Abstract
The merger of transition metal catalysis and photocatalysis, termed metallaphotocatalysis, has recently emerged as a versatile platform for the development of new, highly enabling synthetic methodologies. Photoredox catalysis provides access to reactive radical species under mild conditions from abundant, native functional groups, and, when combined with transition metal catalysis, this feature allows direct coupling of non-traditional nucleophile partners. In addition, photocatalysis can aid fundamental organometallic steps through modulation of the oxidation state of transition metal complexes or through energy-transfer-mediated excitation of intermediate catalytic species. Metallaphotocatalysis provides access to distinct activation modes, which are complementary to those traditionally used in the field of transition metal catalysis, thereby enabling reaction development through entirely new mechanistic paradigms. This Review discusses key advances in the field of metallaphotocatalysis over the past decade and demonstrates how the unique mechanistic features permit challenging, or previously elusive, transformations to be accomplished.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis
Nature Open Access 23 August 2023
-
Photocatalytic conversion of sugars to 5-hydroxymethylfurfural using aluminium(III) and fulvic acid
Nature Communications Open Access 01 August 2023
-
Recovery of homogeneous photocatalysts by covalent organic framework membranes
Nature Communications Open Access 11 May 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout










References
Ault, A. The Nobel prize in chemistry for 2001. J. Chem. Educ. 79, 572–577 (2002).
Casey, C. P. 2005 Nobel prize in chemistry. Development of the E-olefin metathesis method in organic synthesis. J. Chem. Educ. 83, 192–195 (2006).
Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).
Hegedus, L. S. & Söderberg, B. C. G. Transition Metals in the Synthesis of Complex Organic Molecules 3rd edn (Univ. Science Books, 2010).
Ruiz-Castillo, P. & Buchwald, S. L. Application of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).
Matsunaga, P. T., Hillhouse, G. L. & Rheingold, A. L. Oxygen-atom transfer from nitrous oxide to a nickelmetallacycle. Synthesis, structure, and reactions of [cyclic] (2,2′-bipyridine)Ni(OCH2CH2CH2CH2). J. Am. Chem. Soc. 115, 2075–2077 (1993).
Matsunaga, P. T., Mavropoulos, J. C. & Hillhouse, G. L. Oxygen-atom transfer from nitrous oxide (N=N=O) to nickel alkyls. Syntheses and reactions of nickel(II) alkoxides. Polyhedron 14, 175–185 (1995).
Han, R. & Hillhouse, G. L. Carbon–oxygen reductive-elimination from nickel(II) oxametallacycles and factors that control formation of ether, aldehyde, alcohol, or ester products. J. Am. Chem. Soc. 119, 8135–8136 (1997).
Camasso, N. M. & Sanford, M. S. Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 347, 1218–1220 (2013).
Chan, D., Monaco, K., Wang, R. & Winter, M. New N− and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett. 39, 2933–2936 (1998).
Evans, D., Katz, J. & West, T. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett. 39, 2937–2942 (1998).
Lam, P. et al. New aryl/heteroaryl C–N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett. 39, 2941–2944 (1998).
Ye, Y., Schimler, S. D., Hanley, P. S. & Sanford, M. S. Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J. Am. Chem. Soc. 135, 16292–16295 (2013).
Wang, X., Lu, Y., Dai, H.-X. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H activation/C–O cyclization: expedient construction of dihydrobenzofurans. J. Am. Chem. Soc. 132, 12203–12205 (2010).
Mei, T.-S., Wang, X. & Yu, J.-Q. Pd(II)-catalyzed amination of C–H bonds using single-electron or two-electron oxidants. J. Am. Chem. Soc. 131, 10806–10807 (2009).
Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).
Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).
Hickman, A. J. & Sanford, M. S. Catalyst control of site selectivity in the PdII/IV-catalyzed direct arylation of naphthalene. ACS Catal. 1, 170–174 (2011).
Bitterwolf, T. E. Organometallic photochemistry at the end of its first century. J. Organometal. Chem. 689, 3939–3952 (2004).
Grätzel, M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc. Chem. Res. 14, 376–384 (1981).
Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22, 163–170 (1989).
Lowry, M. S. & Bernhard, S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem. Eur. J. 12, 7970–7977 (2006).
Kalyanasundaram, K. & Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 177, 347–414 (1998).
Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).
Burk, M. J. & Crabtree, R. H. Selective catalytic dehydrogenation of alkanes to alkenes. J. Am. Chem. Soc. 109, 8025–8032 (1987).
Maguire, J. A., Boese, W. T. & Goldman, A. S. Photochemical dehydrogenation of alkanes catalyzed by trans-carbonylchlorobis(trimethylphosphine)rhodium: aspects of selectivity and mechanism. J. Am. Chem. Soc. 111, 7088–7093 (1989).
Sakakura, T., Sodeyama, T., Sasaki, K., Wada, K. & Tanaka, M. Carbonylation of hydrocarbons via carbon-hydrogen activation catalyzed by RhCl(CO)(PMe3)2 under irradiation. J. Am. Chem. Soc. 112, 7221–7229 (1990).
Ishiyama, T., Miyaura, N. & Suzuki, A. Palladium-catalyzed carbonylative cross-coupling reaction of iodoalkanes with 9-alkyl-9-BBN derivatives. A direct and selective synthesis of ketones. Tetrahedron Lett. 47, 6923–6926 (1991).
Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012). A light-mediated Ullmann coupling that proceeds under exceptionally mild conditions, demonstrating the capacity for metallaphotocatalysis to enable challenging transformations.
Lindsey, J. Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron 40, 1433–1456 (1984).
Sumino, S., Ui, T. & Ryu, I. Synthesis of alkyl aryl ketones by Pd/light induced carbonylative cross-coupling of alkyl iodides and arylboronic acids. Org. Lett. 15, 3142–3145 (2013).
Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).
Kärkäs, M. D., Porco, J. A. Jr & Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116, 9638–9747 (2016).
Bach, T. & Hehn, J. P. Photochemical reactions as key steps in natural product synthesis. Angew. Chem. Int. Ed. 50, 1000–1045 (2011).
Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).
Roth, H. D. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. Engl. 28, 1193–1207 (1989).
Trommsdorff, H. Über Santonin [German]. Ann. Chem. Pharm. 11, 190–207 (1834).
Ciamician, G. & Silber, P. Chemische Lichtwirkungen [German]. Ber. Dtsch. Chem. Ges. 41, 1928–1935 (1908).
Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).
Xuan, J. & Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).
Reckenthäler, M. & Griesbeck, A. G. Photoredox catalysis for organic syntheses. Adv. Synth. Catal. 355, 2727–2744 (2013).
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10116 (2016).
Takeda, H. & Ishitani, O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord. Chem. Rev. 254, 346–354 (2010).
van Bergen, T. J., Hedstrand, D. M., Kruizinga, W. H. & Kellogg, R. M. Chemistry of dihydropyridine. 9. Hydride transfer from 1,4-dihydropyridine to sp3-hybridized carbon in sulfonium salts and activated halides. Studies with NAD(P)H models. J. Org. Chem. 44, 4953–4962 (1979).
Pac, C., Ihama, M., Yasuda, M., Miyauchi, Y. & Sakurai, H. Tris(2,2′-bipyridine)ruthenium2+-mediated photoreduction of olefins with 1-benzyl-1,4-dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds. J. Am. Chem. Soc. 103, 6495–6497 (1983).
Fukuzumi, S., Koumitsu, S., Hironaka, K. & Tanaka, T. Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions for NADH model compounds to p-benzoquinone derivatives. J. Am. Chem. Soc. 109, 305–316 (1987).
Cano-Yelo, H. & Deronzier, A. Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt system. Tetrahedron Lett. 25, 5517–5520 (1984).
Okada, K., Okamoto, K., Morita, N., Okubo, K. & Oda, M. Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J. Am. Chem. Soc. 113, 9401–9402 (1991).
Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).
Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008).
Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer phtotoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).
Arias-Rotondo, D. M. & McCusker, J. M. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).
Cismesia, M. A. & Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 6, 5426–5434 (2015).
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
Hopkinson, M. N., Sahoo, B., Li, J.-L. & Glorius, F. Dual catalysis see the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chem. Eur. J. 20, 3874–3886 (2014).
Vila, C. Merging visible-light-photoredox and nickel catalysis. ChemCatChem 7, 1790–1793 (2015).
Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).
de Meigere, A. & Diederich, F. (eds) Metal-Catalyzed Cross-Coupling Reactions 2nd edn (Wiley, 2004).
Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).
Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1886 (2011).
Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).
Chu, L., Ohta, C., Zuo, Z. & MacMillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-Lyrica. J. Am. Chem. Soc. 136, 10886–10889 (2014).
Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).
Zuo, Z., Ahneman, D. T., Chu, L., Terrett, J. A. & MacMillan, D. W. C. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014). An early report on nickel metallaphotoredox catalysis, allowing direct cross-coupling of carboxylic acids via a radical decarboxylative activation mode.
Zuo, Z. et al. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 138, 1832–1835 (2015).
Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).
Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3–sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).
Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).
Chu, L., Lipshultz, J. M. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: the direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem. Int. Ed. 54, 7929–7933 (2015).
Le, C. C. & MacMillan, D. W. C. Fragment couplings via CO2 extrusion–recombination: expansion of a classic bond-forming strategy via metallaphotoredox. J. Am. Chem. Soc. 137, 11938–11941 (2015).
Shimizu, I., Yamada, T. & Tsuji, J. Palladium-catalyzed rearrangement of allylic esters of acetoacetic acid to give γ, δ-unsaturated methyl ketones. Tetrahedron Lett. 21, 3199–3202 (1980).
Tsuda, T., Chujo, Y., Nishi, S., Tawara, K. & Saegusa, T. Facile generation of a reactive palladium(II) enolate intermediate by the decarboxylation of palladium(II) β-ketocarboxylate and its utilization in allylic acylation. J. Am. Chem. Soc. 102, 6381–6384 (1980).
Nawrat, C. C., Jamison, C. R., Slutskyy, Y., MacMillan, D. W. C. & Overman, L. E. Oxalates as activating groups for alcohols in visible light photoredox catalysis: formation of quaternary centers by redox-neutral fragment coupling. J. Am. Chem. Soc. 137, 11270–11273 (2015).
Zhang, X. & MacMillan, D. W. C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3–sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc. 138, 13862–13865 (2016).
Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014). A nickel metallaphotoredox catalysis procedure for C( sp2)-C( sp3) cross-coupling, providing a solution for the long-standing challenge of alkyl transmetallation from boron by invoking a radical pathway.
El Khatib, M., Serafim, R. A. M. & Molander, G. A. α-Arylation/heteroarylation of chiral α-aminomethyltrifluoroborates by synergistic iridium photoredox/nickel cross-coupling catalysis. Angew. Chem. Int. Ed. 55, 254–258 (2016).
Karakaya, I., Primer, D. N. & Molander, G. A. Photoredox cross-coupling: Ir/Ni dual catalysis for the synthesis of benzylic ethers. Org. Lett. 17, 3294–3297 (2015).
Primer, D. N., Karakaya, I., Tellis, J. C. & Molander, G. A. Single-electron transmetalation: an enabling technology for secondary alkylboron cross-coupling. J. Am. Chem. Soc. 137, 2195–2198 (2015).
Amani, J., Sodagar, E. & Molander, G. A. Visible light photoredox cross-coupling of acyl chlorides with potassium alkoxymethyltrifluoroborates: synthesis of α-alkoxyketones. Org. Lett. 18, 732–735 (2016).
Luo, J. & Zhang, J. Donor–acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp3)–C(sp2) cross-coupling. ACS Catal. 6, 873–877 (2016).
Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).
Corceé, V. et al. Silicates as latent alkyl radical precursors: visible-light photocatalytic oxidation of hypervalent bis-catecholato silicon compounds. Angew. Chem. Int. Ed. 54, 11414–11418 (2015).
Jouffroy, M., Primer, D. N. & Molander, G. A. Base-free photoredox/nickel dual-catalytic cross-coupling of ammonium alkylsilicates. J. Am. Chem. Soc. 138, 475–478 (2016).
Patel, N. R., Kelly, C. B., Jouffroy, M. & Molander, G. A. Engaging alkenyl halides with alkylsilicates via photoredox dual catalysis. Org. Lett. 18, 764–767 (2016).
Nakajima, K., Nojima, S., Sakata, K. & Nishibayashi, Y. Visible-light-mediated aromatic substitution reactions of cyanoarenes with 4-alkyl-1,4-dihydropyridines through double carbon–carbon bond cleavage. ChemCatChem 8, 1028–1032 (2016).
Zheng, C. & You, S.-L. Transfer hydrogenation with Hantzch esters and related organic hydride donors. Chem. Soc. Rev. 41, 2498–2518 (2012).
Nakajima, K., Nojima, S. & Nishibayashi, Y. Nickel- and photoredox-catalyzed cross-coupling reactions of aryl halides with 4-alkyl-1,4-dihydropyridines as formal nucleophilic alkylation reagents. Angew. Chem. Int. Ed. 55, 14106–14110 (2016).
Gutiérrez-Bonet, Á., Tellis, J. C., Matsui, J. K., Vara, B. A. & Molander, G. A. 1,4-Dihydropyridines as alkyl radical precursors: introducing the aldehyde feedstock to nickel/photoredox dual catalysis. ACS Catal. 6, 8004–8008 (2016).
Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).
Ahneman, D. T. & Doyle, A. G. C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chem. Sci. 7, 7002–7006 (2016).
Jeffrey, J. L., Terrett, J. A. & MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α-C–H bonds for C-alkylation of alcohols. Science 349, 1532–1536 (2015).
Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).
Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).
Shields, B. J. & Doyle, A. G. Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).
Hwang, S. J. et al. Halogen photoelimination from monomeric nickel(III) complexes enabled by the secondary coordination sphere. Organometallics 34, 4766–4774 (2015).
Hwang, S. J., Powers, D. C., Maher, A. G. & Nocera, D. G. Tandem redox mediator/Ni(II) trihalide complex photocycle for hydrogen evolution from HCl. Chem. Sci. 6, 917–922 (2015).
Hwang, S.-J. et al. Trap-free halogen photoelimination from mononuclear Ni(III) complexes. J. Am. Chem. Soc. 137, 6472–6475 (2015).
Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).
Zhang, P., Le, C. C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).
Torraca, K. E., Huang, X., Parrish, C. A. & Buchwald, S. L. An efficient intermolecular palladium-catalyzed synthesis of aryl ethers. J. Am. Chem. Soc. 123, 10770–10771 (2001).
Kataoka, N., Shelby, Q., Stambuli, J. P. & Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond forming cross-couplings. J. Org. Chem. 67, 5553–5566 (2002).
Wolter, M., Nordmann, G., Job, G. E. & Buchwald, S. L. Copper-catalyzed coupling of aryl iodides with aliphatic alcohols. Org. Lett. 4, 973–976 (2002).
Macgregor, S. A., Neave, G. W. & Smith, C. Theoretical studies on C–heteroatom bond formation via reductive elimination from group 10 M(PH3)2(CH3)(X) species (X = CH3, NH2, OH, SH) and the determination of metal–X bond strengths using density functional theory. Faraday Discuss. 124, 111–127 (2003).
Zhou, W., Schultz, J. W., Rath, N. P. & Mirica, L. M. Aromatic methoxylation and hydroxylation by organometallic high-valent nickel complexes. J. Am. Chem. Soc. 137, 7604–7607 (2015).
Terrett, J. A., Cuthbertson, J. D., Shurtleff, V. W. & MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015).
Klein, A. et al. Halide ligands — more than just σ-donors? A structural and spectroscopic study of homologous organonickel complexes. Inorg. Chem. 47, 11324–11333 (2008).
Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380–385 (2017).
Osawa, M., Nagai, H. & Akita, M. Photo-activation of Pd-catalyzed Sonogashira coupling using a Ru/bipyridine complex as energy transfer agent. Dalton Trans. 8, 827–829 (2007).
Yoo, W.-J., Tsukamoto, T. & Kobayashi, S. Visible light-mediated Ullmann-type C–N coupling reactions of carbazole derivatives and aryl iodides. Org. Lett. 17, 3640–3642 (2015).
Corcoran, E. B. et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016).
Wolfe, J. P. & Buchwald, S. L. Nickel-catalyzed amination of aryl chlorides. J. Am. Chem. Soc. 119, 6054–6058 (1997).
Gao, C.-Y. & Yang, L.-M. Nickel-catalyzed amination of aryl tosylates. J. Org. Chem. 73, 1624–1627 (2008).
Park, N. H., Teverovskiy, G. & Buchwald, S. L. Development of an air-stable nickel precatalyst for the amination of aryl chlorides, sulfamates, mesylates, and triflates. Org. Lett. 16, 220–223 (2014).
Ge, S., Green, R. A. & Hartwig, J. F. Controlling first-row catalysts: amination of aryl and heteroaryl chlorides and bromides with primary aliphatic amines catalyzed by a BINAP-ligated single-component Ni(0) complex. J. Am. Chem. Soc. 136, 1617–1627 (2014).
Shimasahi, T., Tobisu, M. & Chatani, N. Nickel-catalyzed amination of aryl pivalates by the cleavage of aryl C–O bonds. Angew. Chem. Int. Ed. 49, 2929–2932 (2010).
Lavoie, C. M. et al. Challenging nickel-catalyzed amine arylations enabled by tailored ancillary ligand design. Nat. Commun. 7, 11073 (2016).
Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).
Kutchukian, P. S. et al. Chemistry informer libraries: a cheminformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).
Tasker, S. Z. & Jamison, T. F. Highly regioselective indoline synthesis under nickel/photoredox dual catalysis J. Am. Chem. Soc. 137, 9531–9534 (2015).
Oderinde, M. S. et al. Highly chemoselective iridium photoredox and nickel catalysis for the cross-coupling of primary aryl amines with aryl halides. Angew. Chem. Int. Ed. 55, 13219–13223 (2016).
Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B. & Johannes, J. M. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).
Jouffroy, M., Kelly, C. B. & Molander, G. A. Thioetherification via photoredox/nickel dual catalysis. Org. Lett. 18, 876–879 (2016).
Xuan, J., Zeng, T.-T., Chen, J.-R., Lu, L.-Q. & Xiao, W.-J. Room temperature C–P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis. Chem. Eur. J. 21, 4962–4965 (2015).
Negishi, E.-I. & Anastasia, L. Palladium-catalyzed alkynylation. Chem. Rev. 103, 1979–2017 (2003).
Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011). The first example of palladium metallaphotoredox catalysis in which a distinct role for the photocatalyst was proposed.
Kalyani, D., Deprez, N. R., Desai, L. V. & Sanford, M. S. Oxidative C–H activation/C–C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 127, 7330–7331 (2005).
Deprez, N. R. & Sanford, M. S. Synthetic and mechanistic studies of Pd-catalyzed C–H arylation with diaryliodonium salts: evidence for a bimetallic high oxidation state Pd intermediate. J. Am. Chem. Soc. 131, 11234–11241 (2009).
Yu, W.-Y., Sit, W., Zhou, Z. & Chan, A. S. C. Palladium-catalyzed decarboxylative arylation of C–H bonds by aryl acylperoxides. Org. Lett. 11, 3174–3177 (2009).
Maestri, G., Malacria, M. & Derat, E. Radical Pd(III)/Pd(I) reductive elimination in palladium sequences. Chem. Commun. 49, 10424–10426 (2013).
Powers, D. C., Benitez, D., Tkatchouk, E., Goddard, W. A. & Ritter, T. Bimetallic reductive elimination from dinuclear Pd(III) complexes. J. Am. Chem. Soc. 132, 14092–14103 (2010).
Chow, P.-K. et al. Highly luminescent palladium(II) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chem. Sci. 7, 6083–6098 (2016).
Zoller, J., Fabry, D. C., Ronge, M. A. & Rueping, M. Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C–H activation. Angew. Chem. Int. Ed. 53, 13264–13268 (2014).
Rodriguez, N. & Gooßen, L. J. Decarboxylative coupling reactions: a modern strategy for C–C bond formation. Chem. Soc. Rev. 40, 5030–5048 (2011).
Zhou, C., Li, P., Zhu, X. & Wang, L. Merging photoredox with palladium catalysis: decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids under mild reaction conditions. Org. Lett. 17, 6198–6201 (2015).
Xu, N., Li, P., Xie, Z. & Wang, L. Merging visible-light photocatalysis with palladium catalysis for C–H acylation of azo- and azoxybenzenes with α-keto acids. Chem. Eur. J. 22, 2236–2242 (2016).
Cheng, W.-M., Shang, R., Yu, H.-Z. & Fu, Y. Room-temperature decarboxylative couplings of α-oxocarboxylates with aryl halides by merging photoredox with palladium catalysis. Chem. Eur. J. 21, 13191–13195 (2015).
Lang, S. B., O’Nele, K. M. & Tunge, J. A. Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis. J. Am. Chem. Soc. 136, 13606–13609 (2014).
Lang, S. B., O’Nele, K. M. & Tunge, J. A. Dual catalytic decarboxylative allylations of α-amino acids and their divergent mechanisms. Chem. Eur. J. 21, 18589–18593 (2015).
Xuan, J. et al. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Angew. Chem. Int. Ed. 54, 1625–1628 (2015).
Ye, Y. & Sanford, M. S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 134, 9034–9037 (2012). A practical, mild protocol for the synthesis of trifluoromethylated arenes; moreover, this is the first example of copper metallaphotoredox catalysis.
Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).
Nagib, D. A., Scott, M. E. & MacMillan, D. W. C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131, 10875–10877 (2009).
Yoo, W.-J., Tsukamoto, T. & Kobayashi, S. Visible-light-mediated Chan–Lam coupling reactions of aryl boronic acids and aniline derivatives. Angew. Chem. Int. Ed. 54, 6587–6590 (2015).
Antilla, J. C. & Buchwald, S. L. Copper-catalyzed coupling of arylboronic acids and amines. Org. Lett. 3, 2077–2079 (2001).
Zhang, G., Cui, L., Wang, Y. & Zhang, L. Homogeneous gold-catalyzed oxidative carboheterofunctionalization of alkenes. J. Am. Chem. Soc. 132, 1474–1475 (2010).
Hopkinson, M. N., Ross, J. E., Giuffredi, G. T., Gee, A. D. & Gouverneur, V. Gold-catalyzed cascade cyclization–oxidative alkynylation of allenoates. Org. Lett. 12, 4904–4907 (2010).
Melhado, A. D., Brenzovich, W. E. Jr, Lackner, A. D. & Toste, F. D. Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes. J. Am. Chem. Soc. 132, 8885–8887 (2010).
Ball, L. T., Lloyd-Jones, G. C. & Russell, C. A. Gold-catalyzed oxyarylation of styrenes and mono- and gem-disubstituted olefins facilitated by an iodine (III) oxidant. Chem. Eur. J. 18, 2931–2937 (2012).
Joost, M. et al. Facile oxidative addition of aryl iodides to gold(I) by ligand design: bending turns on reactivity. J. Am. Chem. Soc. 136, 14654–14657 (2014).
Joost, M., Estévez, L., Miqueu, K., Amgoune, A. & Bourissou, D. Oxidative addition of carbon–carbon bonds to gold. Angew. Chem. Int. Ed. 54, 5236–5240 (2015).
Wu, C.-Y., Horibe, T., Jacobsen, C. B. & Toste, F. D. Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond. Nature 517, 449–454 (2015).
Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).
Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2016).
Tlahuext-Aca, A., Hopkinson, M. N., Daniliuc, C. G. & Glorius, F. Oxidative addition to gold(I) by photoredox catalysis: straightforward access to diverse (C,N)-cyclometalated gold(III) complexes. Chem. Eur. J. 22, 11587–11592 (2016).
Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013). A leading report in the field of gold metallaphotoredox catalysis, providing a new strategy for achieving gold-mediated difunctionalization of alkenes.
Zhang, Q., Zhang, Z.-Q., Fu, Y. & Yu, H.-Z. Mechanism of the visible light-mediated gold-catalyzed oxyarylation reaction of alkenes. ACS Catal. 6, 798–808 (2016).
Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual photoredox and gold catalysis: intermolecular multicomponent oxyarylation of alkenes. Adv. Synth. Catal. 356, 2794–2800 (2014).
Shu, X.-z., Zhang, M., He, Y., Frei, H. & Toste, F. D. Dual visible light photoredox and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136, 5844–5847 (2014).
Patil, D. V., Yun, H. & Shin, S. Catalytic cross-coupling of vinyl golds with diazonium salts under photoredox and thermal conditions. Adv. Synth. Catal. 357, 2622–2628 (2015).
Um, J., Yun, H. & Shin, S. Cross-coupling of Meyer–Schuster intermediates under dual gold-photoredox catalysis. Org. Lett. 18, 484–487 (2016).
Alcaide, B., Almendros, P., Busto, E. & Luna, A. Domino Meyer–Schuster/arylation reaction of alkynols or alkynyl hydroperoxides with diazonium salts promoted by visible light under dual gold and ruthenium catalysis. Adv. Synth. Catal. 358, 1526–1533 (2016).
Tlahuext-Aca, A., Hopkinson, M. N., Garza-Sanchez, R. A. & Glorius, F. Alkyne difunctionalization by dual gold/photoredox catalysis. Chem. Eur. J. 22, 5909–5913 (2016).
Huang, L., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Photosensitizer-free visible-light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angew. Chem. Int. Ed. 55, 4808–4813 (2016).
Kim, S., Rojas-Martin, J. & Toste, F. D. Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) coupling. Chem. Sci. 7, 85–88 (2016).
Cornilleau, T., Hermange, P. & Fouquet, E. Gold-catalysed cross-coupling between aryldiazonium salts and arylboronic acids: probing the usefulness of photoredox conditions. Chem. Commun. 52, 10040–10043 (2016).
Gauchot, V. & Lee, A.-L. Dual gold photoredox C(sp2)–C(sp2) cross couplings — development and mechanistic studies. Chem. Commun. 52, 10163–10166 (2016).
He, Y., Wu, H. & Toste, F. D. A dual catalytic strategy for carbon–phosphorous cross-coupling via gold and photoredox catalysis. Chem. Sci. 6, 1194–1198 (2015).
Fabry, D. C., Zoller, J., Raja, S. & Rueping, M. Combining rhodium and photoredox catalysis for C–H bond functionalization of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed. 53, 10228–10231 (2014).
Fabry, D. C., Ronge, M. A., Zoller, J. & Rueping, M. C–H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant. Angew. Chem. Int. Ed. 54, 2801–2805 (2015).
Zhang, G. et al. External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic C–H thiolation for constructing C–S bonds. J. Am. Chem. Soc. 137, 9273–9280 (2015).
Zhong, J.-J. et al. Cross-coupling hydrogen evolution reaction in homogenous solution without noble metals. Org. Lett. 16, 1988–1991 (2014).
Gao, X.-W. et al. Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C–H bond activation with oxidant: cross-coupling hydrogen evolution reaction. ACS Catal. 5, 2391–2396 (2015).
Zhong, J.-J. et al. A cascade cross-coupling and in situ hydrogenation reaction by visible light catalysis. Adv. Synth. Catal. 356, 2846–2852 (2014).
Xiang, M. et al. Activation of C–H bonds through oxidant-free photoredox cataysis: cross-coupling hydrogen-evolution transformation of isochromans and β-keto esters. Chem. Eur. J. 21, 18080–18084 (2015).
Wu, C.-J. et al. An oxidant-free strategy for indole synthesis via intramolecular C–C bond construction under visible light irradiation: cross-coupling hydrogen evolution reaction. ACS Catal. 6, 4635–4639 (2016).
Ischay, M. A., Lu, Z. & Yoon, T. P. [2+2] cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc. 132, 8572–8574 (2010).
Lin, S., Ischay, M. A., Fry, C. G. & Yoon, T. Radical cation Diels–Alder cycloadditions by visible light photocatalysis. J. Am. Chem. Soc. 133, 19350–19353 (2011).
Margrey, K. A. & Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 49, 1997–2006 (2016).
Yi, H. et al. Photocatalytic dehydrogenative cross-coupling of alkenes with alcohols or azoles without external oxidant. Angew. Chem. Int. Ed. 56, 1120–1124 (2017).
Zhang, G. et al. Anti-Markovnikov oxidation of β-alkyl styrenes with H2O as the terminal oxidant. J. Am. Chem. Soc. 138, 12037–12040 (2016).
He, K.-H. et al. Acceptorless dehydrogenation of N-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis. Angew. Chem. Int. Ed. 56, 3080–3084 (2017).
Acknowledgements
Support was provided by the US National Institutes of Health, National Institute of General Medical Sciences (R01 GM103558-06) and gifts from Merck, AbbVie and Bristol-Myers Squibb.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Twilton, J., Le, C., Zhang, P. et al. The merger of transition metal and photocatalysis. Nat Rev Chem 1, 0052 (2017). https://doi.org/10.1038/s41570-017-0052
Published:
DOI: https://doi.org/10.1038/s41570-017-0052
This article is cited by
-
A general arene C–H functionalization strategy via electron donor–acceptor complex photoactivation
Nature Chemistry (2023)
-
Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling
Nature Synthesis (2023)
-
Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst
Nature Synthesis (2023)
-
Spin–vibronic coherence drives singlet–triplet conversion
Nature (2023)
-
Design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts
Nature Synthesis (2023)