Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision synthesis versus bulk-scale fabrication of graphenes

Abstract

Graphene is a fascinating material with unique properties, such as extreme mechanical strength, ultrahigh electrical and thermal conductivities and remarkable transparency. Further reduction in the dimensionality of graphene in the form of graphene quantum dots and graphene nanoribbons has compensated for the lack of a bandgap in the extended 2D material. These nanoscale graphenes exhibit finite bandgaps because of quantum confinement, making them attractive as next-generation semiconductors. Numerous fabrication methods for various types of graphenes have been developed, which can generally be categorized into ‘top-down’ and ‘bottom-up’ procedures. These methods afford, on different production scales, a wide range of graphene structures of different sizes, shapes and quality (defect density, edge roughness and so on). Atomically precise syntheses are indispensable for fundamental research and future technological development, but the projection of the existing methods to cost-effective bulk-scale fabrication techniques is required for upcoming industrial applications of graphenes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Classification of graphenes based on lateral size.
Figure 2: Major fabrication methods of graphene.
Figure 3: Typical fabrication methods of nanographenes.
Figure 4: Examples of atomically precise nanographenes.

References

  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Ren, W. & Cheng, H.-M. The global growth of graphene. Nat. Nano. 9, 726–730 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Xiao, X., Li, Y. & Liu, Z. Graphene commercialization. Nat. Mater. 15, 697–698 (2016).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Bianco, A. et al. All in the graphene family — a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nano. 4, 217–224 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Chua, C. K. & Pumera, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Eigler, S. et al. Wet chemical synthesis of graphene. Adv. Mater. 25, 3583–3587 (2013).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Butz, B., Dolle, C., Halbig, C. E., Spiecker, E. & Eigler, S. Highly intact and pure oxo-functionalized graphene: synthesis and electron-beam-induced reduction. Angew. Chem. Int. Ed. 55, 15771–15774 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nano. 3, 563–568 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Leon, V. et al. Few-layer graphenes from ball-milling of graphite with melamine. Chem. Commun. 47, 10936–10938 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    León, V., Rodriguez, A. M., Prieto, P., Prato, M. & Vázquez, E. Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8, 563–571 (2014).

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Damm, C., Nacken, T. J. & Peukert, W. Quantitative evaluation of delamination of graphite by wet media milling. Carbon 81, 284–294 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Ciesielski, A. & Samori, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Yang, S., Lohe, M. R., Müllen, K. & Feng, X. New-generation graphene from electrochemical approaches: production and applications. Adv. Mater. 28, 6213–6221 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Yang, S. et al. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 137, 13927–13932 (2015).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Yang, S. et al. Ultrafast delamination of graphite into high-quality graphene using alternating currents. Angew. Chem. Int. Ed. 56, 6669–6675 (2017).

    CAS  Article  Google Scholar 

  23. 23

    Matsumoto, M., Saito, Y., Park, C., Fukushima, T. & Aida, T. Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nat. Chem. 7, 730–736 (2015).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Voiry, D. et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Li, X., Colombo, L. & Ruoff, R. S. Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28, 6247–6252 (2016).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano. 5, 574–578 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112 (2013).

    Article  CAS  Google Scholar 

  31. 31

    Strudwick, A. J. et al. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS Nano 9, 31–42 (2015).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Yazyev, O. V. & Chen, Y. P. Polycrystalline graphene and other two-dimensional materials. Nat. Nano. 9, 755–767 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Geng, D., Wang, H. & Yu, G. Graphene single crystals: size and morphology engineering. Adv. Mater. 27, 2821–2837 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 15, 43–47 (2016).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Wang, H. & Yu, G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv. Mater. 28, 4956–4975 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Chen, X., Wu, B. & Liu, Y. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 45, 2057–2074 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Ponomarenko, L. A. et al. Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Pan, D., Zhang, J., Li, Z. & Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010).

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Chua, C. K. et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9, 2548–2555 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Chen, G. et al. Rupturing C60 molecules into graphene-oxide-like quantum dots: structure, photoluminescence, and catalytic application. Small 11, 5296–5304 (2015).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Li, F., Kou, L., Chen, W., Wu, C. & Guo, T. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes. NPG Asia Mater. 5, e60 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Shen, J., Zhu, Y., Yang, X. & Li, C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Xu, W. & Lee, T.-W. Recent progress in fabrication techniques of graphene nanoribbons. Mater. Horiz. 3, 186–207 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    PubMed  Article  CAS  Google Scholar 

  49. 49

    Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nano. 3, 397–401 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Liang, X. & Wi, S. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons. ACS Nano 6, 9700–9710 (2012).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Son, J. G. et al. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater. 25, 4723–4728 (2013).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Bai, J., Duan, X. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 9, 2083–2087 (2009).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nano. 5, 321–325 (2010).

    CAS  Article  Google Scholar 

  56. 56

    Wu, J., Pisula, W. & Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Yan, X. Li, B. & Li, L.-s. Colloidal graphene quantum dots with well-defined structures. Acc. Chem. Res. 46, 2254–2262 (2013).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Konishi, A. et al. Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. J. Am. Chem. Soc. 135, 1430–1437 (2013).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Paternò, G. M. et al. Synthesis of dibenzo[hi, st]ovalene and its amplified spontaneous emission in a polystyrene matrix. Angew. Chem. Int. Ed. 56, 6753–6757 (2017).

    Article  CAS  Google Scholar 

  60. 60

    Wang, L. et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 5, 5357 (2014).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Yang, X. et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 4216–4217 (2008).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Schwab, M. G. et al. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134, 18169–18172 (2012).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Konnerth, R. et al. Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale 7, 12807–12811 (2015).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Vo, T. H. et al. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).

    PubMed  Article  CAS  Google Scholar 

  66. 66

    Jordan, R. S. et al. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor. Chem 1, 78–90 (2016).

    CAS  Article  Google Scholar 

  67. 67

    Yang, W., Lucotti, A., Tommasini, M. & Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 138, 9137–9144 (2016).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Daigle, M., Miao, D., Lucotti, A., Tommasini, M. & Morin, J.-F. Helically coiled graphene nanoribbons. Angew. Chem. Int. Ed. 56, 6213–6217 (2017).

    CAS  Article  Google Scholar 

  69. 69

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Talirz, L., Ruffieux, P. & Fasel, R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mater. 28, 6222–6231 (2016).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Cloke, R. R. et al. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 137, 8872–8875 (2015).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Zhang, Y. et al. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Appl. Phys. Lett. 105, 023101 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Nguyen, G. D. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 120, 2684–2687 (2016).

    CAS  Article  Google Scholar 

  75. 75

    Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nano. 10, 156–160 (2015).

    CAS  Article  Google Scholar 

  76. 76

    Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nano. 9, 896–900 (2014).

    CAS  Article  Google Scholar 

  77. 77

    Bennett, P. B. et al. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103, 253114 (2013).

    Article  CAS  Google Scholar 

  78. 78

    Llinas, J. P. et al. Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79

    Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Fairbrother, A. et al. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons. Nanoscale 9, 2785–2792 (2017).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Sakaguchi, H. et al. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26, 4134–4138 (2014).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Chen, Z. et al. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nano. 5, 727–731 (2010).

    CAS  Article  Google Scholar 

  85. 85

    Kato, T. & Hatakeyama, R. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat. Nano. 7, 651–656 (2012).

    CAS  Article  Google Scholar 

  86. 86

    Safron, N. S., Kim, M., Gopalan, P. & Arnold, M. S. Barrier-guided growth of micro- and nano-structured graphene. Adv. Mater. 24, 1041–1045 (2012).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Subramaniam, D. et al. Wave-function mapping of graphene quantum dots with soft confinement. Phys. Rev. Lett. 108, 046801 (2012).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Talirz, L. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 11, 1380–1388 (2017).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all of their distinguished collaborators and dedicated research associates, who enabled their achievements partly described in this article. They thank EU Projects GENIUS (ITN-264694), UPGRADE and MoQuaS, Graphene Flagship (No. CNECT-ICT-604391), European Research Council (ERC)-Adv.-Grant 267160 (NANOGRAPH), the Max Planck Society, the Office of Naval Research Basic Research Challenge (BRC) Program (molecular synthesis and characterization), Deutsche Forschungsgemeinschaft (DFG) Priority Programme SPP 1459 and the Alexander von Humboldt Foundation for financial support.

Author information

Affiliations

Authors

Contributions

X.-Y.W. researched the literature and published data for the article and produced the first draft together with A.N. All authors discussed the content and contributed to the review and editing of the manuscript before submission.

Corresponding authors

Correspondence to Akimitsu Narita or Klaus Müllen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Narita, A. & Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat Rev Chem 2, 0100 (2018). https://doi.org/10.1038/s41570-017-0100

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing