Abstract
Since the first report of their isolation in 2007, magnesium(I) dimers have transitioned from being chemical curiosities to versatile reducing agents that are used by an ever-increasing number of synthetic chemists. Magnesium(I) dimers have a unique combination of advantageous properties that sees them used in the syntheses of new, and often applicable, compound types that are impossible or difficult to access using conventional reductants. This Perspective describes the synthesis and properties of these dimers, and provides notable examples of their application in organic and inorganic synthesis. Magnesium(I) dimers, especially complexes of β-diketiminates, may now be viewed as widely applicable, quasi-universal reducing agents with a promising future in synthetic chemistry. It is hoped that the reader will develop a familiarity with these reagents, such that the complexes can be successfully used in many synthetic programmes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Open questions in low oxidation state group 2 chemistry
Communications Chemistry Open Access 06 November 2020
-
Anion stabilised hypercloso-hexaalane Al6H6
Nature Communications Open Access 06 August 2018
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).
Szostak, M., Spain, M. & Procter, D. J. Recent advances in the chemoselective reduction of functional groups mediated by samarium(II) iodide: a single electron transfer approach. Chem. Soc. Rev. 42, 9155–9183 (2013).
Cintas, P. in Activated metals in organic synthesis (CRC, 1993).
Evans, W. J. Perspectives in reductive lanthanide chemistry. Coord. Chem. Rev. 206–207, 263–283 (2000).
Szostak, M., Spain, M. & Procter, D. J. Determination of the effective redox potentials of SmI2, SmBr2, SmCl2, and their complexes with water by reduction of aromatic hydrocarbons. Reduction of anthracene and stilbene by samarium(II) iodide–water complex. J. Org. Chem. 79, 2522–2537 (2014).
Emsley, J. The elements (Clarendon, 1991).
Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).
Boutland, A. J., Dange, D., Stasch, A., Maron, L. & Jones, C. Two-coordinate magnesium(I) dimers stabilized by super bulky amido ligands. Angew. Chem. Int. Ed. 55, 9239–9243 (2016).
Köppe, R., Henke, P. & Schnöckel, H. MgCl and Mg2Cl2: from theoretical and thermodynamic considerations to spectroscopy and chemistry of species with Mg–Mg bonds. Angew. Chem. Int. Ed. 47, 8740–8744 (2008).
Liu, Y., Li, S., Yang, X.-J., Yang, P. & Wu, B. Magnesium–magnesium bond stabilized by a doubly reduced α-diimine: synthesis and structure of [K(THF)3]2[LMg–MgL] (L = [(2,6-iPr2C6H3)NC(Me)]22−). J. Am. Chem. Soc. 131, 4210–4211 (2009).
Boutland, A. J., Pernik, I., Stasch, A. & Jones, C. Magnesium(I) dimers bearing tripodal diimine–enolate ligands: proficient reagents for the controlled reductive activation of CO2 and SO2 . Chem. Eur. J. 21, 15749–15758 (2015).
Stasch, A. & Jones, C. Stable dimeric magnesium(I) compounds: from chemical landmarks to versatile reagents. Dalton Trans. 40, 5659–5672 (2011).
Jones, C. & Stasch, A. Stable molecular magnesium(I) dimers: a fundamentally appealing yet synthetically versatile compound class. Top. Organomet. Chem. 45, 73–102 (2013).
Jones, C., Mountford, P., Stasch, A. & Blake, M. P. in Molecular Metal–Metal Bonds. Compounds, Synthesis, Properties (ed. Liddle, S. T. ) 23–46 (Wiley, 2015).
Bonyhady, S. J. et al. β-Diketiminate-stabilized magnesium(I) dimers and magnesium(II) hydride complexes: synthesis, characterization, adduct formation, and reactivity studies. Chem. Eur. J. 16, 938–955 (2010).
Lalrempuia, R. et al. Activation of CO by hydrogenated magnesium(I) dimers: sterically controlled formation of ethenediolate and cyclopropanetriolate complexes. J. Am. Chem. Soc. 137, 8944–8947 (2015).
Overgaard, J., Jones, C., Stasch, A. & Iversen, B. B. Experimental electron density study of the Mg–Mg bonding character in a magnesium(I) dimer. J. Am. Chem. Soc. 131, 4208–4209 (2009).
Green, S. P., Jones, C. & Stasch, A. Stable adducts of a dimeric magnesium(I) compound. Angew. Chem. Int. Ed. 47, 9079–9083 (2008).
Platts, J. A., Overgaard, J., Jones, C., Iversen, B. B. & Stasch, A. First experimental characterisation of a non-nuclear attractor in a dimeric magnesium(I) compound. J. Phys. Chem. A 115, 194–200 (2011).
Wu, L.-C., Jones, C., Stasch, A., Platts, J. A. & Overgaard, J. Non-nuclear attractor in a molecular compound under external pressure. Eur. J. Inorg. Chem. 2014, 5536–5540 (2014).
Holm, T. & Crossland, I. in Grignard Reagents: New Developments Ch.1 (ed. Richley, H. G. Jr. ) (Wiley, 2000).
Reike, R. D. Chemical Synthesis Using Highly Reactive Metals Ch.4 (Wiley, 2017).
Rausch, M. D., McEwen, W. E. & Kleinberg, J. Reductions involving unipositive magnesium. Chem. Rev. 57, 417–437 (1957).
Jones, C., McDyre, L., Murphy, D. M. & Stasch, A. Magnesium(I) reduction of benzophenone and anthracene: first structural characterisation of a magnesium ketyl. Chem. Commun. 46, 1511–1513 (2010).
Gomberg, M. & Bachmann, W. E. The reducing action of a mixture of magnesium iodide (or bromide) and magnesium on aromatic ketones. Probable formation of magnesium subiodide (or subbromide). J. Am. Chem. Soc. 49, 236–257 (1927).
Bonyhady, S. J., Green, S. P., Jones, C., Nembenna, S. & Stasch, A. A dimeric magnesium(I) compound as a facile two-center/two-electron reductant. Angew. Chem. Int. Ed. 48, 2973–2977 (2009).
Lalrempuia, R., Stasch, A. & Jones, C. The reductive disproportionation of CO2 using a magnesium(I) complex: analogies with low valent f-block chemistry. Chem. Sci. 4, 4383–4388 (2013).
Moilanen, J. O., Day, B. M., Pugh, T. & Layfield, R. A. Open-shell doublet character in a hexaazatrinaphthylene trianion complex. Chem. Commun. 51, 11478–11481 (2015).
Ma, M., Stasch, A. & Jones, C. Magnesium(I) dimers as reagents for the reductive coupling of isonitriles and nitriles. Chem. Eur. J. 18, 10669–10676 (2012).
Fohlmeister, L. & Jones, C. Low-valent iron complexes stabilised by a bulky guanidinate ligand: synthesis and reactivity studies. Aust. J. Chem. 67, 1011–1016 (2014).
Evans, W. J. & Drummond, D. K. Reactivity of isocyanides with (C5Me5)2Sm(THF)2: synthesis and structure of trimeric [(C5Me5)2Sm(CNC6H11)(μ-CN)]3 . Organometallics 7, 797–802 (1988).
Bakewell, C., White, A. J. P. & Crimmin, M. R. Addition of carbon–fluorine bonds to a Mg(I)–Mg(I) bond: an equivalent of Grignard formation in solution. J. Am. Chem. Soc. 138, 12763–12766 (2016).
Kefalidis, C. E., Stasch, A., Jones, C. & Maron, L. On the mechanism of the reaction of a magnesium(I) complex with CO2. A concerted type of pathway. Chem. Commun. 50, 12318–12321 (2014).
Anker, M. D., Hill, M. S., Lowe, J. P. & Mahon, M. F. Alkaline-earth-promoted CO homologation and reductive catalysis. Angew. Chem. Int. Ed. 54, 10009–10011 (2015).
Power, P. P. Main group elements as transition metals. Nature 463, 171–177 (2010).
Asay, M., Jones, C. & Driess, M. N-Heterocyclic carbene-analogues with low-valent group 13 and group 14 elements: syntheses, structures and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).
Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).
Stasch, A. Synthesis of a dimeric magnesium(I) compound by an MgI/MgII redox reaction. Angew. Chem. Int. Ed. 53, 10200–10203 (2014).
Braunschweig, H., Damme, A., Dewhurst, R. D. & Vargas, A. Bond-strengthening π backdonation in a transition-metal π-diborene complex. Nat. Chem. 5, 115–121 (2013).
Bonhady, S. J. et al. Synthesis of a stable adduct of dialane(4) (Al2H4) via hydrogenation of a magnesium(I) dimer. Nat. Chem. 2, 865–869 (2010).
Wang, X., Andrews, L., Tam, S., DeRose, M. E. & Fajardo, M. E. Infrared spectra of aluminum hydrides in solid hydrogen: Al2H4 and Al2H6 . J. Am. Chem. Soc. 125, 9218–9228 (2003).
Bonhady, S. J., Holzmann, N., Frenking, G., Stasch, A. & Jones, C. Synthesis, characterisation and computational analysis of the dialanate dianion, [H3Al–AlH3]2−: a valence isoelectronic analogue of ethane. Angew. Chem. Int. Ed., 56, 8527–8531 (2017).
Gish, J. T., Popov, I. A. & Boldyrev, A. I. Homocatenation of aluminum: alkane-like structures of Li2Al2H6 and Li3Al3H8 . Chem. Eur. J. 21, 5307–5310 (2015).
Jones, C., Bonhady, S. J., Nembenna, S. & Stasch, A. New routes to soluble magnesium amidoborane complexes. Eur. J. Inorg. Chem. 2012, 2596–2601 (2012).
Lee, V. Y. & Sekiguchi, A. Organometallic Compounds of Low-Valent Si, Ge, Sn and Pb: From Phantom Species to Stable Compounds (Wiley, 2010).
Sidiropoulos, A., Jones, C., Stasch, A., Klein, S. & Frenking, G. N-Heterocyclic carbene stabilized digermanium(0). Angew. Chem. Int. Ed. 48, 9701–9704 (2009).
Jones, C., Sidiropoulos, A., Holzmann, N., Frenking, G. & Stasch, A. An N-heterocyclic carbene adduct of diatomic tin, :Sn=Sn:. Chem. Commun. 48, 9855–9857 (2012).
Wang, Y. Z. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).
Jones, C., Bonhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. The preparation, characterization and theoretical analysis of group 14 element(I) dimers: a case study of magnesium(I) compounds as reducing agents in inorganic synthesis. Inorg. Chem. 50, 12315–12325 (2011).
Choong, S. L., Schenk, C., Stasch, A., Dange, D. & Jones, C. Contrasting reductions of group 14 metal(II) chloride complexes: synthesis of the first β-diketiminato tin(I) dimer. Chem. Commun. 48, 2504–2506 (2012).
Rit, A., Campos, J., Niu, H. & Aldridge, S. A stable heavier group 14 analogue of vinylidene. Nat. Chem. 8, 1022–1026 (2016).
Sindlinger, C. P., Aicher, F. S. W. & Wesemann, L. Cationic stannylenes: in situ generation and NMR spectroscopic characterization. Inorg. Chem. 56, 548–560 (2017).
Hadlington, T. J., Hermann, M., Li, J., Frenking, G. & Jones, C. Activation of H2 by a multiply bonded amido–digermyne: evidence for the formation of a hydrido–germylene. Angew. Chem. Int. Ed. 52, 10199–10203 (2013).
Li, J., Schenk, C., Goedecke, C., Frenking, G. & Jones, C. A digermyne with a Ge–Ge single bond that activates dihydrogen in the solid state. J. Am. Chem. Soc. 133, 18622–18625 (2011).
Hermann, M., Goedecke, C., Jones, C. & Frenking, G. Reaction pathways for addition of H2 to amido-ditetrylynes, R2N–EE–NR2 (E = Si, Ge, Sn). A theoretical study. Organometallics 32, 6666–6673 (2013).
Li, J., Hermann, M., Frenking, G. & Jones, C. The facile reduction of CO2 to CO with an amido-digermyne. Angew. Chem. Int. Ed. 51, 8611–8614 (2012).
Hadlington, T. J. et al. The reactivity of amido-digermynes, LGeGeL (L = bulky amide), towards olefins and related molecules: facile reduction, C–H activation and reversible cycloaddition of unsaturated substrates. Organometallics 34, 3175–3185 (2015).
Hadlington, T. J., Hermann, M., Frenking, G. & Jones, C. Two-coordinate group 14 element(II) hydrides as reagents for the facile, and sometimes reversible, hydrogermylation/hydrostannylation of unactivated alkenes and alkynes. Chem. Sci. 6, 7249–7257 (2015).
Hadlington, T. J., Hermann, M., Frenking, G. & Jones, C. Low coordinate germanium(II) and tin(II) hydride complexes: efficient catalysts for the hydroboration of carbonyl compounds. J. Am. Chem. Soc. 136, 3028–3031 (2014).
Hadlington, T. J., Kefalidis, C. E., Maron, L. & Jones, C. Efficient reduction of carbon dioxide to methanol equivalents catalyzed by two-coordinate amido–germanium(II) and tin(II) hydride complexes. ACS Catal. 7, 1853–1859 (2017).
Woodul, W. D. et al. A neutral, monomeric germanium(I) radical. J. Am. Chem. Soc. 133, 10074–10077 (2011).
Asay, M., Inoue, S. & Driess, M. Aromatic ylide-stabilized carbocyclic silylene. Angew. Chem. Int. Ed. 50, 9589–9592 (2011).
Rekken, B. D., Brown, T. M., Fettinger, J. C., Tuononen, H. M. & Power, P. P. Isolation of a stable, acyclic, two-coordinate silylene. J. Am. Chem. Soc. 134, 6504–6507 (2012).
Wiederkehr, J., Wölper, C. & Schulz, S. Synthesis and solid state structure of a metalloid tin cluster [Sn10(trip8)]. Chem. Commun. 52, 12282–12285 (2016).
Wagner, M. et al. [Me2C{SnCH(SiMe3)2}2]2. A μ-Me2C-bridged tetrastanna tetrahedrane. Chem. Commun. 51, 153–156 (2015).
Hupp, F. et al. Platinum complexes containing pyramidalized germanium and tin dihalide ligands bound through σ,σ M=E multiple bonds. Chem. Eur. J. 20, 16888–16898 (2014).
Ganesamoorthy, C., Wölper, C., Nizovtsev, A. S. & Schulz, S. Synthesis and structural characterization of magnesium-substituted polystibides [(LMg)4Sb8]. Angew. Chem. Int. Ed. 55, 4204–4209 (2016).
Ganesamoorthy, C., Krüger, J., Wölper, C., Nizovtsev, A. S. & Schulz, S. Reduction of [Cp*Sb]4 with subvalent main-group metal reductants: syntheses and structures of [(L1Mg)4(Sb4)] and [(L2Ga)2(Sb4)] containing edge-missing Sb4 units. Chem. Eur. J. 23, 1–9 (2017).
Fohlmeister, L. et al. Low-coordinate iron(I) and manganese(I) dimers: kinetic stabilization of an exceptionally short Fe–Fe multiple bond. Angew. Chem. Int. Ed. 51, 8294–8298 (2012).
Fohlmeister, L. & Jones, C. Stabilisation of carbonyl free amidinato-manganese(II) hydride complexes: “masked” sources of manganese(I) in organometallic synthesis. Dalton Trans. 45, 1436–1442 (2016).
Hoyer, C. E. et al. A two-coordinate manganese(0) complex with an unsupported Mn–Mg bond: allowing access to low coordinate homo- and hetero-bimetallic compounds. J. Am. Chem. Soc. 136, 5283–5286 (2014).
Stasch, A. Synthesis, structure, and reactivity of a dimeric zinc(I) compound stabilized by a sterically demanding diiminophosphinate ligand. Chem. Eur. J. 18, 15105–15112 (2012).
Hicks, J., Underhill, E. J., Kefalidis, C. E., Maron, L. & Jones, C. A mixed-valence tri-zinc complex, LZnZnZnL (L = bulky amide), bearing a linear chain of two-coordinate zinc atoms. Angew. Chem. Int. Ed. 54, 10000–10004 (2015).
Acknowledgements
The author thanks the Australian Research Council and the US Air Force Asian Office of Aerospace Research and Development for funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
PowerPoint slides
Rights and permissions
About this article
Cite this article
Jones, C. Dimeric magnesium(I) β-diketiminates: a new class of quasi-universal reducing agent. Nat Rev Chem 1, 0059 (2017). https://doi.org/10.1038/s41570-017-0059
Published:
DOI: https://doi.org/10.1038/s41570-017-0059
This article is cited by
-
Synthesis and reactivity of low-oxidation-state alkaline earth metal complexes
Nature Synthesis (2022)
-
Strongly reducing magnesium(0) complexes
Nature (2021)
-
A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding
Nature (2021)
-
Coordination Chemistry of Bulky Aminopryridinates with Main Group and Transition Metals
Topics in Current Chemistry (2021)
-
Open questions in low oxidation state group 2 chemistry
Communications Chemistry (2020)