Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radical cascade reactions triggered by single electron transfer

Abstract

The rapid generation of molecular complexity from simple starting materials is of paramount importance in synthetic chemistry. The unique combination of high reactivity and high selectivity often associated with open-shell intermediates makes radical chemistry ideal for cascade reactions, in which simple substrates undergo a series of processes involving bond formation (and bond cleavage) to give complex, high-value products. Crucially, radical cascade reactions can greatly diminish the time, cost and amount of waste associated with complex target synthesis. Recent exciting advances in the field of radical chemistry initiated by single electron transfer (SET) have led to a considerable upward shift in our ability to design powerful new cascade reactions. This Review highlights recent advances in the development of radical cascades, triggered by SET processes, that deliver molecular constructs of importance in medicine and biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction to SET radical cascades.
Figure 2: Oxidative SET radical cascades mediated by manganese(III).
Figure 3: Oxidative SET radical cascades mediated by silver, iron and electrochemistry.
Figure 4: Reductive SET radical cascades mediated by samarium(II).
Figure 5: Reductive SET radical cascades mediated by titanium and copper.
Figure 6: Oxidative SET radical cascades mediated by photoredox catalysis.
Figure 7: Reductive radical cascades mediated by photoredox catalysis.

Similar content being viewed by others

References

  1. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    Article  CAS  Google Scholar 

  3. Baralle, A. et al. in Encyclopedia of Radicals in Chemistry, Biology and Materials Ch. 27 (eds Chatgilialoglu, C. & Studer, A. ) (Wiley, 2012).

    Google Scholar 

  4. Godineau, E. & Landais, Y. Radical and radical–ionic multicomponent processes. Chem. Eur. J. 15, 3044–3055 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sebren, L. J., Devery, J. J. III & Stephenson, C. R. J. Catalytic radical domino reactions in organic synthesis. ACS Catal. 4, 703–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Ardkhean, R. et al. Cascade polycyclizations in natural product synthesis. Chem. Soc. Rev. 45, 1557–1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006). A comprehensive review of cascade reactions that showcases how different classes of cascade reaction can be used effectively to build molecular complexity.

    Article  CAS  Google Scholar 

  9. Nicolaou, K. C. & Gray, D. Total synthesis of hybocarpone. Angew. Chem. Int. Ed. 40, 761–763 (2001).

    Article  CAS  Google Scholar 

  10. Lee, E. et al. Total synthesis of (+)-cladantholide and (−)-estafiatin: 5-exo, 7-endo radical cyclization strategy for the construction of guaianolide skeleton. J. Am. Chem. Soc. 119, 8391–8392 (1997).

    Article  CAS  Google Scholar 

  11. Beemelmanns, C. & Reissig, H. U. A short formal total synthesis of strychnine with a samarium diiodide induced cascade reaction as the key step. Angew. Chem. Int. Ed. 49, 8021–8025 (2010).

    Article  CAS  Google Scholar 

  12. Gansäuer, A., Rosales, A. & Justicia, J. Catalytic epoxypolyene cyclization via radicals: highly diastereoselective formal synthesis of puupehedione and 8-epi-puupehedione. Synlett 6, 927–929 (2006).

    Article  CAS  Google Scholar 

  13. Rendler, S. & MacMillan, D. W. C. Enantioselective polyene cyclization via organo-SOMO catalysis. J. Am. Chem. Soc. 132, 5027–5029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corey, E. J. & Kang, M. C. A new and general synthesis of polycyclic γ-lactones by double annulation. J. Am. Chem. Soc. 106, 5384–5385 (1984).

    Article  CAS  Google Scholar 

  15. Ernst, A. B. & Fristad, W. E. Intramolecular lactone annulation of activated acids with Mn(III). Tetrahedron Lett. 26, 3761–3764 (1985).

    Article  CAS  Google Scholar 

  16. Snider, B. B., Mohan, R. & Kates, S. A. Manganese(III)-based oxidative free-radical cyclization. Synthesis of (±)-podocarpic acid. J. Org. Chem. 50, 3659–3661 (1985).

    Article  CAS  Google Scholar 

  17. Snider, B. B. Manganese(III)-based oxidative free-radical cyclizations. Chem. Rev. 96, 339–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Yamashita, S. et al. Total synthesis of limonin. Angew. Chem. Int. Ed. 54, 8538–8541 (2015).

    Article  CAS  Google Scholar 

  19. Yang, D., Ye, X. Y., Xu, M., Pang, K. W. & Cheung, K. K. Investigation of Mn(III)-based oxidative free radical cyclization reactions toward the synthesis of triptolide: the effects of lanthanide triflates and substituents on stereoselectivity. J. Am. Chem. Soc. 122, 1658–1663 (2000).

    Article  CAS  Google Scholar 

  20. Yang, D. & Xu, M. First enantioselective syntheses of (+)- and (−)-wilforonide by using chiral auxiliaries derived from the same chiral source. Org. Lett. 3, 1785–1788 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X. et al. Biomimetic route for construction of the [4+2] and [3+2] core skeletons of dimeric pyrrole-imidazole alkaloids and asymmetric synthesis of ageliferins. J. Am. Chem. Soc. 134, 18834–18842 (2012). This paper describes extensive synthetic work in which density functional theory calculations were used to explain the selectivity of the radical cyclizations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Evoniuk, C. J., Gomes, G. D. P., Ly, M., White, F. D. & Alabugin, I. V. Coupling radical homoallylic expansions with C–C fragmentations for the synthesis of heteroaromatics: quinolines from reactions of o-alkenylarylisonitriles with aryl, alkyl, and perfluoroalkyl radicals. J. Org. Chem. 82, 4265–4278 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin, J., Wang, C., Kong, L., Cai, S. & Gao, S. Asymmetric synthesis and biosynthetic implications of (+)-fusarisetin A. Angew. Chem. Int. Ed. 51, 7786–7789 (2012).

    Article  CAS  Google Scholar 

  27. Kong, L. et al. Total synthesis and biological studies of cryptocin and derivatives of equisetin and fusarisetin A. Org. Biomol. Chem. 12, 7591–7597 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, J. et al. Fusarisetin A: scalable total synthesis and related studies. Chem. Sci. 3, 3378–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Hu, X., Maimone, T. J. Four-step synthesis of the antimalarial cardamom peroxide via an oxygen stitching strategy. J. Am. Chem. Soc. 136, 5287–5290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daeppen, C., Kaiser, M., Neuburger, M. & Gademann, K. Preparation of antimalarial endoperoxides by a formal [2+2+2] cycloaddition. Org. Lett. 17, 5420–5423 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, J. M. & Kochi, J. K. Silver(I)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. Role of silver (II). J. Am. Chem. Soc. 92, 1651–1659 (1970).

    Article  CAS  Google Scholar 

  32. Minisci, F., Vismara, E. & Romano, U. Silver-mediated oxidative decarboxylation of carboxylic acids by peroxocompounds new sources of carbon-centered radicals for heteroaromatic substitution. Tetrahedron Lett. 26, 4803–4806 (1985).

    Article  CAS  Google Scholar 

  33. Minisci, F., Bernardi, R., Bertini, F., Galli, R. & Perchinummo, M. Nucleophilic character of alkyl radicals — VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron 27, 3575–3579 (1971).

    Article  CAS  Google Scholar 

  34. Duncton, M. A. J. Minisci reactions: versatile CH-functionalizations for medicinal chemists. Med. Chem. Comm. 2, 1135 (2011).

    Article  CAS  Google Scholar 

  35. Shu, W., Lorente, A., Gómez-Bengoa, E. & Nevado, C. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nat. Commun. 8, 13832 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, W. C., Dai, P., Luo, K., Ji, Y. G. & Wu, L. Aldehydes as carbon radical acceptors: silver nitrate catalyzed cascade decarboxylation and oxidative cyclization toward dihydroflavonoid derivatives. Adv. Synth. Catal. 359, 2390–2395 (2017).

    Article  CAS  Google Scholar 

  37. Li, Y. M., Sun, M., Wang, H. L., Tian, Q. P. & Yang, S. D. Direct annulations toward phosphorylated oxindoles: silver-catalyzed carbon-phosphorus functionalization of alkenes. Angew. Chem. Int. Ed. 52, 3972–3976 (2013).

    Article  CAS  Google Scholar 

  38. Zhang, H. et al. Silver-catalyzed cascade radical cyclization: a direct approach to 3,4-disubstituted dihydroquinolin-2(1H)-ones through activation of the P–H bond and functionalization of the C(sp2)-H bond. J. Org. Chem. 81, 2122–2127 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, Z. Z. et al. Silver-promoted cinnamamidyl radical-mediated oxidative cascade cyclization: highly regioselective synthesis of phosphorylated azaspiro[4.5]decenones. Org. Biomol. Chem. 14, 4507–4510 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Toriyama, F. et al. Redox-active esters in Fe-catalyzed C–C coupling. J. Am. Chem. Soc. 138, 11132–11135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei, W. T. et al. Synthesis of oxindoles by iron-catalyzed oxidative 1,2-alkylarylation of activated alkenes with an aryl C(sp2)–H bond and a C(sp3)–H bond adjacent to a heteroatom. Angew. Chem. Int. Ed. 52, 3638–3641 (2013).

    Article  CAS  Google Scholar 

  43. Qiu, J. K. et al. Catalytic dual 1,1-H-abstraction/insertion for domino spirocyclizations. J. Am. Chem. Soc. 137, 8928–8931 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).

    Article  CAS  Google Scholar 

  45. Sperry, J. B. & Wright, D. L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 35, 605–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Horn, E. J., Rosen, B. R. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent. Sci. 2, 302–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Becking, L. & Schafer, H. J. Pyrrolidines by intramolecular addition of Kolbe radicals generated from β-allylaminoalkanoates. Tetrahedron Lett. 29, 2797–2800 (1988).

    Article  CAS  Google Scholar 

  48. Weiguny, J. & Schäfer, H. J. Electroorganic synthesis, 57. Synthesis of advanced prostaglandin precursors by Kolbe electrolysis, II. — Preparation of coacids and anodic initiated tandem radical-addition / radical-coupling reaction with (1′ R, 4′ S,3 R/S)-3-(cis-4-acetoxycyclopent-2-enyloxy)-3-ethoxypropionic acid. European J. Org. Chem. 1994, 235–242 (1994).

    Google Scholar 

  49. Matzeit, A., Schäfer, H. J. & Amatore, C. Radical tandem cyclizations by anodic decarboxylation of carboxylic acids. Synthesis 1995, 1432–1444 (1995).

    Article  Google Scholar 

  50. Ding, H. et al. Electrolytic macrocyclizations: scalable synthesis of a diazonamide-based drug development candidate. Angew. Chem. Int. Ed. 54, 4818–4822 (2015).

    Article  CAS  Google Scholar 

  51. Burgett, A. W. G., Li, Q., Wei, Q. & Harran, P. G. A concise and flexible total synthesis of (−)-diazonamide A. Angew. Chem. Int. Ed. 42, 4961–4966 (2003).

    Article  CAS  Google Scholar 

  52. Nicolaou, K. C. et al. Chemistry and biology of diazonamide A: first total synthesis and confirmation of the true structure. J. Am. Chem. Soc. 126, 12888–12896 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Knowles, R. R. et al. Total synthesis of diazonamide A. Chem. Sci. 2, 308–311 (2011).

    Article  CAS  Google Scholar 

  54. Namy, J. L., Girard, P. & Kagan, H. B. A new preparation of some divalent lanthanide iodides and their usefulness in organic synthesis. Nouv. J. Chim. 1, 5–7 (1977).

    CAS  Google Scholar 

  55. Girard, P., Namy, J. L. & Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of SmI2 and YbI2 and their use as reducing or coupling agents. J. Am. Chem. Soc. 102, 2693–2698 (1980).

    Article  CAS  Google Scholar 

  56. Just-Baringo, X. & Procter, D. J. Sm(II)-mediated electron transfer to carboxylic acid derivatives: development of complexity-generating cascades. Acc. Chem. Res. 48, 1263–1275 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Szostak, M., Spain, M. & Procter, D. J. Recent advances in the chemoselective reduction of functional groups mediated by samarium(II) iodide: a single electron transfer approach. Chem. Soc. Rev. 42, 9155–9183 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Beemelmanns, C. & Reissig, H. U. Samarium diiodide induced ketyl-(het)arene cyclisations towards novel N-heterocycles. Chem. Soc. Rev. 40, 2199–2210 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Nicolaou, K. C., Ellery, S. P. & Chen, J. S. Samarium diiodide-mediated reactions in total synthesis. Angew. Chem. Int. Ed. 48, 7140–7165 (2009).

    Article  CAS  Google Scholar 

  61. Edmonds, D. J., Johnston, D. & Procter, D. J. Samarium(II)-iodide-mediated cyclizations in natural product synthesis. Chem. Rev. 104, 3371–3403 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Breitler, S. & Carreira, E. M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed. 52, 11168–11171 (2013).

    Article  CAS  Google Scholar 

  63. Helm, M., Da Silva, M., Sucunza, D., Findley, T. J. K. & Procter, D. J. Dialdehyde cyclization cascade: an approach to pleuromutilin. Angew. Chem. Int. Ed. 48, 9315–9317 (2009).

    Article  CAS  Google Scholar 

  64. Fazakerley, N. J., Helm, M. D. & Procter, D. J. Total synthesis of (+)-pleuromutilin. Chem. Eur. J. 19, 6718–6723 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Ruscoe, R. E., Fazakerley, N. J., Huang, H., Flitsch, S. & Procter, D. J. Copper-catalyzed double additions and radical cyclization cascades in the re-engineering of the antibacterial pleuromutilin. Chem. Eur. J. 22, 116–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Cha, J. Y., Yeoman, J. T. & Reisman, S. E. Concise total synthesis of (−)-maoecrystal Z. J. Am. Chem. Soc. 133, 14964–14967 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Parmer, D. et al. Reductive cyclization cascades of lactones using SmI2–H2O. J. Am. Chem. Soc. 133, 2418–2420 (2011).

    Article  CAS  Google Scholar 

  68. Parmar, D., Matsubara, H., Price, K., Spain, M. & Procter, D. J. Lactone radical cyclizations and cyclization cascades mediated by SmI2–H2O. J. Am. Chem. Soc. 134, 12751–12757 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Sautier, B., Lyons, S. E., Webb, M. R. & Procter, D. J. Radical cyclization cascades of unsaturated Meldrum's acid derivatives. Org. Lett. 14, 146–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, H. M. & Procter, D. J. Radical–radical cyclization cascades of barbiturates triggered by electron-transfer reduction of amide-type carbonyls. J. Am. Chem. Soc. 138, 7770–7775 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Huang, H.-M. & Procter, D. J. Dearomatizing radical cyclizations and cyclization cascades triggered by electron-transfer reduction of amide-type carbonyls. J. Am. Chem. Soc. 139, 1661–1667 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Nugent, W. A. & RajanBabu, T. V. Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins. J. Am. Chem. Soc. 110, 8561–8562 (1988).

    Article  CAS  Google Scholar 

  73. RajanBabu, T. V. & Nugent, W. A. Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis. J. Am. Chem. Soc. 116, 986–997 (1994).

    Article  CAS  Google Scholar 

  74. Gansäuer, A., Pierobon, M. & Bluhm, H. Catalytic, highly regio- and chemoselective generation of radicals from epoxides: titanocene dichloride as an electron transfer catalyst in transition metal catalyzed radical reactions. Angew. Chem. Int. Ed. 37, 101–103 (1998).

    Article  Google Scholar 

  75. Gansauer, A., Bluhm, H. & Pierobon, M. Emergence of a novel catalytic radical reaction: titanocene-catalyzed reductive opening of epoxides. J. Am. Chem. Soc. 120, 12849–12859 (1998).

    Article  Google Scholar 

  76. Gansäuer, A. & Narayan, S. Titanocene-catalysed electron transfer-mediated opening of epoxides. Adv. Synth. Catal. 344, 465–475 (2002).

    Article  Google Scholar 

  77. Gansäuer, A., Justicia, J., Fan, C. A., Worgull, D. & Piestert, F. Metal Catalyzed Reductive C–C Bond Formation 25–52 (Springer, 2007).

    Book  Google Scholar 

  78. Morcillo, S. P. et al. Recent applications of Cp2TiCl in natural product synthesis. Org. Chem. Front. 1, 15–33 (2014).

    Article  CAS  Google Scholar 

  79. Haruo, Y., Hasegawa, T., Tanaka, H. & Takahashi, T. Total synthesis of (±)-smenospondiol by titanium(III)-mediated tandem radical cyclization. Synlett 2001, 1935–1937 (2001).

    Article  Google Scholar 

  80. Barrero, A. F., Cuerva, J. M., Herrador, M. M. & Valdivia, M. V. A new strategy for the synthesis of cyclic terpenoids based on the radical opening of acyclic epoxypolyenes. J. Org. Chem. 66, 4074–4078 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Justicia, J. et al. Titanocene-catalyzed cascade cyclization of epoxypolyprenes: straightforward synthesis of terpenoids by free-radical chemistry. Chem. Eur. J. 10, 1778–1788 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Justicia, J. et al. 7-Endo radical cyclizations catalyzed by titanocene(III). Straightforward synthesis of terpenoids with seven-membered carbocycles. J. Am. Chem. Soc. 127, 14911–14921 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rosales, A. et al. Diastereoselective synthesis of (±)-ambrox by titanium(III)-catalyzed radical tandem cyclization. Synlett 27, 369–374 (2016).

    Article  CAS  Google Scholar 

  84. Sun, Y. et al. A concise total synthesis of sespenine, a structurally unusual indole terpenoid from Streptomyces. Org. Chem. Front. 3, 368–374 (2016).

    Article  CAS  Google Scholar 

  85. Ting, C. P., Xu, G., Zeng, X. & Maimone, T. J. Annulative methods enable a total synthesis of the complex meroterpene berkeleyone J. Am. Chem. Soc. 138, 14868–14871 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Clark, A. J. Atom transfer radical cyclisation reactions mediated by copper complexes. Chem. Soc. Rev. 31, 1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Clark, A. J. Copper catalyzed atom transfer radical cyclization reactions. Eur. J. Org. Chem. 2016, 2231–2243 (2016).

    Article  CAS  Google Scholar 

  88. Brill, Z. G., Grover, H. K. & Maimone, T. J. Enantioselective synthesis of an ophiobolin sesterterpene via a programmed radical cascade. Science 352, 1078–1082 (2016). A study in which several radical cyclization approaches were investigated to deliver the desired cascade product.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tomashenko, O. A. & Grushin, V. V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 111, 4475–4521 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Studer, A. A ‘renaissance’ in radical trifluoromethylation. Angew. Chem. Int. Ed. 51, 8950–8958 (2012).

    Article  CAS  Google Scholar 

  92. Parsons, A. T. & Buchwald, S. L. Copper-catalyzed trifluoromethylation of unactivated olefins. Angew. Chem. Int. Ed. 50, 9120–9123 (2011).

    Article  CAS  Google Scholar 

  93. Xu, J. et al. Copper-catalyzed trifluoromethylation of terminal alkenes through allylic C–H bond activation. J. Am. Chem. Soc. 133, 15300–15303 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, X. et al. Copper-catalyzed C(sp3)–C(sp3) bond formation using a hypervalent iodine reagent: an efficient allylic trifluoromethylation. J. Am. Chem. Soc. 133, 16410–16413 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Zhu, R. & Buchwald, S. L. Copper-catalyzed oxytrifluoromethylation of unactivated alkenes. J. Am. Chem. Soc. 134, 12462–12465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Egami, H., Shimizu, R., Kawamura, S. & Sodeoka, M. Alkene trifluoromethylation coupled with C-C bond formation: construction of trifluoromethylated carbocycles and heterocycles. Angew. Chem. Int. Ed. 52, 4000–4003 (2013).

    Article  CAS  Google Scholar 

  97. Lin, J. S. et al. Efficient copper-catalyzed direct intramolecular aminotrifluoromethylation of unactivated alkenes with diverse nitrogen-based nucleophiles. Chem. Eur. J. 20, 1332–1340 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Huang, L. et al. Stereoselective radical cyclization cascades triggered by addition of diverse radicals to alkynes to construct 6(5)−6–5 fused rings. Org. Lett. 18, 5284–5287 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, N. et al. Catalytic diverse radical-mediated 1,2-cyanofunctionalization of unactivated alkenes via synergistic remote cyano migration and protected strategies. Org. Lett. 18, 6026–6029 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Lin, J.-S. et al. A dual-catalytic strategy to direct asymmetric radical aminotrifluoromethylation of alkenes. J. Am. Chem. Soc. 138, 9357–9360 (2016). In this paper copper(I) is proposed to undergo two SET reduction steps to give a copper(III) intermediate that undergoes reductive elimination to regenerate the catalyst.

    Article  CAS  PubMed  Google Scholar 

  101. Lin, J.-S. et al. Catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes to versatile enantioenriched-fluoroalkyl amines. Nat. Commun. 8, 14841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Doni, E. & Murphy, J. A. Evolution of neutral organic super-electron-donors and their applications. Chem. Commun. 50, 6073 (2014).

    Article  CAS  Google Scholar 

  103. Broggi, J., Terme, T. & Vanelle, P. Organic electron donors as powerful single-electron reducing agents in organic synthesis. Angew. Chem. Int. Ed. 53, 384–413 (2014).

    Article  CAS  Google Scholar 

  104. Barham, J. P. et al. KOtBu: a privileged reagent for electron transfer reactions? J. Am. Chem. Soc. 138, 7402–7410 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Callaghan, O., Lampard, C., Kennedy, A. R. & Murphy, J. A. A novel total synthesis of (±)-aspidospermidine. J. Chem. Soc. Perkin Trans. 1, 995–1002 (1999).

    Article  Google Scholar 

  106. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  109. Hoffmann, U. et al. Light-induced polyene cyclizations via radical cations in micellar medium. J. Am. Chem. Soc. 115, 10358–10359 (1993). A seminal work on photoredox radical cascade cyclizations.

    Article  CAS  Google Scholar 

  110. Hurtley, A. E., Lu, Z. & Yoon, T. P. [2+2] Cycloaddition of 1,3-dienes by visible light photocatalysis. Angew. Chem. Int. Ed. 53, 8991–8994 (2014).

    Article  CAS  Google Scholar 

  111. Riener, M. & Nicewicz, D. A. Synthesis of cyclobutane lignans via an organic single electron oxidant–electron relay system. Chem. Sci. 4, 2625–2629 (2013).

    Article  CAS  Google Scholar 

  112. Wang, L., Wu, F., Chen, J., Nicewicz, D. A. & Huang, Y. Visible-light-mediated [4+2] cycloaddition of styrenes: synthesis of tetralin derivatives. Angew. Chem. Int. Ed. 56, 6896–6900 (2017).

    Article  CAS  Google Scholar 

  113. Drew, S. L., Lawrence, A. L. & Sherburn, M. S. Unified total synthesis of the natural products endiandric acid A, kingianic acid E, and kingianins A, D, and F. Chem. Sci. 6, 3886–3890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zeller, M. A., Riener, M. & Nicewicz, D. A. Butyrolactone synthesis via polar radical crossover cycloaddition reactions: diastereoselective syntheses of methylenolactocin and protolichesterinic acid. Org. Lett. 16, 4810–4813 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, X. & Chen, C. An approach for the synthesis of nakamuric acid. Tetrahedron 71, 3690–3693 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Ma, Z. et al. Asymmetric syntheses of sceptrin and massadine and evidence for biosynthetic enantiodivergence. Science 346, 219–224 (2014). This paper describes efficient approaches for total synthesis inspired by biosynthetic pathways and using photoredox catalysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stout, E. P., Wang, Y. G., Romo, D. & Molinski, T. F. Pyrrole aminoimidazole alkaloid metabiosynthesis with marine sponges Agelas conifera and Stylissa caribica. Angew. Chem. Int. Ed. 51, 4877–4881 (2012).

    Article  CAS  Google Scholar 

  118. Davies, J., Booth, S. G., Essafi, S., Dryfe, R. A. W. & Leonori, D. Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed. 54, 14017–14021 (2015).

    Article  CAS  Google Scholar 

  119. Davies, J., Svejstrup, T. D., Fernandez Reina, D., Sheikh, N. S. & Leonori, D. Visible-light-mediated synthesis of amidyl radicals: transition-metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc. 138, 8092–8095 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Choi, G. J. & Knowles, R. R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 137, 9226–9229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, X. et al. A radical cascade enabling collective syntheses of natural products. Chem 2, 803–816 (2017).

    Article  CAS  Google Scholar 

  124. Staveness, D., Bosque, I. & Stephenson, C. R. J. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res. 49, 2295–2306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yoon, T. P. Photochemical stereocontrol using tandem photoredox-chiral lewis acid catalysis. Acc. Chem. Res. 49, 2307–2315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goddard, J. P., Ollivier, C. & Fensterbank, L. Photoredox catalysis for the generation of carbon centered radicals. Acc. Chem. Res. 49, 1924–1936 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Tucker, J. W., Narayanam, J. M. R., Krabbe, S. W. & Stephenson, C. R. J. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org. Lett. 12, 368–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Tucker, J. W. & Stephenson, C. R. J. Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. Org. Lett. 13, 5468–5471 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Deng, G. B. et al. Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis. Angew. Chem. Int. Ed. 52, 1535–1538 (2013).

    Article  CAS  Google Scholar 

  130. Douglas, J. J., Albright, H., Sevrin, M. J., Cole, K. P. & Stephenson, C. R. Visible-light-mediated radical Smiles rearrangement and its application to the synthesis of a difluoro-substituted spirocyclic ORL-1 antagonist. Angew. Chem., Int. Ed. 54, 14898–14902 (2015).

    Article  CAS  Google Scholar 

  131. Noto, N., Miyazawa, K., Koike, T. & Akita, M. Anti-diastereoselective synthesis of CF3-containing spirooxazolines and spirooxazines via regiospecific trifluoromethylative spirocyclization by photoredox catalysis. Org. Lett. 17, 3710–3713 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Cannillo, A., Schwantje, T. R., Bégin, M., Barabé, F. & Barriault, L. Gold-catalyzed photoredox C(sp2) cyclization: formal synthesis of (±)-triptolide. Org. Lett. 18, 2592–2595 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Petersen, W. F., Taylor, R. J. K. & Donald, J. R. Photoredox-catalyzed reductive carbamoyl radical generation: a redox-neutral intermolecular addition–cyclization approach to functionalized 3,4-dihydroquinolin-2-ones. Org. Lett. 19, 874–877 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Lu, Z., Shen, M. & Yoon, T. P. [3+2] Cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc. 133, 1162–1164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Amador, A. G., Sherbrook, E. M. & Yoon, T. P. Enantioselective photocatalytic [3+2] cycloadditions of aryl cyclopropyl ketones. J. Am. Chem. Soc. 138, 4722–4725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Müller, C., Bauer, A. & Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. 48, 6640–6642 (2009).

    Article  CAS  Google Scholar 

  137. Müller, C. et al. Enantioselective intramolecular [2+2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc. 133, 16689–16697 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science 342, 840–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Guo, H., Herdtweck, E. & Bach, T. Enantioselective Lewis acid catalysis in intramolecular [2+2] photocycloaddition reactions of coumarins. Angew. Chem. Int. Ed. 49, 7782–7785 (2010).

    Article  CAS  Google Scholar 

  140. Du, J. et al. A dual-catalysis approach to enantioselective [2+2] photocycloadditions using visible light. Science 344, 392–396 (2014). This paper describes enantioselective photoredox [2+2] cycloadditions in which a simple ligand modification allows the diastereoselectivity of the processes to be switched.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem.http://dx.doi.org/10.1038/nchem.2841 (2017). This paper describes enantioselective SmI2-mediated radical cyclization cascades that use a simple recyclable chiral ligand.

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC; studentship to M.P. and an Established Career Fellowship to D.J.P. (Grant No. EP/M005062/1) and the University of Manchester (President's Scholarship to H.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.P. and H.H. researched data for the Review. All authors contributed to the discussion, writing and editing of the Review.

Corresponding author

Correspondence to David J. Procter.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Single electron transfer

(SET). Step in a chemical reaction characterized by donation or removal of an electron.

Captodative stabilization

Increased stability of a carbon-centred radical resulting from the combined effect of electron-withdrawing and electron-donating groups attached to the radical centre.

Proton-coupled electron transfer

(PCET). Class of chemical reactions that involves the transfer of an electron and proton in a concerted elementary step.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plesniak, M., Huang, HM. & Procter, D. Radical cascade reactions triggered by single electron transfer. Nat Rev Chem 1, 0077 (2017). https://doi.org/10.1038/s41570-017-0077

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing