Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mapping and elucidating the function of modified bases in DNA

Subjects

An Erratum to this article was published on 11 October 2017

Abstract

Chemically modified bases exist naturally in genomic DNA. Research into these bases has been invigorated by the discovery of several modified bases in the mammalian genome, in particular 5-methylcytosine and its oxidized derivatives, such as 5-(hydroxymethyl)cytosine and 5-formylcytosine, as well as the enzymes that form and process them, such as the DNA methyltransferases and the ten-eleven translocation enzymes. In this Review, we provide an overview of natural modified bases that have been reported in DNA, our current knowledge of their roles, and the techniques that have enabled us to probe their functions. Analytical methods have been invaluable in helping to advance this field. For example, chemical and enzymatic methods have provided the means to detect and decode modified bases, giving rise to an expanding array of sequencing approaches. Advanced liquid chromatography and tandem mass spectrometry have provided the means to detect and quantify modified bases with very high sensitivity, increasing the prospect of discovering unknown modifications. It is already evident that natural modified DNA bases and their associated enzymology are of fundamental importance to normal biology and to disease. The next decade promises to yield more insights, discoveries and applications from this burgeoning field of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Watson–Crick base pairing and DNA grooves.
Figure 2: Overview of modified DNA bases.
Figure 3: The active demethylation pathway.
Figure 4: Methods for sequencing modified cytosine bases.

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953). The first report on the double-helical structure of DNA and the pairing of GC and AT bases.

    Article  CAS  PubMed  Google Scholar 

  2. Klug, A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 43, 1–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Dervan, P. B. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. 9, 2215–2235 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Ruppel, W. G. Zur chemie der tuberkelbacillen [German]. Z. Physiol. Chem. 26, 218–232 (1898).

    Article  CAS  Google Scholar 

  5. Gommers-Ampt, J. H. & Borst, P. Hypermodified bases in DNA. FASEB J. 9, 1034–1042 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, T. B. & Coghill, R. D. Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the Tubercle bacillus. J. Am. Chem. Soc. 47, 2838–2844 (1925).

    Article  CAS  Google Scholar 

  7. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Jeltsch, A. Molecular enzymology of mammalian DNA methyltransferases. Curr. Top. Microbiol. Immunol. 301, 203–225 (2006).

    CAS  PubMed  Google Scholar 

  9. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Wyatt, G. R. Occurrence of 5-methyl-cytosine in nucleic acids. Nature 166, 237–238 (1950).

    Article  CAS  PubMed  Google Scholar 

  12. Bird, A. DNA methylation patterns and epigenetic memory DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Deaton, A. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011). A comprehensive review explaining the concept and importance of CGIs as regulatory features of the genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wachter, E. et al. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. eLife 3, e03397 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Krebs, A. R., Dessus-Babus, S., Burger, L. & Schubeler, D. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. eLife 3, e04094 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bogdanović, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–426 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cortázar, D. et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470, 419–423 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Dawlaty, M. M. et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell 29, 102–111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hahn, M. A., Szabo, P. E. & Pfeifer, G. P. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics 104, 314–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem. Int. Ed. 50, 7008–7012 (2011). Provides the first evidence of the existence of 5fC in ES cells.

    Article  CAS  Google Scholar 

  24. Booth, M. J., Marsico, G., Bachman, M., Beraldi, D. & Balasubramanian, S. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat. Chem. 6, 435–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su, M. et al. 5-Formylcytosine could be a semipermanent base in specific genome sites. Angew. Chem. Int. Ed. 55, 11797–11800 (2016).

    Article  CAS  Google Scholar 

  26. McInroy, G. R. et al. in Epigenetic Mechanisms in Cellular Reprogramming (eds Meissner, A. & Walter, J. ) 167–191 (Springer, 2015).

    Book  Google Scholar 

  27. Iurlaro, M. et al. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Genome Biol. 17, 141 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bachman, M. et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6, 1049–1055 (2014). Describes the timing of the formation and metabolism of 5mC and 5hmC in genomic DNA using LC–MS/MS and stable isotopes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachman, M. et al. 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, D. et al. MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Res. 45, 2396–2407 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  34. Sato, K., Kawamoto, K., Shimamura, S., Ichikawa, S. & Matsuda, A. An oligodeoxyribonucleotide containing 5-formyl-2′-deoxycytidine (fC) at the CpG site forms a covalent complex with DNA cytosine-5 methyltransferases (DNMTs). Bioorg. Med. Chem. Lett. 26, 5395–5398 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Thalhammer, A., Hansen, A. S., El-Sagheer, A. H., Brown, T. & Schofield, C. J. Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation. Chem. Commun. 47, 5325–5327 (2011).

    Article  CAS  Google Scholar 

  36. Raiber, E.-A. et al. 5-Formylcytosine alters the structure of the DNA double helix. Nat. Struct. Mol. Biol. 22, 44–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Hardwick, J. S. et al. 5-Formylcytosine does not change the global structure of DNA. Nat. Struct. Mol. Biol. 24, 544–552 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ngo, T. T. M. et al. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat. Commun. 7, 10813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choy, J. S. et al. DNA methylation increases nucleosome compaction and rigidity. J. Am. Chem. Soc. 132, 1782–1783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. Y. & Lee, T.-H. Effects of DNA methylation on the structure of nucleosomes. J. Am. Chem. Soc. 134, 173–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Mendonca, A., Chang, E. H., Liu, W. & Yuan, C. Hydroxymethylation of DNA influences nucleosomal conformation and stability in vitro. Biochim. Biophys. Acta 1839, 1323–1329 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Collings, C. K., Waddell, P. J. & Anderson, J. N. Effects of DNA methylation on nucleosome stability. Nucleic Acids Res. 41, 2918–2931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galashevskaya, A. et al. A robust, sensitive assay for genomic uracil determination by LC/MS/MS reveals lower levels than previously reported. DNA Repair (Amst.) 12, 699–706 (2013).

    Article  CAS  Google Scholar 

  44. Krokan, H. E., Drabløs, F. & Slupphaug, G. Uracil in DNA — occurrence, consequences and repair. Oncogene 21, 8935–8948 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Conticello, S. G. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9, 229 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Santos, F. et al. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin 6, 39 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014). Details the use of stable isotopes and LC–MS/MS to elucidate the mechanism for 5hmU formation in DNA.

    Article  CAS  PubMed  Google Scholar 

  48. Masaoka, A. et al. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 42, 5003–5012 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Bauer, N. C., Corbett, A. H. & Doetsch, P. W. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 43, 10083–10101 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo, J. U., Su, Y., Zhong, C., Ming, G. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nabel, C. S. et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8, 751–758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pais, J. E. et al. Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proc. Natl Acad. Sci. USA 112, 4316–4321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, S. et al. Quantitative mass spectrometry-based analysis of β-d-glucosyl-5-hydroxymethyluracil in genomic DNA of Trypanosoma brucei. J. Am. Soc. Mass Spectrom. 25, 1763–1770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bullard, W., Lopes Da Rosa-Spiegler, J., Liu, S., Wang, Y. & Sabatini, R. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J. Biol. Chem. 289, 20273–20282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawasaki, F. et al. Genome-wide mapping of 5-hydroxymethyluracil in the eukaryote parasite Leishmania. Genome Biol. 18, 23 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cliffe, L. J., Siegel, T. N., Marshall, M., Cross, G. A. M. & Sabatini, R. Two thymidine hydroxylases differentially regulate the formation of glucosylated DNA at regions flanking polymerase II polycistronic transcription units throughout the genome of Trypanosoma brucei. Nucleic Acids Res. 38, 3923–3935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Luenen, H. G. A. M. et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 150, 909–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hazelbaker, D. Z. & Buratowski, S. Base J: blocking RNA polymerase's way. Curr. Biol. 22, R960–R962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reynolds, D. et al. Histone H3 variant regulates RNA polymerase II transcription termination and dual strand transcription of siRNA loci in Trypanosoma brucei. PLoS Genet. 12, e1005758 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Engel, J. D. & von Hippel, P. H. Effects of methylation on the stability of nucleic acid conformations. Studies at the polymer level. J. Biol. Chem. 253, 927–934 (1978).

    CAS  PubMed  Google Scholar 

  61. Ratel, D., Ravanat, J.-L., Berger, F. & Wion, D. N6-methyladenine: the other methylated base of DNA. Bioessays 28, 309–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rae, P. M. M. & Steele, R. E. Modified bases in the DNAs of unicellular eukaryotes: an examination of distributions and possible roles, with emphasis on hydroxymethyluracil in dinoflagellates. Biosystems 10, 37–53 (1978).

    Article  CAS  PubMed  Google Scholar 

  63. Greer, E. L. et al. DNA methylation on N6-adenine in C. elegans. Cell 161, 868–878 (2015). Describes the discovery, quantitation and mapping of 6mA in the model animal C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, G. et al. N6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2017). Reports the discovery, quantitation and mapping of 6mA in the model animal D. melanogaster.

    Article  CAS  Google Scholar 

  65. Koziol, M. J. et al. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat. Struct. Mol. Biol. 23, 24–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, T. P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fu, Y. et al. N6-Methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2017).

    Article  CAS  Google Scholar 

  68. Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 816–828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawarada, L. et al. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res. 45, 7401–7415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Müller, T. A., Tobar, M. A., Perian, M. N. & Hausinger, R. P. Biochemical characterization of AP lyase and m6A demethylase activities of human AlkB homologue 1 (ALKBH1). Biochemistry 56, 1899–1910 (2017).

    Article  PubMed  CAS  Google Scholar 

  71. Liu, J. et al. Abundant DNA 6 mA methylation during early embryogenesis of zebrafish and pig. Nat. Commun. 7, 13052 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schiffers, S. et al. Quantitative LC–MS provides no evidence for m6dA or m4dC in the genome of mouse embryonic stem cells and tissues. Angew. Chem. Int. Ed. 56, 1–5 (2017).

    Article  CAS  Google Scholar 

  73. Booth, M. J., Raiber, E.-A. & Balasubramanian, S. Chemical methods for decoding cytosine modifications in DNA. Chem. Rev. 115, 2240–2254 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, Z. et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 3, 567–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Horton, J. R. et al. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA. Nucleic Acids Res. 42, 7947–7959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5, e8888 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012). Describes the development of a sequencing method that, for the first time, enabled the study of the dynamics and sequence context of 5hmC in mES cells at single-base resolution.

    Article  CAS  PubMed  Google Scholar 

  79. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, C.-X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanaka, K. & Okamoto, A. Degradation of DNA by bisulfite treatment. Bioorg. Med. Chem. Lett. 17, 1912–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. McInroy, G. R. et al. Enhanced methylation analysis by recovery of unsequenceable fragments. PLoS ONE 11, e0152322 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Miura, F., Enomoto, Y., Dairiki, R. & Ito, T. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 40, e136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014). Details the adaptation of the BS-seq method to single cells and reveals 5mC heterogeneity within cell populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayashi, G. et al. Base-resolution analysis of 5-hydroxymethylcytosine by one-pot bisulfite-free chemical conversion with peroxotungstate. J. Am. Chem. Soc. 138, 14178–14181 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feng, Z. et al. Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic. PLoS Comput. Biol. 9, e1002935 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song, C.-X. et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat. Methods 9, 75–77 (2012).

    Article  CAS  Google Scholar 

  89. Chavez, L. et al. Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea. Proc. Natl Acad. Sci. USA 111, E5149–E5158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Genest, P. A. et al. Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing. Nucleic Acids Res. 43, 2102–2115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wanunu, M. et al. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Laszlo, A. H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl Acad. Sci. USA 110, 18904–18909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Hoenen, T. et al. Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerg. Infect. Dis. 22, 331–334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012).

    Article  PubMed  CAS  Google Scholar 

  99. Liu, L., De, S. & Michor, F. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat. Commun. 4, 1502 (2013).

    Article  PubMed  CAS  Google Scholar 

  100. Raiber, E.-A. et al. Base resolution maps reveal the importance of 5-hydroxymethylcytosine in a human glioblastoma. Genomic Med. 2, 6 (2017).

    Article  CAS  Google Scholar 

  101. Tomkova, M., McClellan, M., Kriaucionis, S. & Schuster-Boeckler, B. 5-Hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. eLife 5, e17082 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Baylin, S. B. et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet. 10, 687–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Pfeifer, G. P., Xiong, W., Hahn, M. A. & Jin, S.-G. The role of 5-hydroxymethylcytosine in human cancer. Cell Tissue Res. 356, 631–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mou, H., Kennedy, Z., Anderson, D. G., Yin, H. & Xue, W. Precision cancer mouse models through genome editing with CRISPR–Cas9. Genome Med. 7, 53 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kim, Y.-H. et al. TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J. Clin. Pathol. 64, 850–852 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Klungland, A. et al. 5-Formyluracil and its nucleoside derivatives confer toxicity and mutagenicity to mammalian cells by interfering with normal RNA and DNA metabolism. Toxicol. Lett. 119, 71–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Djuric, Z. et al. Levels of 5-hydroxymethyl-2′-deoxyuridine in DNA from blood as a marker of breast cancer. Cancer 77, 691–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Djuric, Z. et al. Levels of 5-hydroxymethyl-2′-deoxyuridine in DNA from blood of women scheduled for breast biopsy. Cancer Epidemiol. Biomarkers Prev. 10, 147–149 (2001).

    CAS  PubMed  Google Scholar 

  114. Rebhandl, S., Huemer, M., Greil, R. & Geisberger, R. AID/APOBEC deaminases and cancer. Oncoscience 2, 320–333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pfeifer, G. P. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281 (2006).

    CAS  PubMed  Google Scholar 

  116. Stresemann, C. & Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Stein, E. et al. Clinical safety and activity in a phase I trial of AG-221, a first in class, potent inhibitor of the IDH2-mutant protein, in patients with IDH2 mutant positive advanced hematologic malignancies [abstract]. Cancer Res. 74 (Suppl.), CT103 (2014).

    Google Scholar 

  118. Kang, J. S., Meier, J. L. & Dervan, P. B. Design of sequence-specific DNA binding molecules for DNA methyltransferase inhibition. J. Am. Chem. Soc. 136, 3687–3694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kubik, G. & Summerer, D. TALEored epigenetics: a DNA-binding scaffold for programmable epigenome editing and analysis. ChemBioChem 17, 975–980 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Borst, P. & Sabatini, R. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 62, 235–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Iyer, L. M., Tahiliani, M., Rao, A. & Aravind, L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698–1710 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). The first report on the formation of 5hmC in mammalian genomes from 5mC by the TET family of enzymes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Heather, J. M. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Head, S. R. et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56, 61–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Balasubramanian, S. Sequencing nucleic acids: from chemistry to medicine. Chem. Commun. 47, 7281–7286 (2011).

    Article  CAS  Google Scholar 

  127. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Taghizadeh, K. et al. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat. Protoc. 3, 1287–1298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 5, e15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gackowski, D. et al. Accurate, direct, and high-throughput analyses of a broad spectrum of endogenously generated DNA base modifications with isotope-dilution two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry: possible clinical implication. Anal. Chem. 88, 12128–12136 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Hong, H. & Wang, Y. Derivatization with Girard reagent T combined with LC-MS/MS for the sensitive detection of 5-formyl-2′-deoxyuridine in cellular DNA. Anal. Chem. 79, 322–326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Munzel, M. et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew. Chem. Int. Ed. 49, 5375–5377 (2010).

    Article  CAS  Google Scholar 

  133. Kraus, T. F. J. et al. Low values of 5-hydroxymethylcytosine (5hmC), the ‘sixth base,’ are associated with anaplasia in human brain tumors. Int. J. Cancer 131, 1577–1590 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Wagner, M. et al. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues. Angew. Chem. Int. Ed. 54, 12511–12514 (2015).

    Article  CAS  Google Scholar 

  135. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Song, C.-X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Robertson, A. B., Dahl, J. A., Ougland, R. & Klungland, A. Pull-down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads. Nat. Protoc. 7, 340–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Sérandour, A. A. et al. Single-CpG resolution mapping of 5-hydroxymethylcytosine by chemical labeling and exonuclease digestion identifies evolutionarily unconserved CpGs as TET targets. Genome Biol. 17, 56 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Sun, Z. et al. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Mol Cell. 57, 750–761 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Raiber, E.-A. et al. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 13, R69 (2012). Provides the first genome-wide map of 5fC in ES cells and demonstrates that the 5fC pattern is TDG-dependent.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wu, H., Wu, X., Shen, L. & Zhang, Y. Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat. Biotechnol. 32, 1231–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhu, C. et al. Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20, 720–731.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Lu, X. et al. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res. 25, 386–389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Balasubramanian laboratory is supported by core funding from Cancer Research UK (C14303/A17197). S.B. is a senior investigator of the Wellcome Trust (Grant No. 099232/z/12/z).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Shankar Balasubramanian.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Transcription factors

Proteins that bind to a specific DNA sequence to control the transcription of the genetic information from DNA to RNA.

Restriction methylation

DNA methylation that protects bacteria from restriction endonuclease enzymes, providing a defence mechanism against invasion by bacteriophages and viruses.

Promoters

Regions of DNA that are located near to transcription start sites and control transcription initiation.

Retrotransposons

Genetic elements that are transcribed into RNA, then reverse-transcribed back into DNA and inserted into the genome.

Genomic imprinting

An epigenetic marking of one copy of the gene (from the mother or father) that ensures gene expression in a parent-of-origin-specific manner.

Transposon silencing

Gene silencing of transposons by epigenetic mechanisms, including DNA methylation and the effect of small non-coding RNAs, which prevents transcription and ensures genome stability.

Histone modifications

Post-translational chemical modifications of amino acid residues on a histone.

Chromatin-remodelling proteins

Proteins that control access to the genetic information by either inducing histone modifications or using energy to alter histone–DNA interactions.

CpG islands

(CGIs). Regions with high cytosine-phosphate-guanine (CpG) dinucleotide density.

Pluripotent stem cells

Cells that can differentiate into any other tissue of the body.

Enhancer regions

Regulatory regions of the genome that are marked by histone modifications and enhance the transcription of their associated genes when bound to transcription factors.

Base excision repair

(BER). A cellular mechanism that removes small base lesions, caused by mismatched or modified DNA bases, from the DNA.

Histone octamer

An eight-protein complex of two histone H2A–H2B dimers and two histone H3–H4 dimers that together form the core of the nucleosome.

B cells

A type of white blood cell that is fundamental to the adaptive immune system.

Class-switch recombination

A process whereby B cells rearrange parts of the immunoglobulin heavy chain locus to generate antibodies with different properties.

Telomeric regions

Repetitive nucleotide sequences that protect the ends of chromosomes.

Repetitive elements

Sequences that occur multiple times throughout the genome.

RNA polymerase II

An enzyme that catalyses the transcription of DNA to RNA.

Transfer RNA

An adaptor RNA and amino acid carrier that helps to decode mRNA for translation into the synthesis of proteins.

Restriction endonucleases

Enzymes that cut DNA at endogenous phosphodiester bonds.

β-Elimination

DNA cleavage at the phosphodiester bond resulting in the elimination of the 3′-phosphate residue.

δ-Elimination

DNA cleavage at the phosphodiester bond resulting in the elimination of the 5′-phosphate residue.

Clustered regularly interspaced short palindromic repeats (CRISPR) systems

Genome-editing systems, such as CRISPR–Cas9, that rely on a bacterial virus-defence mechanism involving repetitive DNA sequences that contain snippets of viral DNA. By manipulating CRISPR systems, DNA can be cut at a desired location, allowing genes to be removed or added.

Transcription activator-like effectors

(TALEs). Proteins that can be programmed to target specific DNA sequences in the genome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raiber, EA., Hardisty, R., van Delft, P. et al. Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1, 0069 (2017). https://doi.org/10.1038/s41570-017-0069

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing