Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging

Abstract

The synaptic vesicle, a cellular compartment tens to hundreds of nanometres in size, is a main player in the process of exocytosis for neuronal communication. Understanding the regulatory mechanism of neurotransmission and neurological disorders requires the quantification of chemicals transmitted between cells. These challenging single vesicle measurements can be performed using analytical techniques described in this Review. In vivo amperometry at living cells can be used to quantify the amount of neurotransmitter released from a vesicle. By contrast, intracellular vesicle impact electrochemical cytometry allows the amount of molecules to be determined inside single vesicles. Although the dominant mode of exocytosis from vesicles is still under debate, several experiments point to the importance of partial release modes. Making use of fluorescent or isotopically labelled probes enables super-resolution optical and mass spectrometric imaging of molecular composition and activity of single vesicles. Correlating results from these nanoscopic techniques with those from electrochemistry has proved advantageous in understanding the relationship between vesicle structure and function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of single-cell amperometry and three modes of exocytosis.
Figure 2: Amperometric measurement of octopamine release from a neuronal varicosity in a Drosophila melanogaster larva.
Figure 3: Amperometric measurement of noradrenaline release from single cultured neurons.
Figure 4: Nanoelectrode amperometry allows monitoring of vesicular exocytosis inside a synapse between SCG neurons.
Figure 5: Intracellular VIEC allows quantification of vesicular transmitter content in live cells.
Figure 6: Principles of super-resolution STED, STORM and nanoSIMS imaging.
Figure 7: Applications of super-resolution STED, STORM and nanoSIMS imaging in synaptic research.
Figure 8: Multimodal molecular imaging uncovers the structure and synaptic activity of single vesicles.

References

  1. 1

    Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Cox, H. D. & Thompson, C. M. Purification and proteomic analysis of synaptic vesicles. Methods Mol. Biol. 432, 259–274 (2008).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Zito, K., Parnas, D., Fetter, R. D., Isacoff, E. Y. & Goodman, C. S. Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22, 719–729 (1999).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Li, X., Dunevall, J. & Ewing, A. G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res. 49, 2347–2354 (2016).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Wightman, R. M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl Acad. Sci. USA 88, 10754–10758 (1991). This paper describes one of the earliest amperometric measurements of catecholamines released during exocytosis.

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Mellander, L. J. et al. Two modes of exocytosis in an artificial cell. Sci. Rep. 4, 3847–3853 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8

    Omiatek, D. M., Dong, Y., Heien, M. L. & Ewing, A. G. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS Chem. Neurosci. 1, 234–245 (2010). The authors of this article demonstrated experimentally that exocytosis is mostly ‘open and closed’ or partial release.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Fernandez-Suarez, M. & Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Pihel, K., Schroeder, T. J. & Wightman, R. M. Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single bovine adrenal medullary cells. Anal. Chem. 66, 4532–4537 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Betz, W. J., Mao, F. & Smith, C. B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Cahill, P. S. et al. Microelectrodes for the measurement of catecholamines in biological systems. Anal. Chem. 68, 3180–3186 (1996).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Travis, E. R. & Wightman, R. M. Spatio-temporal resolution of exocytosis from individual cells. Annu. Rev. Biophys. Biomol. Struct. 27, 77–103 (1998).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Aravanis, A. M., Pyle, J. L., Harata, N. C. & Tsien, R. W. Imaging single synaptic vesicles undergoing repeated fusion events: kissing, running, and kissing again. Neuropharmacology 45, 797–813 (2003).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Jin, H., Heller, D. A. & Strano, M. S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8, 1577–1585 (2008).

    PubMed  Article  Google Scholar 

  16. 16

    Xia, X. F., Lessmann, V. & Martin, T. F. J. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. J. Cell Sci. 122, 75–82 (2009).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Leszczyszyn, D. J. et al. Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells: chemical evidence for exocytosis. J. Biol. Chem. 265, 14736–14737 (1990).

    CAS  PubMed  Google Scholar 

  18. 18

    Amatore, C. et al. Relationship between amperometric pre-spike feet and secretion granule composition in chromaffin cells: an overview. Biophys. Chem. 129, 181–189 (2007).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Chow, R. H., von Rüden, L. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    De Toledo, G. A., Fernández-Chacón, R. & Fernández, J. M. Release of secretory products during transient vesicle fusion. Nature 363, 554–558 (1993).

    Article  Google Scholar 

  21. 21

    Ren, L. et al. The evidence for open and closed exocytosis as the primary release mechanism. Q. Rev. Biophys. 49, e12 (2016).

    PubMed  Article  Google Scholar 

  22. 22

    Amatore, C., Oleinick, A. I. & Svir, I. Reconstruction of aperture functions during full fusion in vesicular exocytosis of neurotransmitters. ChemPhysChem 11, 159–174 (2010).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Dunevall, J. et al. Characterizing the catecholamine content of single mammalian vesicles by collision–adsorption events at an electrode. J. Am. Chem. Soc. 137, 4344–4346 (2015). This work demonstrated that it is possible to count molecules in vesicles that undergo stochastic collisions at an electrode, followed by adsorption and opening.

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Li, X., Majdi, S., Dunevall, J., Fathali, H. & Ewing, A. G. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54, 11978–11982 (2015). Demonstration of intracellular VIEC for vesicle content in live cells.

    CAS  Article  Google Scholar 

  25. 25

    Bruns, D. & Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62–65 (1995).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Staal, R. G., Mosharov, E. V. & Sulzer, D. Dopamine neurons release transmitter via a flickering fusion pore. Nat. Neurosci. 7, 341–346 (2004).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Mellander, L. J., Trouillon, R., Svensson, M. I. & Ewing, A. G. Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion. Sci. Rep. 2, 907 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28

    Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2, 98–106 (2001).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Feany, M. B. & Bender, W. W. A. Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Finelli, A., Kelkar, A., Song, H. J., Yang, H. & Konsolaki, M. A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster. Mol. Cell. Neurosci. 26, 365–375 (2004).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Watson, M. R., Lagow, R. D., Xu, K., Zhang, B. & Bonini, N. M. A. Drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J. Biol. Chem. 283, 24972–24981 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Majdi, S. et al. Electrochemical measurements of optogenetically stimulated quantal amine release from single nerve cell varicosities in Drosophila larvae. Angew. Chem. Int. Ed. 54, 13609–13612 (2015). This article describes amperometric measurement of exocytosis from single neurons in D. melanogaster.

    CAS  Article  Google Scholar 

  33. 33

    Li, Y.-T. et al. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuromuscular junctions. Angew. Chem. Int. Ed. 54, 9313–9318 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Li, Y.-T. et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem. Int. Ed. 53, 12456–12460 (2014). A report on the use of nanotip electrodes to measure noradrenaline release inside a nanometre synapse.

    CAS  Google Scholar 

  35. 35

    Strein, T. G. & Ewing, A. G. Characterization of submicron-sized carbon electrodes insulated with a phenol–allylphenol copolymer. Anal. Chem. 64, 1368–1373 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Borges, R., Travis, E. R., Hochstetler, S. E. & Wightman, R. M. Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells. J. Biol. Chem. 272, 8325–8331 (1997).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Camacho, M., Machado, J. D., Montesinos, M. S., Criado, M. & Borges, R. Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. J. Neurochem. 96, 324–334 (2006).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Haynes, C. L., Siff, L. N. & Wightman, R. M. Temperature-dependent differences between readily releasable and reserve pool vesicles in chromaffin cells. Biochim. Biophys. Acta 1773, 728–735 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Machado, J. D., Morales, A., Gomez, J. F. & Borges, R. cAMP modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol. Pharmacol. 60, 514–520 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Calvo-Gallardo, E. et al. Faster kinetics of quantal catecholamine release in mouse chromaffin cells stimulated with acetylcholine, compared with other secretagogues. J. Neurochem. 139, 722–736 (2016).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Pothos, E. N. et al. Stimulation-dependent regulation of the pH, volume and quantal size of bovine and rodent secretory vesicles. J. Physiol. 542, 453–476 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Elhamdani, A., Palfrey, H. C. & Artalejo, C. R. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31, 819–830 (2001).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Sombers, L. A., Maxson, M. M. & Ewing, A. G. Loaded dopamine is preferentially stored in the halo portion of PC12 cell dense core vesicles. J. Neurochem. 93, 1122–1131 (2005).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Omiatek, D. M., Santillo, M. F., Heien, M. L. & Ewing, A. G. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal. Chem. 81, 2294–2302 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Omiatek, D. M. et al. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci. Rep. 3, 1447–1452 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46

    Cheng, W. & Compton, R. G. Investigation of single-drug-encapsulating liposomes using the nano-impact method. Angew. Chem. Int. Ed. 53, 13928–13930 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Lovric´, J. et al. On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discuss. 193, 65–79 (2016).

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Trouillon, R. & Ewing, A. G. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem. Biol. 9, 812–820 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Najafinobar, N. et al. Excited fluorophores enhance the opening of vesicles at electrode surfaces in vesicle electrochemical cytometry. Angew. Chem. Int. Ed. 55, 15081–15085 (2016).

    CAS  Article  Google Scholar 

  50. 50

    Lebègue, E., Anderson, C. M., Dick, J. E., Webb, L. J. & Bard, A. J. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir 31, 11734–11739 (2015).

    PubMed  Article  CAS  Google Scholar 

  51. 51

    Cheng, W. & Compton, R. G. Measuring the content of a single liposome through electrocatalytic nanoimpact “titrations”. ChemElectroChem 3, 2017–2020 (2016).

    CAS  Article  Google Scholar 

  52. 52

    Li, X., Dunevall, J. & Ewing, A. G. Using single-cell amperometry to reveal how cisplatin treatment modulates the release of catecholamine transmitters during exocytosis. Angew. Chem. Int. Ed. 55, 9041–9044 (2016).

    CAS  Article  Google Scholar 

  53. 53

    Ren, L. et al. Zinc regulates chemical-transmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angew. Chem. Int. Ed. 56, 4970–4975 (2017).

    CAS  Article  Google Scholar 

  54. 54

    Colliver, T. L., Pyott, S. J., Achalabun, M. & Ewing, A. G. VMAT-mediated changes in quantal size and vesicular volume. J. Neurosci. 20, 5276–5282 (2000).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Fathali, H., Dunevall, J., Majdi, S. & Cans, A.-S. Extracellular osmotic stress reduces the vesicle size while keeping a constant neurotransmitter concentration. ACS Chem. Neurosci. 8, 368–375 (2017).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Hein, B., Willig, K. I. & Hell, S. W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl Acad. Sci. USA 105, 14271–14276 (2008).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Moneron, G. & Hell, S. W. Two-photon excitation STED microscopy. Opt. Express 17, 14567–14583 (2009).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Neupane, B., Ligler, F. S. & Wang, G. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J. Biomed. Opt. 19, 080901 (2014).

    PubMed  Article  CAS  Google Scholar 

  61. 61

    Török, P. & Munro, P. R. T. The use of Gauss–Laguerre vector beams in STED microscopy. Opt. Express 12, 3605–3617 (2004).

    PubMed  Article  Google Scholar 

  62. 62

    Kotlyar, V. V., Almazov, A. A., Khonina, S. N. & Soifer, V. A. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A 22, 849–861 (2005).

    Article  Google Scholar 

  63. 63

    Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5, 539–544 (2008).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Curdt, F. et al. isoSTED nanoscopy with intrinsic beam alignment. Opt. Express 23, 30891–30903 (2015).

    PubMed  Article  Google Scholar 

  65. 65

    Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Xu, K., Babcock, H. P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9, 185–188 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in thebrain. Neuron 68, 843–856 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Wilhelm, B. G., Groemer, T. W. & Rizzoli, S. O. The same synaptic vesicles drive active and spontaneous release. Nat. Neurosci. 13, 1454–1456 (2010).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Wilhelm, B. G. et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028 (2014). This report describes protein organization of the synaptic bouton and vesicle, including a 3D model of synaptic structure.

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008). The first demonstration of 3D imaging using STORM, applied here to observe the structure of protein microtubules and clathrin-coated pits in cells.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017). This paper describes MINFLUX, a STED variant that minimizes the emitter photons needed for locating single molecules to 1 nm precision. This may allow the study of dynamics, distribution and structure of single molecules in living cells.

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Opazo, F. et al. Aptamers as potential tools for super-resolution microscopy. Nat. Methods 9, 938–939 (2012).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Tanaka, K. A. K. et al. Membrane molecules mobile even after chemical fixation. Nat. Methods 7, 865–866 (2010).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2015).

    Article  CAS  Google Scholar 

  79. 79

    Vreja, I. C. et al. Super-resolution microscopy of clickable amino acids reveals the effects of fluorescent protein tagging on protein assemblies. ACS Nano 9, 11034–11041 (2015).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Plass, T., Milles, S., Koehler, C., Schultz, C. & Lemke, E. A. Genetically encoded copper-free click chemistry. Angew. Chem. Int. Ed. 50, 3878–3881 (2011).

    CAS  Article  Google Scholar 

  81. 81

    de Castro, M. A., Rammner, B. & Opazo, F. Aptamer stainings for super-resolution microscopy. Methods Mol. Biol. 1380, 197–210 (2016).

    PubMed  Article  CAS  Google Scholar 

  82. 82

    Revelo, N. H. et al. A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J. Cell Biol. 205, 591–606 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Jung, S. et al. Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO J. 34, 2686–2702 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Opazo, F. et al. Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic 11, 800–812 (2010).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Spuhler, I. A., Conley, G. M., Scheffold, F. & Sprecher, S. G. Super resolution imaging of genetically labeled synapses in Drosophila brain tissue. Front. Cell. Neurosci. 10, 142 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Pech, U., Revelo, N. H., Seitz, K. J., Rizzoli, S. O. & Fiala, A. Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep. 10, 2083–2095 (2015).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006). This article considers the nature of vesicular membrane protein synaptotagmin I during vesicle recycling using STED.

    CAS  Article  Google Scholar 

  88. 88

    Hoopmann, P. et al. Endosomal sorting of readily releasable synaptic vesicles. Proc. Natl Acad. Sci. USA 107, 19055–19060 (2010).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Yeung, C., Shtrahman, M. & Wu, X.-L. Stick-and-diffuse and caged diffusion: a comparison of two models of synaptic vesicle dynamics. Biophys. J. 92, 2271–2280 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Saka, S. K. et al. Correlated optical and isotopic nanoscopy. Nat. Commun. 5, 3664 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91

    Vreja, I. C. et al. Secondary-ion mass spectrometry of genetically encoded targets. Angew. Chem. Int. Ed. 54, 5784–5788 (2015).

    CAS  Article  Google Scholar 

  92. 92

    Kabatas, S. et al. A contamination-insensitive probe for imaging specific biomolecules by secondary ion mass spectrometry. Chem. Commun. 51, 13221–13224 (2015).

    CAS  Article  Google Scholar 

  93. 93

    Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Kim, D. et al. Correlative stochastic optical reconstruction microscopy and electron microscopy. PLoS ONE 10, e0124581 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96

    Lovric´, J. et al. Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles. ACS Nano 11, 3446–3455 (2017). The paper describes applications of multimodal nanoSIMS, TEM and single-cell electrochemistry to image single vesicles and quantify neurotransmitter content and release. The results implicate a role for vesicle inner structure on regulating release kinetics.

    PubMed  Article  CAS  Google Scholar 

  97. 97

    Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. O. Rizzoli for helpful comments, and the many colleagues and collaborators that have contributed to work cited in this Review. This work was supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the European Research Council, and the US National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Ewing.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phan, N., Li, X. & Ewing, A. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem 1, 0048 (2017). https://doi.org/10.1038/s41570-017-0048

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing