Abstract
The rapid generation of molecular complexity from simple starting materials is of paramount importance in synthetic chemistry. The unique combination of high reactivity and high selectivity often associated with open-shell intermediates makes radical chemistry ideal for cascade reactions, in which simple substrates undergo a series of processes involving bond formation (and bond cleavage) to give complex, high-value products. Crucially, radical cascade reactions can greatly diminish the time, cost and amount of waste associated with complex target synthesis. Recent exciting advances in the field of radical chemistry initiated by single electron transfer (SET) have led to a considerable upward shift in our ability to design powerful new cascade reactions. This Review highlights recent advances in the development of radical cascades, triggered by SET processes, that deliver molecular constructs of importance in medicine and biology.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).
Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).
Baralle, A. et al. in Encyclopedia of Radicals in Chemistry, Biology and Materials Ch. 27 (eds Chatgilialoglu, C. & Studer, A. ) (Wiley, 2012).
Godineau, E. & Landais, Y. Radical and radical–ionic multicomponent processes. Chem. Eur. J. 15, 3044–3055 (2009).
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
Sebren, L. J., Devery, J. J. III & Stephenson, C. R. J. Catalytic radical domino reactions in organic synthesis. ACS Catal. 4, 703–716 (2014).
Ardkhean, R. et al. Cascade polycyclizations in natural product synthesis. Chem. Soc. Rev. 45, 1557–1569 (2016).
Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006). A comprehensive review of cascade reactions that showcases how different classes of cascade reaction can be used effectively to build molecular complexity.
Nicolaou, K. C. & Gray, D. Total synthesis of hybocarpone. Angew. Chem. Int. Ed. 40, 761–763 (2001).
Lee, E. et al. Total synthesis of (+)-cladantholide and (−)-estafiatin: 5-exo, 7-endo radical cyclization strategy for the construction of guaianolide skeleton. J. Am. Chem. Soc. 119, 8391–8392 (1997).
Beemelmanns, C. & Reissig, H. U. A short formal total synthesis of strychnine with a samarium diiodide induced cascade reaction as the key step. Angew. Chem. Int. Ed. 49, 8021–8025 (2010).
Gansäuer, A., Rosales, A. & Justicia, J. Catalytic epoxypolyene cyclization via radicals: highly diastereoselective formal synthesis of puupehedione and 8-epi-puupehedione. Synlett 6, 927–929 (2006).
Rendler, S. & MacMillan, D. W. C. Enantioselective polyene cyclization via organo-SOMO catalysis. J. Am. Chem. Soc. 132, 5027–5029 (2010).
Corey, E. J. & Kang, M. C. A new and general synthesis of polycyclic γ-lactones by double annulation. J. Am. Chem. Soc. 106, 5384–5385 (1984).
Ernst, A. B. & Fristad, W. E. Intramolecular lactone annulation of activated acids with Mn(III). Tetrahedron Lett. 26, 3761–3764 (1985).
Snider, B. B., Mohan, R. & Kates, S. A. Manganese(III)-based oxidative free-radical cyclization. Synthesis of (±)-podocarpic acid. J. Org. Chem. 50, 3659–3661 (1985).
Snider, B. B. Manganese(III)-based oxidative free-radical cyclizations. Chem. Rev. 96, 339–364 (1996).
Yamashita, S. et al. Total synthesis of limonin. Angew. Chem. Int. Ed. 54, 8538–8541 (2015).
Yang, D., Ye, X. Y., Xu, M., Pang, K. W. & Cheung, K. K. Investigation of Mn(III)-based oxidative free radical cyclization reactions toward the synthesis of triptolide: the effects of lanthanide triflates and substituents on stereoselectivity. J. Am. Chem. Soc. 122, 1658–1663 (2000).
Yang, D. & Xu, M. First enantioselective syntheses of (+)- and (−)-wilforonide by using chiral auxiliaries derived from the same chiral source. Org. Lett. 3, 1785–1788 (2001).
Wang, X. et al. Biomimetic route for construction of the [4+2] and [3+2] core skeletons of dimeric pyrrole-imidazole alkaloids and asymmetric synthesis of ageliferins. J. Am. Chem. Soc. 134, 18834–18842 (2012). This paper describes extensive synthetic work in which density functional theory calculations were used to explain the selectivity of the radical cyclizations.
Evoniuk, C. J., Gomes, G. D. P., Ly, M., White, F. D. & Alabugin, I. V. Coupling radical homoallylic expansions with C–C fragmentations for the synthesis of heteroaromatics: quinolines from reactions of o-alkenylarylisonitriles with aryl, alkyl, and perfluoroalkyl radicals. J. Org. Chem. 82, 4265–4278 (2017).
McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).
Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).
Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).
Yin, J., Wang, C., Kong, L., Cai, S. & Gao, S. Asymmetric synthesis and biosynthetic implications of (+)-fusarisetin A. Angew. Chem. Int. Ed. 51, 7786–7789 (2012).
Kong, L. et al. Total synthesis and biological studies of cryptocin and derivatives of equisetin and fusarisetin A. Org. Biomol. Chem. 12, 7591–7597 (2014).
Xu, J. et al. Fusarisetin A: scalable total synthesis and related studies. Chem. Sci. 3, 3378–3386 (2012).
Hu, X., Maimone, T. J. Four-step synthesis of the antimalarial cardamom peroxide via an oxygen stitching strategy. J. Am. Chem. Soc. 136, 5287–5290 (2014).
Daeppen, C., Kaiser, M., Neuburger, M. & Gademann, K. Preparation of antimalarial endoperoxides by a formal [2+2+2] cycloaddition. Org. Lett. 17, 5420–5423 (2015).
Anderson, J. M. & Kochi, J. K. Silver(I)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. Role of silver (II). J. Am. Chem. Soc. 92, 1651–1659 (1970).
Minisci, F., Vismara, E. & Romano, U. Silver-mediated oxidative decarboxylation of carboxylic acids by peroxocompounds new sources of carbon-centered radicals for heteroaromatic substitution. Tetrahedron Lett. 26, 4803–4806 (1985).
Minisci, F., Bernardi, R., Bertini, F., Galli, R. & Perchinummo, M. Nucleophilic character of alkyl radicals — VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron 27, 3575–3579 (1971).
Duncton, M. A. J. Minisci reactions: versatile CH-functionalizations for medicinal chemists. Med. Chem. Comm. 2, 1135 (2011).
Shu, W., Lorente, A., Gómez-Bengoa, E. & Nevado, C. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nat. Commun. 8, 13832 (2017).
Yang, W. C., Dai, P., Luo, K., Ji, Y. G. & Wu, L. Aldehydes as carbon radical acceptors: silver nitrate catalyzed cascade decarboxylation and oxidative cyclization toward dihydroflavonoid derivatives. Adv. Synth. Catal. 359, 2390–2395 (2017).
Li, Y. M., Sun, M., Wang, H. L., Tian, Q. P. & Yang, S. D. Direct annulations toward phosphorylated oxindoles: silver-catalyzed carbon-phosphorus functionalization of alkenes. Angew. Chem. Int. Ed. 52, 3972–3976 (2013).
Zhang, H. et al. Silver-catalyzed cascade radical cyclization: a direct approach to 3,4-disubstituted dihydroquinolin-2(1H)-ones through activation of the P–H bond and functionalization of the C(sp2)-H bond. J. Org. Chem. 81, 2122–2127 (2016).
Zhou, Z. Z. et al. Silver-promoted cinnamamidyl radical-mediated oxidative cascade cyclization: highly regioselective synthesis of phosphorylated azaspiro[4.5]decenones. Org. Biomol. Chem. 14, 4507–4510 (2016).
Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).
Toriyama, F. et al. Redox-active esters in Fe-catalyzed C–C coupling. J. Am. Chem. Soc. 138, 11132–11135 (2016).
Wei, W. T. et al. Synthesis of oxindoles by iron-catalyzed oxidative 1,2-alkylarylation of activated alkenes with an aryl C(sp2)–H bond and a C(sp3)–H bond adjacent to a heteroatom. Angew. Chem. Int. Ed. 52, 3638–3641 (2013).
Qiu, J. K. et al. Catalytic dual 1,1-H-abstraction/insertion for domino spirocyclizations. J. Am. Chem. Soc. 137, 8928–8931 (2015).
Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).
Sperry, J. B. & Wright, D. L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 35, 605–621 (2006).
Horn, E. J., Rosen, B. R. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent. Sci. 2, 302–308 (2016).
Becking, L. & Schafer, H. J. Pyrrolidines by intramolecular addition of Kolbe radicals generated from β-allylaminoalkanoates. Tetrahedron Lett. 29, 2797–2800 (1988).
Weiguny, J. & Schäfer, H. J. Electroorganic synthesis, 57. Synthesis of advanced prostaglandin precursors by Kolbe electrolysis, II. — Preparation of coacids and anodic initiated tandem radical-addition / radical-coupling reaction with (1′ R, 4′ S,3 R/S)-3-(cis-4-acetoxycyclopent-2-enyloxy)-3-ethoxypropionic acid. European J. Org. Chem. 1994, 235–242 (1994).
Matzeit, A., Schäfer, H. J. & Amatore, C. Radical tandem cyclizations by anodic decarboxylation of carboxylic acids. Synthesis 1995, 1432–1444 (1995).
Ding, H. et al. Electrolytic macrocyclizations: scalable synthesis of a diazonamide-based drug development candidate. Angew. Chem. Int. Ed. 54, 4818–4822 (2015).
Burgett, A. W. G., Li, Q., Wei, Q. & Harran, P. G. A concise and flexible total synthesis of (−)-diazonamide A. Angew. Chem. Int. Ed. 42, 4961–4966 (2003).
Nicolaou, K. C. et al. Chemistry and biology of diazonamide A: first total synthesis and confirmation of the true structure. J. Am. Chem. Soc. 126, 12888–12896 (2004).
Knowles, R. R. et al. Total synthesis of diazonamide A. Chem. Sci. 2, 308–311 (2011).
Namy, J. L., Girard, P. & Kagan, H. B. A new preparation of some divalent lanthanide iodides and their usefulness in organic synthesis. Nouv. J. Chim. 1, 5–7 (1977).
Girard, P., Namy, J. L. & Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of SmI2 and YbI2 and their use as reducing or coupling agents. J. Am. Chem. Soc. 102, 2693–2698 (1980).
Just-Baringo, X. & Procter, D. J. Sm(II)-mediated electron transfer to carboxylic acid derivatives: development of complexity-generating cascades. Acc. Chem. Res. 48, 1263–1275 (2015).
Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 114, 5959–6039 (2014).
Szostak, M., Spain, M. & Procter, D. J. Recent advances in the chemoselective reduction of functional groups mediated by samarium(II) iodide: a single electron transfer approach. Chem. Soc. Rev. 42, 9155–9183 (2013).
Beemelmanns, C. & Reissig, H. U. Samarium diiodide induced ketyl-(het)arene cyclisations towards novel N-heterocycles. Chem. Soc. Rev. 40, 2199–2210 (2011).
Nicolaou, K. C., Ellery, S. P. & Chen, J. S. Samarium diiodide-mediated reactions in total synthesis. Angew. Chem. Int. Ed. 48, 7140–7165 (2009).
Edmonds, D. J., Johnston, D. & Procter, D. J. Samarium(II)-iodide-mediated cyclizations in natural product synthesis. Chem. Rev. 104, 3371–3403 (2004).
Breitler, S. & Carreira, E. M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed. 52, 11168–11171 (2013).
Helm, M., Da Silva, M., Sucunza, D., Findley, T. J. K. & Procter, D. J. Dialdehyde cyclization cascade: an approach to pleuromutilin. Angew. Chem. Int. Ed. 48, 9315–9317 (2009).
Fazakerley, N. J., Helm, M. D. & Procter, D. J. Total synthesis of (+)-pleuromutilin. Chem. Eur. J. 19, 6718–6723 (2013).
Ruscoe, R. E., Fazakerley, N. J., Huang, H., Flitsch, S. & Procter, D. J. Copper-catalyzed double additions and radical cyclization cascades in the re-engineering of the antibacterial pleuromutilin. Chem. Eur. J. 22, 116–119 (2016).
Cha, J. Y., Yeoman, J. T. & Reisman, S. E. Concise total synthesis of (−)-maoecrystal Z. J. Am. Chem. Soc. 133, 14964–14967 (2011).
Parmer, D. et al. Reductive cyclization cascades of lactones using SmI2–H2O. J. Am. Chem. Soc. 133, 2418–2420 (2011).
Parmar, D., Matsubara, H., Price, K., Spain, M. & Procter, D. J. Lactone radical cyclizations and cyclization cascades mediated by SmI2–H2O. J. Am. Chem. Soc. 134, 12751–12757 (2012).
Sautier, B., Lyons, S. E., Webb, M. R. & Procter, D. J. Radical cyclization cascades of unsaturated Meldrum's acid derivatives. Org. Lett. 14, 146–149 (2012).
Huang, H. M. & Procter, D. J. Radical–radical cyclization cascades of barbiturates triggered by electron-transfer reduction of amide-type carbonyls. J. Am. Chem. Soc. 138, 7770–7775 (2016).
Huang, H.-M. & Procter, D. J. Dearomatizing radical cyclizations and cyclization cascades triggered by electron-transfer reduction of amide-type carbonyls. J. Am. Chem. Soc. 139, 1661–1667 (2017).
Nugent, W. A. & RajanBabu, T. V. Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins. J. Am. Chem. Soc. 110, 8561–8562 (1988).
RajanBabu, T. V. & Nugent, W. A. Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis. J. Am. Chem. Soc. 116, 986–997 (1994).
Gansäuer, A., Pierobon, M. & Bluhm, H. Catalytic, highly regio- and chemoselective generation of radicals from epoxides: titanocene dichloride as an electron transfer catalyst in transition metal catalyzed radical reactions. Angew. Chem. Int. Ed. 37, 101–103 (1998).
Gansauer, A., Bluhm, H. & Pierobon, M. Emergence of a novel catalytic radical reaction: titanocene-catalyzed reductive opening of epoxides. J. Am. Chem. Soc. 120, 12849–12859 (1998).
Gansäuer, A. & Narayan, S. Titanocene-catalysed electron transfer-mediated opening of epoxides. Adv. Synth. Catal. 344, 465–475 (2002).
Gansäuer, A., Justicia, J., Fan, C. A., Worgull, D. & Piestert, F. Metal Catalyzed Reductive C–C Bond Formation 25–52 (Springer, 2007).
Morcillo, S. P. et al. Recent applications of Cp2TiCl in natural product synthesis. Org. Chem. Front. 1, 15–33 (2014).
Haruo, Y., Hasegawa, T., Tanaka, H. & Takahashi, T. Total synthesis of (±)-smenospondiol by titanium(III)-mediated tandem radical cyclization. Synlett 2001, 1935–1937 (2001).
Barrero, A. F., Cuerva, J. M., Herrador, M. M. & Valdivia, M. V. A new strategy for the synthesis of cyclic terpenoids based on the radical opening of acyclic epoxypolyenes. J. Org. Chem. 66, 4074–4078 (2001).
Justicia, J. et al. Titanocene-catalyzed cascade cyclization of epoxypolyprenes: straightforward synthesis of terpenoids by free-radical chemistry. Chem. Eur. J. 10, 1778–1788 (2004).
Justicia, J. et al. 7-Endo radical cyclizations catalyzed by titanocene(III). Straightforward synthesis of terpenoids with seven-membered carbocycles. J. Am. Chem. Soc. 127, 14911–14921 (2005).
Rosales, A. et al. Diastereoselective synthesis of (±)-ambrox by titanium(III)-catalyzed radical tandem cyclization. Synlett 27, 369–374 (2016).
Sun, Y. et al. A concise total synthesis of sespenine, a structurally unusual indole terpenoid from Streptomyces. Org. Chem. Front. 3, 368–374 (2016).
Ting, C. P., Xu, G., Zeng, X. & Maimone, T. J. Annulative methods enable a total synthesis of the complex meroterpene berkeleyone J. Am. Chem. Soc. 138, 14868–14871 (2016).
Clark, A. J. Atom transfer radical cyclisation reactions mediated by copper complexes. Chem. Soc. Rev. 31, 1–11 (2002).
Clark, A. J. Copper catalyzed atom transfer radical cyclization reactions. Eur. J. Org. Chem. 2016, 2231–2243 (2016).
Brill, Z. G., Grover, H. K. & Maimone, T. J. Enantioselective synthesis of an ophiobolin sesterterpene via a programmed radical cascade. Science 352, 1078–1082 (2016). A study in which several radical cyclization approaches were investigated to deliver the desired cascade product.
Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).
Tomashenko, O. A. & Grushin, V. V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 111, 4475–4521 (2011).
Studer, A. A ‘renaissance’ in radical trifluoromethylation. Angew. Chem. Int. Ed. 51, 8950–8958 (2012).
Parsons, A. T. & Buchwald, S. L. Copper-catalyzed trifluoromethylation of unactivated olefins. Angew. Chem. Int. Ed. 50, 9120–9123 (2011).
Xu, J. et al. Copper-catalyzed trifluoromethylation of terminal alkenes through allylic C–H bond activation. J. Am. Chem. Soc. 133, 15300–15303 (2011).
Wang, X. et al. Copper-catalyzed C(sp3)–C(sp3) bond formation using a hypervalent iodine reagent: an efficient allylic trifluoromethylation. J. Am. Chem. Soc. 133, 16410–16413 (2011).
Zhu, R. & Buchwald, S. L. Copper-catalyzed oxytrifluoromethylation of unactivated alkenes. J. Am. Chem. Soc. 134, 12462–12465 (2012).
Egami, H., Shimizu, R., Kawamura, S. & Sodeoka, M. Alkene trifluoromethylation coupled with C-C bond formation: construction of trifluoromethylated carbocycles and heterocycles. Angew. Chem. Int. Ed. 52, 4000–4003 (2013).
Lin, J. S. et al. Efficient copper-catalyzed direct intramolecular aminotrifluoromethylation of unactivated alkenes with diverse nitrogen-based nucleophiles. Chem. Eur. J. 20, 1332–1340 (2014).
Huang, L. et al. Stereoselective radical cyclization cascades triggered by addition of diverse radicals to alkynes to construct 6(5)−6–5 fused rings. Org. Lett. 18, 5284–5287 (2016).
Wang, N. et al. Catalytic diverse radical-mediated 1,2-cyanofunctionalization of unactivated alkenes via synergistic remote cyano migration and protected strategies. Org. Lett. 18, 6026–6029 (2016).
Lin, J.-S. et al. A dual-catalytic strategy to direct asymmetric radical aminotrifluoromethylation of alkenes. J. Am. Chem. Soc. 138, 9357–9360 (2016). In this paper copper(I) is proposed to undergo two SET reduction steps to give a copper(III) intermediate that undergoes reductive elimination to regenerate the catalyst.
Lin, J.-S. et al. Catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes to versatile enantioenriched-fluoroalkyl amines. Nat. Commun. 8, 14841 (2017).
Doni, E. & Murphy, J. A. Evolution of neutral organic super-electron-donors and their applications. Chem. Commun. 50, 6073 (2014).
Broggi, J., Terme, T. & Vanelle, P. Organic electron donors as powerful single-electron reducing agents in organic synthesis. Angew. Chem. Int. Ed. 53, 384–413 (2014).
Barham, J. P. et al. KOtBu: a privileged reagent for electron transfer reactions? J. Am. Chem. Soc. 138, 7402–7410 (2016).
Callaghan, O., Lampard, C., Kennedy, A. R. & Murphy, J. A. A novel total synthesis of (±)-aspidospermidine. J. Chem. Soc. Perkin Trans. 1, 995–1002 (1999).
Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).
Hoffmann, U. et al. Light-induced polyene cyclizations via radical cations in micellar medium. J. Am. Chem. Soc. 115, 10358–10359 (1993). A seminal work on photoredox radical cascade cyclizations.
Hurtley, A. E., Lu, Z. & Yoon, T. P. [2+2] Cycloaddition of 1,3-dienes by visible light photocatalysis. Angew. Chem. Int. Ed. 53, 8991–8994 (2014).
Riener, M. & Nicewicz, D. A. Synthesis of cyclobutane lignans via an organic single electron oxidant–electron relay system. Chem. Sci. 4, 2625–2629 (2013).
Wang, L., Wu, F., Chen, J., Nicewicz, D. A. & Huang, Y. Visible-light-mediated [4+2] cycloaddition of styrenes: synthesis of tetralin derivatives. Angew. Chem. Int. Ed. 56, 6896–6900 (2017).
Drew, S. L., Lawrence, A. L. & Sherburn, M. S. Unified total synthesis of the natural products endiandric acid A, kingianic acid E, and kingianins A, D, and F. Chem. Sci. 6, 3886–3890 (2015).
Zeller, M. A., Riener, M. & Nicewicz, D. A. Butyrolactone synthesis via polar radical crossover cycloaddition reactions: diastereoselective syntheses of methylenolactocin and protolichesterinic acid. Org. Lett. 16, 4810–4813 (2014).
Wang, X. & Chen, C. An approach for the synthesis of nakamuric acid. Tetrahedron 71, 3690–3693 (2015).
Ma, Z. et al. Asymmetric syntheses of sceptrin and massadine and evidence for biosynthetic enantiodivergence. Science 346, 219–224 (2014). This paper describes efficient approaches for total synthesis inspired by biosynthetic pathways and using photoredox catalysis.
Stout, E. P., Wang, Y. G., Romo, D. & Molinski, T. F. Pyrrole aminoimidazole alkaloid metabiosynthesis with marine sponges Agelas conifera and Stylissa caribica. Angew. Chem. Int. Ed. 51, 4877–4881 (2012).
Davies, J., Booth, S. G., Essafi, S., Dryfe, R. A. W. & Leonori, D. Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed. 54, 14017–14021 (2015).
Davies, J., Svejstrup, T. D., Fernandez Reina, D., Sheikh, N. S. & Leonori, D. Visible-light-mediated synthesis of amidyl radicals: transition-metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc. 138, 8092–8095 (2016).
Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).
Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).
Choi, G. J. & Knowles, R. R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 137, 9226–9229 (2015).
Wang, X. et al. A radical cascade enabling collective syntheses of natural products. Chem 2, 803–816 (2017).
Staveness, D., Bosque, I. & Stephenson, C. R. J. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res. 49, 2295–2306 (2016).
Yoon, T. P. Photochemical stereocontrol using tandem photoredox-chiral lewis acid catalysis. Acc. Chem. Res. 49, 2307–2315 (2016).
Goddard, J. P., Ollivier, C. & Fensterbank, L. Photoredox catalysis for the generation of carbon centered radicals. Acc. Chem. Res. 49, 1924–1936 (2016).
Tucker, J. W., Narayanam, J. M. R., Krabbe, S. W. & Stephenson, C. R. J. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org. Lett. 12, 368–371 (2010).
Tucker, J. W. & Stephenson, C. R. J. Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. Org. Lett. 13, 5468–5471 (2011).
Deng, G. B. et al. Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis. Angew. Chem. Int. Ed. 52, 1535–1538 (2013).
Douglas, J. J., Albright, H., Sevrin, M. J., Cole, K. P. & Stephenson, C. R. Visible-light-mediated radical Smiles rearrangement and its application to the synthesis of a difluoro-substituted spirocyclic ORL-1 antagonist. Angew. Chem., Int. Ed. 54, 14898–14902 (2015).
Noto, N., Miyazawa, K., Koike, T. & Akita, M. Anti-diastereoselective synthesis of CF3-containing spirooxazolines and spirooxazines via regiospecific trifluoromethylative spirocyclization by photoredox catalysis. Org. Lett. 17, 3710–3713 (2015).
Cannillo, A., Schwantje, T. R., Bégin, M., Barabé, F. & Barriault, L. Gold-catalyzed photoredox C(sp2) cyclization: formal synthesis of (±)-triptolide. Org. Lett. 18, 2592–2595 (2016).
Petersen, W. F., Taylor, R. J. K. & Donald, J. R. Photoredox-catalyzed reductive carbamoyl radical generation: a redox-neutral intermolecular addition–cyclization approach to functionalized 3,4-dihydroquinolin-2-ones. Org. Lett. 19, 874–877 (2017).
Lu, Z., Shen, M. & Yoon, T. P. [3+2] Cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc. 133, 1162–1164 (2011).
Amador, A. G., Sherbrook, E. M. & Yoon, T. P. Enantioselective photocatalytic [3+2] cycloadditions of aryl cyclopropyl ketones. J. Am. Chem. Soc. 138, 4722–4725 (2016).
Müller, C., Bauer, A. & Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. 48, 6640–6642 (2009).
Müller, C. et al. Enantioselective intramolecular [2+2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc. 133, 16689–16697 (2011).
Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science 342, 840–843 (2013).
Guo, H., Herdtweck, E. & Bach, T. Enantioselective Lewis acid catalysis in intramolecular [2+2] photocycloaddition reactions of coumarins. Angew. Chem. Int. Ed. 49, 7782–7785 (2010).
Du, J. et al. A dual-catalysis approach to enantioselective [2+2] photocycloadditions using visible light. Science 344, 392–396 (2014). This paper describes enantioselective photoredox [2+2] cycloadditions in which a simple ligand modification allows the diastereoselectivity of the processes to be switched.
Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem.http://dx.doi.org/10.1038/nchem.2841 (2017). This paper describes enantioselective SmI2-mediated radical cyclization cascades that use a simple recyclable chiral ligand.
Acknowledgements
The authors thank the Engineering and Physical Sciences Research Council (EPSRC; studentship to M.P. and an Established Career Fellowship to D.J.P. (Grant No. EP/M005062/1) and the University of Manchester (President's Scholarship to H.H.).
Author information
Authors and Affiliations
Contributions
M.P. and H.H. researched data for the Review. All authors contributed to the discussion, writing and editing of the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Glossary
- Single electron transfer
-
(SET). Step in a chemical reaction characterized by donation or removal of an electron.
- Captodative stabilization
-
Increased stability of a carbon-centred radical resulting from the combined effect of electron-withdrawing and electron-donating groups attached to the radical centre.
- Proton-coupled electron transfer
-
(PCET). Class of chemical reactions that involves the transfer of an electron and proton in a concerted elementary step.
Rights and permissions
About this article
Cite this article
Plesniak, M., Huang, HM. & Procter, D. Radical cascade reactions triggered by single electron transfer. Nat Rev Chem 1, 0077 (2017). https://doi.org/10.1038/s41570-017-0077
Published:
DOI: https://doi.org/10.1038/s41570-017-0077
This article is cited by
-
Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp3)−H bonds
Nature Communications (2024)
-
Visible light-induced chemoselective 1,2-diheteroarylation of alkenes
Nature Communications (2024)
-
Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors
Nature Communications (2023)
-
Design principles of the use of alkynes in radical cascades
Nature Reviews Chemistry (2023)
-
Alkene 1,1-difunctionalizations via organometallic-radical relay
Nature Catalysis (2023)