. & Mechoulam, R. Cannabielsoic acids: isolation and synthesis by a novel oxidative cyclization. Tetrahedron 30, 2437–2446 (1974).

    Article  CAS  Google Scholar 

  48. Yamauchi, T., Shoyama, Y., Aramaki, H., Azuma, T. & Nishioka, I. Tetrahydrocannabinolic acid, a genuine substance of tetrahydrocannabinol. Chem. Pharm. Bull. 15, 1075–1076 (1967).

    Article  CAS  Google Scholar 

  49. Crombie, L. & Crombie, W. M. L. Cannabinoid acids and esters: miniaturized synthesis and chromatographic study. Phytochemistry 16, 1413–1420 (1977).

    Article  CAS  Google Scholar 

  50. Mechoulam, R. & Ben-Zvi, Z. Carboxylation of resorcinols with methylmagnesium carbonate. Synthesis of cannabinoid acids. J. Chem. Soc. D 343–344 (1969).

  51. Winnicki, R. & Donsky, M. Biosynthesis of cannabinoids. Patent WO2014134281 A1 (2014).

  52. Roth, N., Wohlfarth, A., Müller, M. & Auwärter, V. Regioselective synthesis of isotopically labeled Δ9-tetrahydrocannabinolic acid A (THCA-A-D3) by reaction of Δ9-tetrahydrocannabinol-D3 with magnesium methyl carbonate. Forensic Sci. Int. 222, 368–372 (2012).

    CAS  PubMed  Google Scholar 

  53. Cardillo, G., Cricchio, R. & Merlini, L. Synthesis of d, l-cannabichromene, franklinone and other natural chromenes. Tetrahedron 24, 4825–4831 (1968).

    Article  CAS  Google Scholar 

  54. Lee, Y. R. & Wang, X. Concise synthesis of biologically interesting (±)-cannabichromene, (±)-cannabichromenic acid, and (±)-daurichromenic acid. Bull. Kor. Chem. Soc. 26, 1933–1936 (2005).

    Article  CAS  Google Scholar 

  55. Lange, K., Schmid, A. & Julsing, M. K. Δ9-Tetrahydrocannabinolic acid synthase: the application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis. J. Biotechnol. 233, 42–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Appendino, G. et al. Antibacterial cannabinoids from Cannabis sativa: a structure–activity study. J. Nat. Prod. 71, 1427–1430 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh, R., Todd, A. R. & Wilkinson, S. Cannabis indica. Part V. The synthesis of cannabinol. J. Chem. Soc. 1393–1396 (1940).

  58. Mahadevan, A. et al. Novel cannabinol probes for CB1 and CB2 cannabinoid receptors. J. Med. Chem. 43, 3778–3785 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Bastola, K. P., Hazekamp, A. & Verpoorte, R. Synthesis and spectroscopic characterization of cannabinolic acid. Planta Med. 73, 273–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Nandaluru, P. R. & Bodwell, G. J. Multicomponent synthesis of 6H-dibenzo[b. d]pyran-6-ones and a total synthesis of cannabinol. Org. Lett. 14, 310–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Fan, F. et al. An intramolecular pyranone Diels–Alder cycloaddition approach to cannabinol. Adv. Synth. Catal. 356, 1337–1342 (2014).

    Article  CAS  Google Scholar 

  62. Mou, C. et al. Green and rapid access to benzocoumarins via direct benzene construction through base-mediated formal [4 + 2] reaction and air oxidation. Adv. Synth. Catal. 358, 707–712 (2016).

    Article  CAS  Google Scholar 

  63. Tetsutaro, H., Takatsugu, S., Noriyuki, H., Nobuyuki, K. & Sotaro, M. Convenient synthesis of biphenyl-2-carboxylic acids via the nucleophilic aromatic substitution reaction of 2-methoxybenzoates by aryl Grignard reagents. Bull. Chem. Soc. Jpn 66, 3034–3040 (1993).

    Article  Google Scholar 

  64. Nüllen, M. P. & Göttlich, R. Synthesis of cannabinol by a modified Ullmann–Ziegler cross-coupling. Synlett 24, 1109–1112 (2013).

    Article  CAS  Google Scholar 

  65. Li, Y., Ding, Y.-J., Wang, J.-Y., Su, Y.-M. & Wang, X.-S. Pd-catalyzed C–H lactonization for expedient synthesis of biaryl lactones and total synthesis of cannabinol. Org. Lett. 15, 2574–2577 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Teske, J. A. & Deiters, A. A cyclotrimerization route to cannabinoids. Org. Lett. 10, 2195–2198 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Mechoulam, R. & Gaoni, Y. A total synthesis of dl1-tetrahydrocannabinol, the active constituent of hashish. J. Am. Chem. Soc. 87, 3273–3275 (1965).

    Article  CAS  PubMed  Google Scholar 

  68. Mechoulam, R., Braun, P. & Gaoni, Y. Syntheses of Δ1-tetrahydrocannabinol and related cannabinoids. J. Am. Chem. Soc. 94, 6159–6165 (1972).

    Article  CAS  PubMed  Google Scholar 

  69. Gaoni, Y. & Mechoulam, R. Cannabichromene, a new active principle in hashish. Chem. Commun. 0, 20–21 (1966).

    CAS  Google Scholar 

  70. Claussen, U., Spulak, F.v. & Korte, F. Zur chemischen klassifizierung von pflanzen—XXXI, haschisch—X: cannabichromen, ein neuer haschisch-inhalts-stoff [German]. Tetrahedron 22, 1477–1479 (1966).

    Article  CAS  Google Scholar 

  71. Mechoulam, R., Yagnitinsky, B. & Gaoni, Y. Hashish. XII. Stereoelectronic factor in the chloranil dehydrogenation of cannabinoids. Total synthesis of dl-cannabichromene. J. Am. Chem. Soc. 90, 2418–2420 (1968).

    Article  CAS  PubMed  Google Scholar 

  72. Yamaguchi, S., Shouji, N. & Kuroda, K. A new approach to dl-cannabichromene. Bull. Chem. Soc. Jpn 68, 305–308 (1995).

    Article  CAS  Google Scholar 

  73. Saimoto, H. et al. Effect of calcium reagents on aldol reactions of phenolic enolates with aldehydes in alcohol. J. Org. Chem. 61, 6768–6769 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Yeom, H.-S., Li, H., Tang, Y. & Hsung, R. P. Total syntheses of cannabicyclol, clusiacyclol A and B, iso-eriobrucinol A and B, and eriobrucinol. Org. Lett. 15, 3130–3133 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Li, X. & Lee, Y. R. Efficient and novel one-pot synthesis of polycycles bearing cyclols by FeCl3-promoted [2 + 2] cycloaddition: application to cannabicyclol, cannabicyclovarin, and ranhuadujuanine A. Org. Biomol. Chem. 12, 1250–1257 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Wall, M. E., Brine, D. R., Pitt, C. G. & Perez-Reyes, M. Identification of Δ9-tetrahydrocannabinol and metabolites in man. J. Am. Chem. Soc. 94, 8579–8581 (1972).

    Article  CAS  PubMed  Google Scholar 

  77. Mechoulam, R., McCallum, N. K. & Burstein, S. Recent advances in the chemistry and biochemistry of cannabis. Chem. Rev. 76, 75–112 (1976).

    Article  CAS  Google Scholar 

  78. Lemberger, L. Tetrahydrocannabinol metabolism in man. Drug Metab. Dispos. 1, 461–468 (1973).

    CAS  PubMed  Google Scholar 

  79. Woodhouse, E. J. Confirmation of the presence of 11-hydroxy- 9-tetrahydrocannabinol in the urine of marijuana smokers. Am. J. Public Health 62, 1394–1396 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baek, S.-H., Szirmai, M. & Halldin, M. M. Synthesis of optically active (−)-11-Nor-Δ9-tetrahydrocannabinol-9-carboxylic acid. Pharmacol. Biochem. Behav. 40, 487–489 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Siegel, C. et al. Synthesis of racemic and optically active Δ9-tetrahydrocannabinol (THC) metabolites. J. Org. Chem. 56, 6865–6872 (1991).

    Article  CAS  Google Scholar 

  82. Siegel, C., Gordon, P. M. & Razdan, R. K. An optically active terpenic synthon for Δ9-cannabinoids: synthesis of (−)-11-hydroxy-Δ9-tetrahydrocannabinol (THC) and its 1′,1′-dimethylheptyl analog. J. Org. Chem. 54, 5428–5430 (1989).

    Article  CAS  Google Scholar 

  83. Tius, M. A., Gu, X.-q. & Kerr, M. A. A convenient synthesis of (−)-11-nor-Δ9-tetrahydrocannabinol-9-methanol. J. Chem. Soc. Chem. Commun. 62–63 (1989).

  84. Archer, R. A. et al. Cannabinoids. 3. Synthetic approaches to 9-ketocannabinoids. Total synthesis of nabilone. J. Org. Chem. 42, 2277–2284 (1977).

    Article  CAS  PubMed  Google Scholar 

  85. Nikas, S. P. et al. A concise methodology for the synthesis of (−)-Δ9-tetrahydrocannabinol and (−)-Δ9-tetrahydrocannabivarin metabolites and their regiospecifically deuterated analogs. Tetrahedron 63, 8112–8123 (2007).

    Article  CAS  Google Scholar 

  86. Kachensky, D. F. & Hui, R. A. H. F. Preparation of racemic, (−)- and (+)-11-Nor-Δ9-tetrahydrocannabinol- 9-carboxylic acid. J. Org. Chem. 62, 7065–7068 (1997).

    Article  CAS  Google Scholar 

  87. Hanuš, L. O.et al. Enantiomeric cannabidiol derivatives: synthesis and binding to cannabinoid receptors. Org. Biomol. Chem. 3, 1116–1123 (2005).

  88. Tchilibon, S. & Mechoulam, R. Synthesis of a primary metabolite of cannabidiol. Org. Lett. 2, 3301–3303 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Morales, P., Hurst, D. P. & Reggio, P. H. Molecular targets of the phytocannabinoids — a complex picture. Prog. Chem. Org. Nat. Prod. 103, 103–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mackie, K., Devane, W. A. & Hille, B. Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Mol. Pharmacol. 44, 498–503 (1993).

    CAS  PubMed  Google Scholar 

  91. Rosenthaler, S. et al. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol. Teratol. 46, 49–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Iwamura, H., Suzuki, H., Ueda, Y., Kaya, T. & Inaba, T. In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J. Pharmacol. Exp. Ther. 296, 420–425 (2001).

    CAS  PubMed  Google Scholar 

  93. Pertwee, R. G. Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 6, 635–664 (1999).

    CAS  PubMed  Google Scholar 

  94. Huffman, J. W. et al. 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Biorg. Med. Chem. 7, 2905–2914 (1999).

    Article  CAS  Google Scholar 

  95. Busch-Petersen, J. et al. Unsaturated side chain β-11-hydroxyhexahydrocannabinol analogs. J. Med. Chem. 39, 3790–3796 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. MacLennan, S. J., Reynen, P. H., Kwan, J. & Bonhaus, D. W. Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB1 and CB2 receptors. Br. J. Pharmacol. 124, 619–622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rhee, M.-H. et al. Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J. Med. Chem. 40, 3228–3233 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Thomas, A. et al. Evidence that the plant cannabinoid Δ9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br. J. Pharmacol. 146, 917–926 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McPartland, J. M., Duncan, M., Di Marzo, V. & Pertwee, R. G. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 172, 737–753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McPartland, J. M. et al. Affinity and efficacy studies of tetrahydrocannabinolic acid A at cannabinoid receptor types one and two. Cannabis Cannabinoid Res. 2, 87–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thomas, A. et al. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol. 150, 613–623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051–1095 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl Acad. Sci. USA 100, 4903–4908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoyer, D. et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46, 157–203 (1994).

    CAS  PubMed  Google Scholar 

  106. Michalik, L. et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 58, 726–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. De Petrocellis, L. et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McHugh, D. et al. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci. 11, 44 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Brown, A. J. Novel cannabinoid receptors. Br. J. Pharmacol. 152, 567–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Overton, H. A. et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3, 167–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Feigenbaum, J. J. et al. Nonpsychotropic cannabinoid acts as a functional N-methyl-d-aspartate receptor blocker. Proc. Natl Acad. Sci. USA 86, 9584–9587 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cotter, J. Efficacy of crude marijuana and synthetic Δ9-tetrahydrocannabinol as treatment for chemotherapy-induced nausea and vomiting: a systematic literature review. Oncol. Nurs. Forum 36, 345–352 (2009).

    Article  PubMed  Google Scholar 

  113. Pertwee, R. G. et al. The psychoactive plant cannabinoid, Δ9-tetrahydrocannabinol, is antagonized by Δ8- and Δ9-tetrahydrocannabivarin in mice in vivo. Br. J. Pharmacol. 150, 586–594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rock, E. M. et al. Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus. Br. J. Pharmacol. 165, 2620–2634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rock, E. M. et al. Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology 215, 505–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Bolognini, D. et al. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br. J. Pharmacol. 168, 1456–1470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rock, E. M., Kopstick, R. L., Limebeer, C. L. & Parker, L. A. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus. Br. J. Pharmacol. 170, 641–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Farrimond, J. A., Whalley, B. J. & Williams, C. M. Cannabinol and cannabidiol exert opposing effects on rat feeding patterns. Psychopharmacology 223, 117–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Costa, B. On the pharmacological properties of Δ9-tetrahydrocannabinol (THC). Chem. Biodivers. 4, 1664–1677 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Costa, B., Trovato, A. E., Comelli, F., Giagnoni, G. & Colleoni, M. The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur. J. Pharmacol. 556, 75–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Cascio, M. G., Gauson, L. A., Stevenson, L. A., Ross, R. A. & Pertwee, R. G. Evidence that the plant cannabinoid cannabigerol is a highly potent α2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br. J. Pharmacol. 159, 129–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. DeLong, G. T., Wolf, C. E., Poklis, A. & Lichtman, A. H. Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by Δ9-tetrahydrocannabinol. Drug Alcohol Depend. 112, 126–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Patrik, R. & Ida, S. H. Antipsychotic-like effects of cannabidiol and rimonabant: systematic review of animal and human studies. Curr. Pharm. Des. 18, 5141–5155 (2012).

    Article  Google Scholar 

  124. Esposito, G. et al. Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br. J. Pharmacol. 151, 1272–1279 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martín-Moreno, A. M. et al. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer's disease. Mol. Pharmacol. 79, 964–973 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Iuvone, T., Esposito, G., De Filippis, D., Scuderi, C. & Steardo, L. Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci. Ther. 15, 65–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. García-Arencibia, M., García, C. & Fernández-Ruiz, J. Cannabinoids and Parkinson's disease. CNS Neurol. Disord. Drug Targets 8, 432–439 (2009).

    Article  PubMed  Google Scholar 

  128. Turkanis, S. A., Smiley, K. A., Borys, H. K., Olsen, D. M. & Karler, R. An electrophysiological analysis of the anticonvulsant action of cannabidiol on limbic seizures in conscious rats. Epilepsia 20, 351–363 (1979).

    Article  CAS  PubMed  Google Scholar 

  129. Jones, N. A. et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21, 344–352 (2012).

    Article  PubMed  Google Scholar 

  130. Jones, N. A. et al. Cannabidiol displays antiepileptiform and antiseizure rroperties in vitro and in vivo. J. Pharm. Exp. Ther. 332, 569–577 (2010).

    Article  CAS  Google Scholar 

  131. Devinsky, O. et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15, 270–278 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Cunha, J. M. et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21, 175–185 (1980).

    Article  CAS  PubMed  Google Scholar 

  133. Leweke, F. M. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2, e94 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hill, A. J. et al. Cannabidivarin is anticonvulsant in mouse and rat. Br. J. Pharmacol. 167, 1629–1642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hill, A. J. et al. Δ9-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia 51, 1522–1532 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Chesher, G. B. & Jackson, D. M. Anticonvulsant effects of cannabinoids in mice: drug interactions within cannabinoids and cannabinoid interactions with phenytoin. Psychopharmacologia 37, 255–264 (1974).

    Article  CAS  PubMed  Google Scholar 

  137. Karler, R. & Turkanis, S. A. Cannabis and epilepsy. Adv. Biosci. 22–23, 619–641 (1978).

    PubMed  Google Scholar 

  138. United Nations. Article 1, Single Convention on Narcotic Drugs (UN, 1961).

  139. Commission on Narcotic Drugs. Decision 50/2: Review of Dronabinol and its Stereoisomers (UNODC, 2007).

  140. Fellermeier, M., Eisenreich, W., Bacher, A. & Zenk, M. H. Biosynthesis of cannabinoids: incorporation experiments with 13C-labeled glucoses. Eur. J. Biochem. 268, 1596–1604 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Hillig, K. W. & Mahlberg, P. G. A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am. J. Bot. 91, 966–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. McPartland, J. M., Glass, M. & Pertwee, R. G. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br. J. Pharmacol. 152, 583–593 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sugiura, T. et al. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor: comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J. Biol. Chem. 275, 605–612 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Bolognini, D., Cascio, M. G., Parolaro, D. & Pertwee, R. G. AM630 behaves as a protean ligand at the human cannabinoid CB2 receptor. Br. J. Pharmacol. 165, 2561–2574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bolognini, D. et al. The plant cannabinoid Δ9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br. J. Pharmacol. 160, 677–687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pertwee, R. G., Ross, R. A., Craib, S. J. & Thomas, A. (−)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. Eur. J. Pharmacol. 456, 99–106 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The National Health and Medical Research Council (NHMRC)-EU collaborative grant and The Lambert Initiative for Cannabinoid Research, The University of Sydney, are acknowledged for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Michael Kassiou.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reekie, T., Scott, M. & Kassiou, M. The evolving science of phytocannabinoids. Nat Rev Chem 2, 0101 (2018). https://doi.org/10.1038/s41570-017-0101

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0101

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research