Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards an intelligent design of molecular electrocatalysts

Abstract

There is a need for the quantitative assessment of molecular electrocatalysts, particularly those designed to address modern energy challenges. This calls for systematic benchmarking to help rationalize the wealth of available data and to apply the lessons learnt to the innovative design of more efficient catalysts. For these purposes, it is tempting to examine the relationship between the reaction kinetics and the stabilization of a single primary intermediate by constructing a volcano plot. The attractiveness and inherent flaw in this oversimplified approach stem from accounting for complicated multi-electron, multistep processes with a single descriptor. In this Perspective, we instead advocate correlating the turnover frequency with the overpotential through a catalytic Tafel plot, which provides a much less restrictive and more reliable evaluation of intrinsic catalyst performance. Within this framework, one way to optimize molecular catalysts involves altering ligand substituents to tune the electronic structure of the catalyst. These inductive through-structure effects are subject to an ‘iron law’, which dictates that gains in the form of smaller overpotentials come at the price of reduced turnover frequencies (and vice versa). This law can be circumvented by instead engineering through-space effects that stabilize the primary catalytic intermediate. These considerations should be based on the patient gathering of reliable experimental data obtained upon variation of the maximal number of operational parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A catalytic Tafel plot summarizes catalytic performance.
Figure 2: Electrogenerated [Fe(TPP)] catalyses the CO2-to-CO conversion in the presence of acids of various strengths.
Figure 3: Modifying CO2 reduction catalysts with substituents that exert their influence through the catalyst structure is subject to an ‘iron law’.
Figure 4: The identity and location of aryl substituents on iron tetraarylporphyrin complexes influence catalytic rates and overpotentials.
Figure 5: Iron tetraarylporphyrin derivatives can be designed to take advantage of through-structure and through-space effects.
Figure 6: A generalized one-electron, one-step molecular catalytic reaction and its associated thermodynamic and kinetic parameters.

Similar content being viewed by others

References

  1. Hoffert, M. I. et al. Energy implications of future stabilization of atmospheric CO2 content. Nature 395, 881–884 (1998).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  3. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    Article  CAS  Google Scholar 

  4. Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

    Article  CAS  Google Scholar 

  5. Abbott, D. Keeping the energy debate clean: how do we supply the world’s energy needs? Proc. IEEE 98, 42–66 (2010).

    Article  CAS  Google Scholar 

  6. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  7. Artero, V. & Fontecave, M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Article  CAS  Google Scholar 

  8. Bligaard, T. et al. Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal. 6, 2590–2602 (2016).

    Article  CAS  Google Scholar 

  9. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).

    Article  CAS  Google Scholar 

  10. Savéant, J.-M. & Vianello, E. in Advances in Polarography 1st edn (ed. Longmuir, I. S. ) 367–374 (Pergamon Press, 1960).

    Book  Google Scholar 

  11. Savéant, J.-M. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry (Wiley, 2006).

    Book  Google Scholar 

  12. Costentin, C. & Savéant, J.-M. Multielectron, multistep molecular catalysis of electrochemical reactions: benchmarking of homogeneous catalysts. ChemElectroChem 1, 1226–1236 (2014).

    Article  CAS  Google Scholar 

  13. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

    Google Scholar 

  14. Rigsby, M. L., Wasylenko, D. J., Pegis, M. L. & Mayer, J. M. Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron-porphyrin complexes.J. Am. Chem. Soc. 137, 4296–4299 (2015).

    Article  CAS  Google Scholar 

  15. Steffey, B. D. et al. Synthesis and characterization of palladium complexes containing tridentate ligands with PXP (X = C, N, O, S, As) donor sets and their evaluation as electrochemical CO2 reduction catalysts. Organometallics 13, 4844–4855 (1994).

    Article  CAS  Google Scholar 

  16. Costentin, C., Robert, M. & Savéant, J.-M. Current issues in molecular catalysis illustrated by iron porphyrins as catalysts of the CO2-to-CO electrochemical conversion. Acc. Chem. Res. 48, 2996–3006 (2015).

    Article  CAS  Google Scholar 

  17. Martin, D. J., McCarthy, B. D., Rountree, E. S. & Dempsey, J. L. Qualitative extension of the EC′ zone diagram to a molecular catalyst for a multi-electron, multi-substrate electrochemical reaction. Dalton Trans. 45, 9970–9976 (2016).

    Article  CAS  Google Scholar 

  18. Elgrishi, N., McCarthy, B. D., Rountree, E. S. & Dempsey, J. L. Linear free energy relationships in the hydrogen evolution reaction: kinetic analysis of a cobaloxime catalyst. ACS Catal. 6, 3326–3335 (2016).

    Article  Google Scholar 

  19. Costentin, C., Robert, M., Savéant, J.-M. & Tard, C. Breaking bonds with electrons and protons. Models and examples. Acc. Chem. Res. 47, 271–280 (2014).

    Article  CAS  Google Scholar 

  20. Costentin, C., Passard, G., Robert, M. & Savéant, J.-M. Pendant acid–base groups in molecular catalysts: H-bond promoters or proton relays? Mechanisms of the conversion of CO2 to CO by electrogenerated iron(0) porphyrins bearing prepositioned phenol functionalities. J. Am. Chem. Soc. 136, 11821–11829 (2014).

    Article  CAS  Google Scholar 

  21. Costentin, C., Dridi, H. & Savéant, J.-M. Molecular catalysis of H2 evolution: diagnosing heterolytic versus homolytic pathways. J. Am. Chem. Soc. 136, 13727–13734 (2014).

    Article  CAS  Google Scholar 

  22. Mondal, B., Rana, A., Sen, P. & Dey, A. Intermediates involved in the 2e/2H+ reduction of CO2 to CO by iron(0) porphyrin. J. Am. Chem. Soc. 137, 11214–11217 (2015).

    Article  CAS  Google Scholar 

  23. Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Dissection of electronic substituent effects in multielectron–multistep molecular catalysis. Electrochemical CO2-to-CO conversion catalyzed by iron porphyrins. J. Phys. Chem. C 120, 28951–28960 (2016).

    Article  CAS  Google Scholar 

  24. Pegis, M. L. et al. Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions. ACS Cent. Sci. 2, 850–856 (2016).

    Article  CAS  Google Scholar 

  25. Bhugun, I., Lexa, D. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergistic effect of weak Brønsted acids. J. Am. Chem. Soc. 118, 1769–1776 (1996).

    Article  CAS  Google Scholar 

  26. Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    Article  CAS  Google Scholar 

  27. Frushicheva, M. P. et al. Computer aided enzyme design and catalytic concepts. Curr. Opin. Chem. Biol. 21, 56–62 (2014).

    Article  CAS  Google Scholar 

  28. Sabatier, P. La catalyse en chimie organique [French] (Librairie Polytechnique, 1920).

    Google Scholar 

  29. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  CAS  Google Scholar 

  30. Gerischer, H. Mechanismus der elektrolytischen Wasserstoffabscheidung und Adsorptionsenergie von atomarem Wasserstoff [German]. Bull. Soc. Chim. Belg. 67, 506–527 (1958).

    Article  CAS  Google Scholar 

  31. Koper, M. T. M. Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. J. Solid State Electrochem. 17, 339–344 (2013).

    Article  CAS  Google Scholar 

  32. Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis — uses& abuses. Beilstein J.Nanotechnol. 5, 846–854 (2014).

    Article  CAS  Google Scholar 

  33. Zeradjanin, A. R., Grote, J.-P., Polymeros, G. & Mayrhofer, K. J. A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis 28, 2256–2269 (2016).

    Article  CAS  Google Scholar 

  34. Savéant, J.-M. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem. Rev. 108, 2348–2378 (2008).

    Article  Google Scholar 

  35. Costentin, C. & Savéant, J.-M. Homogeneous molecular catalysis of electrochemical reactions: catalyst benchmarking and optimization strategies. J. Am. Chem. Soc. 139, 8245–8250 (2017).

    Article  CAS  Google Scholar 

  36. Garreau, D. & Savéant, J.-M. Linear sweep voltammetry — compensation of cell resistance and stability: determination of the residual uncompensated resistance. J. Electroanal. Chem. Interfacial Electrochem. 35, 309–331 (1972).

    Article  CAS  Google Scholar 

  37. Liu, C. P., Liu, T. B. & Hall, M. B. Influence of the density functional and basis set on the relative stabilities of oxygenated isomers of diiron models for the active site of [FeFe]-hydrogenase. J. Chem. Theory Comput. 11, 205–214 (2015).

    Article  CAS  Google Scholar 

  38. Kumar, M. & Kozlowski, P. M. Electronic and structural properties of cob(I)alamin: ramifications for B12-dependent processes. Coord. Chem. Rev. 333, 71–81 (2017).

    Article  CAS  Google Scholar 

  39. Renault, C. et al. Unraveling the mechanism of catalytic reduction of O2 by microperoxidase-11 adsorbed within a transparent 3D-nanoporous ITO film. J. Am. Chem. Soc. 134, 6834–6845 (2012).

    Article  CAS  Google Scholar 

  40. Chatterjee, S., Sengupta, K., Mondal, B., Dey, S. & Dey, A. Factors determining the rate and selectivity of 4e/4H+ electrocatalytic reduction of dioxygen by iron porphyrins complexes. Acc. Chem. Res. 50, 1744–1753 (2017).

    Article  CAS  Google Scholar 

  41. Costentin, C., Drouet, S., Passard, G., Robert, M. & Savéant, J.-M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2 . J. Am. Chem. Soc. 135, 9023–9031 (2013).

    Article  CAS  Google Scholar 

  42. Sampson, M. D. et al. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J. Am. Chem. Soc. 136, 5460–5471 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Cyrille Costentin or Jean-Michel Savéant.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costentin, C., Savéant, JM. Towards an intelligent design of molecular electrocatalysts. Nat Rev Chem 1, 0087 (2017). https://doi.org/10.1038/s41570-017-0087

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing