Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic control of function by light-driven molecular motors


The field of dynamic functional molecular systems has progressed enormously over the past few decades. By coupling the mechanical properties of molecular switches and motors to chemical and biological processes, exceptional control of function has been attained. Overcrowded alkene-based light-driven molecular motors are very attractive in this respect owing to their unique multistate photochemically and thermally induced switching processes and their helical chirality inversion in each switching step. However, extending our control over properties from the molecular scale to larger length scales is still a fundamental challenge. In this Perspective, we discuss recent developments that address this challenge, ranging from the application of these motors in catalysis and synthetic materials to the control of biological properties. We may now be positioned at the dawn of a new era in which artificial molecular motors are able to perform programmed tasks and dynamic functions akin to the biological machines that are found in daily life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light-driven molecular motors based on overcrowded alkenes.
Figure 2: Photocontrol of enantioselectivity in asymmetric catalysis using catalysts built around a first-generation molecular motor scaffold.
Figure 3: Dynamic control of the helicity of polyisocyanate using a second-generation molecular motor.
Figure 4: Dynamic self-assembly.
Figure 5: Control of surface wettability by molecular motors anchored to a gold surface.
Figure 6: Dynamic control of anion binding affinity and enantioselectivity.


  1. 1

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Russew, M. M. & Hecht, S. Photoswitches: from molecules to materials. Adv. Mater. 22, 3348–3360 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles functionalized with reversible molecular and supramolecular switches. Chem. Soc. Rev. 39, 2203–2237 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Sauvage, J.-P. & Gaspard, P. From Non-Covalent Assemblies to Molecular Machines (Wiley, 2011).

    Google Scholar 

  6. 6

    Qu, D.-H., Wang, Q.-C., Zhang, Q.-W., Ma, X. & Tian, H. Photoresponsive host-guest functional systems. Chem. Rev. 115, 7543–7588 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    CAS  Article  Google Scholar 

  8. 8

    Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Feringa, B. L. The art of building small: from molecular switches to molecular motors. J. Org. Chem. 72, 6635–6652 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Neilson, B. M. & Bielawski, C. W. Illuminating photoswitchable catalysis. ACS Catal. 3, 1874–1885 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Ueno, A., Takahashi, K. & Osa, T. Photoregulation of catalytic activity of β-cyclodextrin by an azo inhibitor. J. Chem. Soc. Chem. (1980).

  12. 12

    Stoll, R. S. & Hecht, S. Artificial light-gated catalyst systems. Angew. Chem. Int. Ed. 49, 5054–5075 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Vlatkovic, M., Collins, B. S. L. & Feringa, B. L. Dynamic responsive systems for catalytic function. Chemistry 22, 17080–17111 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Vlatkovic´, M., Bernardi, L., Otten, E. & Feringa, B. L. Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chem. Commun. 50, 7773–7775 (2014).

    Article  Google Scholar 

  17. 17

    Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Chen, C.-T., Tsai, C.-C., Tsou, P., Huang, G.-T. & Yu, C.-H. Enantiodivergent Steglich rearrangement of O-carboxylazlactones catalyzed by a chirality switchable helicene containing a 4-aminopyridine unit. Chem. Sci. 8, 524–529 (2017).

    CAS  Article  Google Scholar 

  19. 19

    Teator, A. J., Lastovickova, D. M. & Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 116, 1969–1992 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Green, M. M. et al. A helical polymer with cooperative response to chiral information. Science 268, 1860–1866 (1995).

    CAS  Article  Google Scholar 

  22. 22

    Palmans, A. R. A. & Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Pijper, D. & Feringa, B. L. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter 4, 1349–1372 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Zhao, D., van Leeuwen, T., Cheng, J. & Feringa, B. L. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat. Chem. 9, 200–256 (2017).

    Article  Google Scholar 

  26. 26

    Lehn, J. M. et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(i) cations: structure of an inorganic double helix. Proc. Natl Acad. Sci. USA 84, 2565–2569 (1987).

    CAS  Article  Google Scholar 

  27. 27

    Eelkema, R. & Feringa, B. L. Amplification of chirality in liquid crystals. Org. Biomol. Chem. 4, 3729–3745 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Pieraccini, S., Masiero, S., Ferrarini, A. & Spada, G. P. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem. Soc. Rev. 40, 258–271 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Katsonis, N., Lacaze, E. & Ferrarini, A. Controlling chirality with helix inversion in cholesteric liquid crystals. J. Mater. Chem. 22, 7088–7097 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Wang, J. & Li, Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Eelkema, R. et al. Rotational reorganization of doped cholesteric liquid crystalline films. J. Am. Chem. Soc. 128, 14397–14407 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Wezenberg, S. J., Croisetu, C. M., Stuart, M. C. A. & Feringa, B. L. Reversible gel-sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341–4346 (2016).

    CAS  Article  Google Scholar 

  34. 34

    Chen, C. T., Chen, C. H. & Ong, T. G. Complementary helicity interchange of optically switchable supramolecular-enantiomeric helicenes with (−)-gel-sol-(+)-gel transition ternary logic. J. Am. Chem. Soc. 135, 5294–5297 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Webber, M. J., Appel, E. A. & Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    CAS  Article  Google Scholar 

  37. 37

    van Dijken, D. J., Chen, J., Stuart, M. C. A., Hou, L. & Feringa, B. L. Amphiphilic molecular motors for responsive aggregation in water. J. Am. Chem. Soc. 138, 660–669 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  Google Scholar 

  39. 39

    Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    CAS  Article  Google Scholar 

  40. 40

    Katsonis, N., Lubomska, M., Pollard, M. M., Feringa, B. L. & Rudolf, P. Synthetic light-activated molecular switches and motors on surfaces. Prog. Surf. Sci. 82, 407–434 (2007).

    CAS  Article  Google Scholar 

  41. 41

    van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1430 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Chen, K.-Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  Google Scholar 

  44. 44

    Szymański, W., Beierle, J. M., Kistemaker, H. A. V., Velema, W. A. & Feringa, B. L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 113, 6114–6178 (2013).

    Article  Google Scholar 

  45. 45

    Broichhagen, J., Frank, J. A. & Trauner, D. A. Roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Lerch, M. M., Hansen, M. J., van Dam, G. M., Szymanski, W. & Feringa, B. L. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 55, 10978–10999 (2016).

    CAS  Article  Google Scholar 

  48. 48

    van Delden, R. A., Koumura, N., Schoevaars, A., Meetsma, A. & Feringa, B. L. A donor–acceptor substituted molecular motor: unidirectional rotation driven by visible light. Org. Biomol. Chem. 1, 33–35 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Cnossen, A. et al. Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J. Am. Chem. Soc. 134, 17613–17619 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Wezenberg, S. J., Chen, K.-Y. & Feringa, B. L. Visible-light-driven photoisomerization and increased rotation speed of a molecular motor acting as a ligand in a ruthenium(ii) complex. Angew. Chem. Int. Ed. 54, 11457–11461 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Yoon, I., Li, J. Z. & Shim, Y. K. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 46, 7–23 (2013).

    Article  Google Scholar 

  52. 52

    Poloni, C., Stuart, M. C. A., van der Meulen, P., Szymanski, W. & Feringa, B. L. Light and heat control over secondary structure and amyloid-like fiber formation in an overcrowded-alkene-modified Trp zipper. Chem. Sci. 6, 7311–7318 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Wezenberg, S. J., Vlatkovic, M., Kistemaker, J. C. M. & Feringa, B. L. Multi-state regulation of the dihydrogen phosphate binding affinity to a light- and heat-responsive bis-urea receptor. J. Am. Chem. Soc. 136, 16784–16787 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Vlatkovic, M., Feringa, B. L. & Wezenberg, S. J. Dynamic inversion of stereoselective phosphate binding to a bisurea receptor controlled by light and heat. Angew. Chem. Int. Ed. 55, 1001–1004 (2016).

    CAS  Article  Google Scholar 

  55. 55

    Filatov, M. & Olivucci, M. Designing conical intersections for light-driven single molecule rotary motors: from precessional to axial motion. J. Org. Chem. 79, 3587–3600 (2014).

    CAS  Article  Google Scholar 

  56. 56

    Faulkner, A., van Leeuwen, T., Feringa, B. L. & Wezenberg, S. J. Allosteric regulation of the rotational speed in a light-driven molecular motor. J. Am. Chem. Soc. 138, 13597–13603 (2016).

    CAS  Article  Google Scholar 

  57. 57

    Pramanik, S. & Aprahamian, I. Hydrazone switch-based negative feedback loop. J. Am. Chem. Soc. 138, 15142–15145 (2016).

    CAS  Article  Google Scholar 

  58. 58

    Qu, D.-H. & Feringa, B. L. Controlling molecular rotary motion with a self-complexing lock. Angew. Chem. Int. Ed. 49, 1107–1110 (2010).

    CAS  Article  Google Scholar 

  59. 59

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Kaleta, J. et al. Surface inclusion of unidirectional molecular motors in hexagonal tris(o-phenylene)cyclotriphosphazene. J. Am. Chem. Soc. 139, 10486–10498 (2017).

    CAS  Article  Google Scholar 

  61. 61

    Štacko, P. et al. Locked synchronous rotor motion in a molecular motor. Science 356, 964–968 (2017).

    Article  Google Scholar 

  62. 62

    Green, J. E. et al. 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge generous support from NanoNed, The Netherlands Organization for Scientific Research (NWO-CW Top grant to B.L.F. and NWO-CW Veni grant No. 722.014.006 to S.J.W.), the Royal Netherlands Academy of Arts and Sciences (KNAW), the Ministry of Education, Culture and Science (Gravitation programme 024.001.035) and the European Research Council (Advanced Investigator Grant No. 694345 to B.L.F.).

Author information




All authors contributed to researching the article, discussing the content and writing and editing of the article.

Corresponding authors

Correspondence to Sander J. Wezenberg or Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Leeuwen, T., Lubbe, A., Štacko, P. et al. Dynamic control of function by light-driven molecular motors. Nat Rev Chem 1, 0096 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing