Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular electrocatalysts for the oxygen reduction reaction

Abstract

The past decade has seen considerable growth in the development of materials for fuel cell electrodes, and there is a desire for active electrocatalysts derived from base metals instead of noble metals. Fuels cells that consume H2 and O2 require catalysts to cleave these reactants, with the oxygen reduction reaction (ORR) — either 4H+/4e reduction to 2H2O or 2H+/2e reduction to H2O2 — being particularly challenging. The ORR is efficiently performed by certain metalloenzymes, and understanding the links between their structure and function aids the design of molecular ORR electrocatalysts. These bio-inspired catalysts exhibit good activity relative to previous synthetic systems and, furthermore, have provided mechanistic insights relevant to synthetic and enzymatic catalysts. This Review covers recent developments in homogeneous and heterogeneous molecular ORR catalysis, placing emphasis on reaction mechanisms and the factors governing rates and selectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dioxygen (O2) is processed in nature by metalloenzymes.
Figure 2: Homogeneous ORR electrocatalysts featuring first-row transition metals.
Figure 3: Transforming molecular catalysts into heterogeneous ORR electrocatalysts by immobilization on electrode surfaces.
Figure 4: Heterogeneous ORR catalysts prepared from synthetic metalloporphyrins, which are amenable to spectroscopic analysis for mechanistic study.
Figure 5: An enzyme model and catalytic cycles proposed for mononuclear and dinuclear metalloporphyrin catalysts.
Figure 6: A selection of metallocorroles that have been investigated as ORR catalysts.
Figure 7: Metallophthalocyanines recently investigated as catalysts for the electrocatalytic ORR.
Figure 8: Synthetic aporphynoid copper complexes investigated as catalysts for the ORR.
Figure 9: Synthetic high-valent and low-valent diiron catalysts for the ORR.

Similar content being viewed by others

References

  1. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).

    Article  CAS  Google Scholar 

  8. Du, P. & Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012).

    Article  CAS  Google Scholar 

  9. Thoi, V. S., Sun, Y., Long, J. R. & Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 42, 2388–2400 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Huynh, M., Ozel, T., Liu, C., Lau, E. C. & Nocera, D. G. Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 8, 4779–4794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Norris, M. R. et al. Redox mediator effect on water oxidation in a ruthenium-based chromophore–catalyst assembly. J. Am. Chem. Soc. 135, 2080–2083 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, W., Lai, W. & Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Bullock, R. M. & Helm, M. L. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Acc. Chem. Res. 48, 2017–2026 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 53, 3935–3960 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Rakowski DuBois, M. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson-Miller, S. & Babcock, G. T. Heme/copper terminal oxidases. Chem. Rev. 96, 2889–2908 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kaila, V. R. I., Verkhovsky, M. I. & Wikström, M. Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev. 110, 7062–7081 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Wikström, M., Sharma, V., Kaila, V. R. I., Hosler, J. P. & Hummer, G. New perspectives on proton pumping in cellular respiration. Chem. Rev. 115, 2196–2221 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, S. M. & Solomon, E. I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 72, 869–883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramasamy, R. P., Luckarift, H. R., Ivnitski, D. M., Atanassov, P. B. & Johnson, G. R. High electrocatalytic activity of tethered multicopper oxidase–carbon nanotube conjugates. Chem. Commun. 46, 6045–6047 (2010).

    Article  CAS  Google Scholar 

  25. Cracknell, J. A. & Blanford, C. F. Developing the mechanism of dioxygen reduction catalyzed by multicopper oxidases using protein film electrochemistry. Chem. Sci. 3, 1567–1581 (2012).

    Article  CAS  Google Scholar 

  26. dos Santos, L., Climent, V., Blanford, C. F. & Armstrong, F. A. Mechanistic studies of the ‘blue’ Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 12, 13962–13974 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Blanford, C. F., Heath, R. S. & Armstrong, F. A. A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem. Commun. 1710–1712 (2007).

  28. Haas, A. S. et al. Cytochrome c and cytochrome c oxidase: monolayer assemblies and catalysis. J. Phys. Chem. B 105, 11351–11362 (2001).

    Article  CAS  Google Scholar 

  29. Burgess, J. D., Rhoten, M. C. & Hawkridge, F. M. Cytochrome c oxidase immobilized in stable supported lipid bilayer membranes. Langmuir 14, 2467–2475 (1998).

    Article  CAS  Google Scholar 

  30. Su, L., Kelly, J. & Hawkridge, F. M. Electroreduction of O2 on cytochrome c oxidase modified electrode for biofuel cell. ECS Trans. 2, 1–6 (2007).

    Article  Google Scholar 

  31. Mukherjee, S. et al. A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction. Nat. Commun. 6, 8467 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Steffens, G. C. M., Soulimane, T., Wolff, G. & Buse, G. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Eur. J. Biochem. 213, 1149–1157 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Wood, P. M. The potential diagram for oxygen at pH 7. Biochem. J. 253, 287–289 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Savéant, J.-M. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem. Rev. 108, 2348–2378 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Thorseth, M. A., Tornow, C. E., Tse, E. C. M. & Gewirth, A. A. Cu complexes that catalyze the oxygen reduction reaction. Coord. Chem. Rev. 257, 130–139 (2013).

    Article  CAS  Google Scholar 

  36. Pegis, M. L. et al. Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N,N-dimethylformamide. Inorg. Chem. 54, 11883–11888 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Fourmond, V., Jacques, P.-A., Fontecave, M. & Artero, V. H2 evolution and molecular electrocatalysts: determination of overpotentials and effect of homoconjugation. Inorg. Chem. 49, 10338–10347 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

  39. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wiedner, E. S. & Bullock, R. M. Electrochemical detection of transient cobalt hydride intermediates of electrocatalytic hydrogen production. J. Am. Chem. Soc. 138, 8309–8318 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Chatterjee, S., Sengupta, K., Samanta, S., Das, P. K. & Dey, A. Concerted proton–electron transfer in electrocatalytic O2 reduction by iron porphyrin complexes: axial ligands tuning H/D isotope effect. Inorg. Chem. 54, 2383–2392 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Sengupta, K., Chatterjee, S., Samanta, S. & Dey, A. Direct observation of intermediates formed during steady-state electrocatalytic O2 reduction by iron porphyrins. Proc. Natl Acad. Sci. USA 110, 8431–8436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costentin, C. & Savéant, J.-M. Intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 0087 (2017).

    Article  CAS  Google Scholar 

  44. Wasylenko, D. J., Rodríguez, C., Pegis, M. L. & Mayer, J. M. Direct comparison of electrochemical and spectrochemical kinetics for catalytic oxygen reduction. J. Am. Chem. Soc. 136, 12544–12547 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Costentin, C., Robert, M. & Savéant, J.-M. Acceleration of the homogeneous and electrochemical reductions of dioxygen in aprotic media by ammonium ions. Is the driving force a function of NH4+ concentration? What is the mechanism of the reaction? J. Phys. Chem. C 111, 12877–12880 (2007).

    Article  CAS  Google Scholar 

  46. Mittra, K., Chatterjee, S., Samanta, S. & Dey, A. Selective 4e/4H+ O2 Reduction by an iron(tetraferrocenyl)porphyrin complex: from proton transfer followed by electron transfer in organic solvent to proton coupled electron transfer in aqueous medium. Inorg. Chem. 52, 14317–14325 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Samanta, S., Mittra, K., Sengupta, K., Chatterjee, S. & Dey, A. Second sphere control of redox catalysis: selective reduction of O2 to O2 or H2O by an iron porphyrin catalyst. Inorg. Chem. 52, 1443–1453 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Chng, L. L., Chang, C. J. & Nocera, D. G. Catalytic O–O activation chemistry mediated by iron hangman porphyrins with a wide range of proton-donating abilities. Org. Lett. 5, 2421–2424 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, C. J., Chng, L. L. & Nocera, D. G. Proton-coupled O–O activation on a redox platform bearing a hydrogen-bonding scaffold. J. Am. Chem. Soc. 125, 1866–1876 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Rosenthal, J., Chng, L. L., Fried, S. D. & Nocera, D. G. Stereochemical control of H2O2 dismutation by Hangman porphyrins. Chem. Commun. 2642–2644 (2007).

  51. Soper, J. D., Kryatov, S. V., Rybak-Akimova, E. V. & Nocera, D. G. Proton-directed redox control of O–O bond activation by heme hydroperoxidase models. J. Am. Chem. Soc. 129, 5069–5075 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Matson, B. D. et al. Distant protonated pyridine groups in water-soluble iron porphyrin electrocatalysts promote selective oxygen reduction to water. Chem. Commun. 48, 11100–11102 (2012).

    Article  CAS  Google Scholar 

  53. Rigsby, M. L., Wasylenko, D. J., Pegis, M. L. & Mayer, J. M. Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron–porphyrin complexes. J. Am. Chem. Soc. 137, 4296–4299 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. He, Q. et al. Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: an electrochemical study in solution and a membrane-electrode-assembly study in fuel cells. J. Power Sources 216, 67–75 (2012).

    Article  CAS  Google Scholar 

  55. Costentin, C., Dridi, H. & Savéant, J.-M. Molecular catalysis of O2 reduction by iron porphyrins in water: heterogeneous versus homogeneous pathways. J. Am. Chem. Soc. 137, 13535–13544 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Oliveira, R. et al. Characterization and subsequent reactivity of an Fe-peroxo porphyrin generated by electrochemical reductive activation of O2 . Inorg. Chem. 55, 12204–12210 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, C., Lei, H., Zhang, Z., Chen, F. & Cao, R. Oxygen reduction catalyzed by a water-soluble binuclear copper(II) complex from a neutral aqueous solution. Chem. Commun. 53, 3189–3192 (2017).

    Article  CAS  Google Scholar 

  58. Fukuzumi, S. et al. Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex. J. Am. Chem. Soc. 134, 9906–9909 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Passard, G., Ullman, A. M., Brodsky, C. N. & Nocera, D. G. Oxygen reduction catalysis at a dicobalt center: the relationship of Faradaic efficiency to overpotential. J. Am. Chem. Soc. 138, 2925–2928 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Kotani, H., Yagi, T., Ishizuka, T. & Kojima, T. Enhancement of 4-electron O2 reduction by a Cu(II)–pyridylamine complex via protonation of a pendant pyridine in the second coordination sphere in water. Chem. Commun. 51, 13385–13388 (2015).

    Article  CAS  Google Scholar 

  61. Yang, J. Y. et al. Reduction of oxygen catalyzed by nickel diphosphine complexes with positioned pendant amines. Dalton Trans. 39, 3001–3010 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Collman, J. P. et al. Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J. Am. Chem. Soc. 102, 6027–6036 (1980).

    Article  CAS  Google Scholar 

  63. Durand, R. R., Bencosme, C. S., Collman, J. P. & Anson, F. C. Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins. J. Am. Chem. Soc. 105, 2710–2718 (1983).

    Article  CAS  Google Scholar 

  64. Anson, F. C., Shi, C. & Steiger, B. Novel multinuclear catalysts for the electroreduction of dioxygen directly to water. Acc. Chem. Res. 30, 437–444 (1997).

    Article  CAS  Google Scholar 

  65. Shi, C., Steiger, B., Yuasa, M. & Anson, F. C. Electroreduction of O2 to H2O at unusually positive potentials catalyzed by the simplest of the cobalt porphyrins. Inorg. Chem. 36, 4294–4295 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Collman, J. P., Fu, L., Herrmann, P. C. & Zhang, X. A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2 . Science 275, 949–951 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Shi, C., Mak, K. W., Chan, K. S. & Anson, F. C. Enhancement by surfactants of the activity and stability of iridium octaethyl porphyrin as an electrocatalyst for the four-electron reduction of dioxygen. J. Electroanal. Chem. 397, 321–324 (1995).

    Article  Google Scholar 

  68. Shigehara, K. & Anson, F. C. Electrocatalytic activity of three iron porphyrins in the reductions of dioxygen and hydrogen peroxide at graphite electrodes. J. Phys. Chem. 86, 2776–2783 (1982).

    Article  CAS  Google Scholar 

  69. Shi, C. & Anson, F. C. (5,10,15,20-Tetramethylporphyrinato)cobalt(II): a remarkably active catalyst for the electroreduction of O2 to H2O. Inorg. Chem. 37, 1037–1043 (1998).

    Article  CAS  Google Scholar 

  70. Collman, J. P. et al. Close structural analogues of the cytochrome c oxidase Fea3/CuB center show clean 4e electroreduction of O2 to H2O at physiological pH. J. Am. Chem. Soc. 121, 1387–1388 (1999).

    Article  CAS  Google Scholar 

  71. Collman, J. P. et al. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boulatov, R., Collman, J. P., Shiryaeva, I. M. & Sunderland, C. J. Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB . J. Am. Chem. Soc. 124, 11923–11935 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Amanullah, S., Das, P. K., Samanta, S. & Dey, A. Tuning the thermodynamic onset potential of electrocatalytic O2 reduction reaction by synthetic iron–porphyrin complexes. Chem. Commun. 51, 10010–10013 (2015).

    Article  CAS  Google Scholar 

  74. Higuchi, T., Uzu, S. & Hirobe, M. Synthesis of a highly stable iron porphyrin coordinated by alkylthiolate anion as a model for cytochrome P-450 and its catalytic activity in oxygen-oxygen bond cleavage. J. Am. Chem. Soc. 112, 7051–7053 (1990).

    Article  CAS  Google Scholar 

  75. Das, P. K., Chatterjee, S., Samanta, S. & Dey, A. EPR, resonance raman, and DFT calculations on thiolate- and imidazole-bound iron(III) porphyrin complexes: role of the axial ligand in tuning the electronic structure. Inorg. Chem. 51, 10704–10714 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Das, P. K., Mittra, K. & Dey, A. Spectroscopic characterization of a phenolate bound FeII–O2 adduct: gauging the relative “push” effect of a phenolate axial ligand. Chem. Commun. 50, 5218–5220 (2014).

    Article  CAS  Google Scholar 

  77. Samanta, S. et al. O2 reduction reaction by biologically relevant anionic ligand bound iron porphyrin complexes. Inorg. Chem. 52, 12963–12971 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Burke, J. M. et al. Structure-sensitive resonance Raman bands of tetraphenyl and “picket fence” porphyrin–iron complexes, including an oxyhemoglobin analog. J. Am. Chem. Soc. 100, 6083–6088 (1978).

    Article  CAS  Google Scholar 

  79. Paulat, F., Praneeth, V. K. K., Näther, C. & Lehnert, N. Quantum chemistry-based analysis of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl]. Inorg. Chem. 45, 2835–2856 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Mukherjee, S., Bandyopadhyay, S., Chatterjee, S. & Dey, A. Electrocatalytic O2 reduction by a monolayer of hemin: the role of pKa of distal and proximal oxygen of a FeIII–OOH species in determining reactivity. Chem. Commun. 50, 12304–12307 (2014).

    Article  CAS  Google Scholar 

  81. Sengupta, K., Chatterjee, S. & Dey, A. Catalytic H2O2 disproportionation and electrocatalytic O2 reduction by a functional mimic of heme catalase: direct observation of compound 0 and compound I in situ. ACS Catal. 6, 1382–1388 (2016).

    Article  CAS  Google Scholar 

  82. Samanta, S., Sengupta, K., Mittra, K., Bandyopadhyay, S. & Dey, A. Selective four electron reduction of O2 by an iron porphyrin electrocatalyst under fast and slow electron fluxes. Chem. Commun. 48, 7631–7633 (2012).

    Article  CAS  Google Scholar 

  83. Chatterjee, S., Sengupta, K., Hematian, S., Karlin, K. D. & Dey, A. Electrocatalytic O2-reduction by synthetic cytochrome c oxidase mimics: identification of a “bridging peroxo” intermediate involved in facile 4e/4H+ O2-reduction. J. Am. Chem. Soc. 137, 12897–12905 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Du, W.-G. H. & Noodleman, L. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus. Inorg. Chem. 52, 14072–14088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McGuire, R. Jr et al. Oxygen reduction reactivity of cobalt(II) hangman porphyrins. Chem. Sci. 1, 411–414 (2010).

    Article  CAS  Google Scholar 

  86. Dogutan, D. K. et al. Hangman corroles: efficient synthesis and oxygen reaction chemistry. J. Am. Chem. Soc. 133, 131–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Chang, C. J. et al. Electrocatalytic four-electron reduction of oxygen to water by a highly flexible cofacial cobalt bisporphyrin. Chem. Commun. 1355–1356 (2000).

  88. Chang, C. J., Loh, Z.-H., Shi, C., Anson, F. C. & Nocera, D. G. Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. J. Am. Chem. Soc. 126, 10013–10020 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Peljo, P. et al. Biomimetic oxygen reduction by cofacial porphyrins at a liquid–liquid interface. J. Am. Chem. Soc. 134, 5974–5984 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Mahammed, A. & Gross, Z. Metallocorroles as electrocatalysts for the oxygen reduction reaction (ORR). Isr. J. Chem. 56, 756–762 (2016).

    Article  CAS  Google Scholar 

  91. Kadish, K. M. et al. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin–corrole dyads. J. Am. Chem. Soc. 127, 5625–5631 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Kadish, K. M. et al. Electrochemistry, spectroelectrochemistry, chloride binding, and O2 catalytic reactions of free-base porphyrin–cobalt corrole dyads. Inorg. Chem. 44, 6744–6754 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kadish, K. M. et al. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen. Inorg. Chem. 47, 6726–6737 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Li, B. et al. Cobalt triarylcorroles containing one, two or three nitro groups. Effect of NO2 substitution on electrochemical properties and catalytic activity for reduction of molecular oxygen in acid media. J. Inorg. Biochem. 136, 130–139 (2014).

    Article  PubMed  CAS  Google Scholar 

  95. Ou, Z. et al. Molecular oxygen reduction electrocatalyzed by meso-substituted cobalt corroles coated on edge-plane pyrolytic graphite electrodes in acidic media. Inorg. Chem. 51, 8890–8896 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Collman, J. P., Kaplun, M. & Decréau, R. A. Metal corroles as electrocatalysts for oxygen reduction. Dalton Trans. 554–559 (2006).

  97. Schechter, A., Stanevsky, M., Mahammed, A. & Gross, Z. Four-electron oxygen reduction by brominated cobalt corrole. Inorg. Chem. 51, 22–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Levy, N. et al. Metallocorroles as nonprecious-metal catalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 14080–14084 (2015).

    Article  CAS  Google Scholar 

  99. Levy, N. et al. Metallocorroles as non-precious metal electrocatalysts for highly efficient oxygen reduction in alkaline media. ChemCatChem 8, 2832–2837 (2016).

    Article  CAS  Google Scholar 

  100. Schöfberger, W. et al. A bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions in water. Angew. Chem. Int. Ed. 55, 2350–2355 (2016).

    Article  CAS  Google Scholar 

  101. Lei, H. et al. Noncovalent immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solutions. ACS Catal. 6, 6429–6437 (2016).

    Article  CAS  Google Scholar 

  102. Lever, A. B. P. et al. Recent studies in phthalocyanine chemistry. Pure Appl. Chem. 1467–1476 (1986).

    Article  CAS  Google Scholar 

  103. Ouyang, J., Shigehara, K., Yamada, A. & Anson, F. C. Hexadecafluoro- and octacyano phthalocyanines as electrocatalysts for the reduction of dioxygen. J. Electroanal. Chem. 297, 489–498 (1991).

    Article  CAS  Google Scholar 

  104. Sehlotho, N. & Nyokong, T. Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J. Electroanal. Chem. 595, 161–167 (2006).

    Article  CAS  Google Scholar 

  105. Goodwin, J. A. et al. Electrochemical dioxygen reduction catalyzed by a (nitro)cobalt(perfluorophthalocyanine) complex and the possibility of a peroxynitro complex intermediate. J. Porphyrins Phthalocyanines 19, 1185–1196 (2015).

    Article  CAS  Google Scholar 

  106. Zhang, Z. et al. Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Adv. 6, 67049–67056 (2016).

    Article  CAS  Google Scholar 

  107. Reis, R. M. et al. The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim. Acta 139, 1–6 (2014).

    Article  CAS  Google Scholar 

  108. Cao, R. et al. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4, 2076 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Jiang, Y. et al. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 3, 1263–1271 (2013).

    Article  CAS  Google Scholar 

  110. Liu, Y. et al. Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media. Electrochim. Acta 112, 269–278 (2013).

    Article  CAS  Google Scholar 

  111. Tasso, T. T., Furuyama, T. & Kobayashi, N. Absorption and electrochemical properties of cobalt and iron phthalocyanines and their quaternized derivatives: aggregation equilibrium and oxygen reduction electrocatalysis. Inorg. Chem. 52, 9206–9215 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Mihara, N. et al. Oxygen reduction to water by a cofacial dimer of iron(III)–porphyrin and iron(III)–phthalocyanine linked through a highly flexible fourfold rotaxane. Chem. Eur. J. 23, 7508–7514 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Lei, Y. & Anson, F. C. Mechanistic aspects of the electroreduction of dioxygen as catalyzed by copper–phenanthroline complexes adsorbed on graphite electrodes. Inorg. Chem. 33, 5003–5009 (1994).

    Article  CAS  Google Scholar 

  114. Bhugun, I. & Anson, F. C. Adsorption on graphite and catalytic reduction of O2 by the macrocyclic complex of cobalt(II) with 2,3,9,10-tetraphenyl-1,4,8,11-tetraazacyclotetradeca1,3,8,10-tetraene. J. Electroanal. Chem. 430, 155–161 (1997).

    Article  CAS  Google Scholar 

  115. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper–dioxygen complexes. Chem. Rev. 104, 1013–1046 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Elwell, C. E. et al. Copper–oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117, 2059–2107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen–copper systems. Chem. Rev. 104, 1047–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Kodera, M. et al. Synthesis, structure, and greatly improved reversible O2 binding in a structurally modulated μ-η22-peroxodicopper(II) complex with room-temperature stability. Angew. Chem. Int. Ed. 43, 334–337 (2004).

    Article  CAS  Google Scholar 

  119. Jacobson, R. R. et al. A Cu2–O2 complex. Crystal structure and characterization of a reversible dioxygen binding system. J. Am. Chem. Soc. 110, 3690–3690 (1988).

    Article  CAS  Google Scholar 

  120. Thorseth, M. A., Letko, C. S., Tse, E. C. M., Rauchfuss, T. B. & Gewirth, A. A. Ligand effects on the overpotential for dioxygen reduction by tris(2-pyridylmethyl)amine derivatives. Inorg. Chem. 52, 628–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Ward, A. L., Elbaz, L., Kerr, J. B. & Arnold, J. Nonprecious metal catalysts for fuel cell applications: electrochemical dioxygen activation by a series of first row transition metal tris(2-pyridylmethyl)amine complexes. Inorg. Chem. 51, 4694–4706 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Thorseth, M. A., Letko, C. S., Rauchfuss, T. B. & Gewirth, A. A. Dioxygen and hydrogen peroxide reduction with hemocyanin model complexes. Inorg. Chem. 50, 6158–6162 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. McCrory, C. C. L. et al. Electrocatalytic O2 Reduction by covalently immobilized mononuclear copper(I) complexes: evidence for a binuclear Cu2O2 intermediate. J. Am. Chem. Soc. 133, 3696–3699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gentil, S. et al. Electrocatalytic O2 Reduction at a bio-inspired mononuclear copper phenolato complex immobilized on a carbon nanotube electrode. Angew. Chem. Int. Ed. 55, 2517–2520 (2016).

    Article  CAS  Google Scholar 

  125. Barile, C. J. et al. Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane. Nat. Mater. 13, 619–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Thorum, M. S., Yadav, J. & Gewirth, A. A. Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. Angew. Chem. Int. Ed. 48, 165–167 (2009).

    Article  CAS  Google Scholar 

  127. Tse, E. C. M., Schilter, D., Gray, D. L., Rauchfuss, T. B. & Gewirth, A. A. Multicopper models for the laccase active site: effect of nuclearity on electrocatalytic oxygen reduction. Inorg. Chem. 53, 8505–8516 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Inomata, T. et al. Self-assembled monolayer electrode of a diiron complex with a phenoxo-based dinucleating ligand: observation of molecular oxygen adsorption/desorption in aqueous media. Chem. Commun. 392–394 (2008).

  129. Kitagawa, T. et al. Immobilization of a non-heme diiron complex encapsulated in an ammonium-type ionic liquid layer modified on an Au electrode: reactivity of the electrode for O2 reduction. Chem. Commun. 52, 4780–4783 (2016).

    Article  CAS  Google Scholar 

  130. Dey, S. et al. Electrocatalytic O2 reduction by [Fe-Fe]-hydrogenase active site models. J. Am. Chem. Soc. 136, 8847–8850 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Lehnert, N., Ho, R. Y. N., Que, L. & Solomon, E. I. Spectroscopic properties and electronic structure of low-spin Fe(III)–alkylperoxo complexes: homolytic cleavage of the O–O bond. J. Am. Chem. Soc. 123, 8271–8290 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Lehnert, N., Ho, R. Y. N., Que, L. & Solomon, E. I. Electronic structure of high–spin iron(III)–alkylperoxo complexes and its telation to low-spin analogues: reaction coordinate of O–O bond homolysis. J. Am. Chem. Soc. 123, 12802–12816 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Root, D. E. et al. Electronic and geometric structure of a trinuclear mixed-valence copper(II, II, III) cluster. J. Am. Chem. Soc. 120, 4982–4990 (1998).

    Article  CAS  Google Scholar 

  134. Henson, M. J. et al. Resonance Raman investigation of equatorial ligand donor effects on the Cu2O22+ core in end-on and side-on μ-peroxo-dicopper(II) and bis-μ-oxo-dicopper(III) complexes. J. Am. Chem. Soc. 125, 5186–5192 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Pegis, M. L. et al. Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions. ACS Cent. Sci. 2, 850–856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chatterjee, S., Sengupta, K., Mondal, B., Dey, S. & Dey, A. Factors determining the rate and selectivity of 4e/4H+ electrocatalytic reduction of dioxygen by iron porphyrin complexes. Acc. Chem. Res. 50, 1744–1753 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Shinzawa-Itoh, K. et al. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26, 1713–1725 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kataoka, K. et al. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli — deletion of the methionine-rich helical region covering the substrate-binding site. J. Mol. Biol. 373, 141–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Chatterjee, S., Sengupta, K., Samanta, S., Das, P. K. & Dey, A. Electrocatalytic O2 reduction reaction by synthetic analogues of cytochrome P450 and myoglobin: in-situ resonance Raman and dynamic electrochemistry investigations. Inorg. Chem. 52, 9897–9907 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their research grant from the India Department of Science and Technology, Science and Engineering Research Board (SERB) EMR/2014/000392.

Author information

Authors and Affiliations

Authors

Contributions

S.D., B.M., S.C. and A.D. researched the references and wrote the manuscript. A.R. and S.A. assisted in the presentation of the text and images. All authors contributed to discussions. S.D., B.M. and A.D. performed editing and corrections. S.D. and A.D revised the manuscript before the final submission.

Corresponding author

Correspondence to Abhishek Dey.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Mondal, B., Chatterjee, S. et al. Molecular electrocatalysts for the oxygen reduction reaction. Nat Rev Chem 1, 0098 (2017). https://doi.org/10.1038/s41570-017-0098

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing