Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical unclonable functions generated through chemical methods for anti-counterfeiting

Abstract

The counterfeiting of goods has important economic implications and is also a threat to health and security. Incorporating anti-counterfeiting tags with physical unclonable functions (PUFs) into products is a promising solution for their authentication. PUFs are unique random physical patterns of taggants that cannot be copied and must be fabricated by a stochastic process that affords a large number of robust PUF tags. A PUF tag has a physical pattern that, if read with an appropriate analytical tool, can be recorded and stored. The PUF tag is then the ‘key’, whereas the stored pattern is the ‘lock’. This combination forms PUF keys that provide unbreakable encryption and combat counterfeiting. The stochastic assembly of physical patterns made from taggants exhibiting particular molecular properties is thus an excellent approach to designing new PUF keys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clonable anti-counterfeiting tags used in a euro banknote.
Figure 2: An optical PUF key.
Figure 3: Encoding capacity of a 100 unit PUF key in demonstrated PUF systems.
Figure 4: Physical unclonable function keys.

Similar content being viewed by others

References

  1. Staake, T., Thiesse, F. & Fleisch, E. The emergence of counterfeit trade: a literature review. Eur. J. Mark. 43, 320–349 (2009). This paper discusses the economic losses due to counterfeit goods.

    Google Scholar 

  2. Organisation for Economic Co-operation and Development. Global trade in fake goods worth nearly half a trillion dollars a year — OECD & EUIPO. OECDhttps://www.oecd.org/industry/global-trade-in-fake-goods-worth-nearly-half-a-trillion-dollars-a-year.htm (2016).

  3. OECD/EUIPO. Trade in Counterfeit and Pirated Goods: Mapping the Economic Impact (OECD Publishing, 2016).

  4. Li, L. Technology designed to combat fakes in the global supply chain. Bus. Horiz. 56, 167–177 (2013).

    Google Scholar 

  5. International Chamber of Commerce. BASCAP: intermediaries can do more to combat counterfeiting and piracy. ICCWBOhttps://iccwbo.org/media-wall/news-speeches/2015/BASCAP-Intermediaries-can-do-more-to-combat-counterfeiting-and-piracy/ (2015).

  6. Pecht, M. & Tiku, S. Bogus: electronic manufacturing and consumers confront a rising tide of counterfeit electronics. IEEE Spectrum 43, 37–46 (2006). This paper discusses the security risk related to counterfeit electronics.

    Google Scholar 

  7. International Pharmaceutical Federation. Background information on counterfeit medicines. FIPhttp://www.fip.org/menu_counterfeitmedicines_policy (2014).

  8. World Health Organization. IMPACT. Counterfeit medicines: and update on estimates. WHOhttp://www.who.int/medicines/services/counterfeit/impact/TheNewEstimatesCounterfeit.pdf (2006).

  9. Aldhous, P. Counterfeit pharmaceuticals: murder by medicine. Nature 434, 132–136 (2005).

    CAS  PubMed  Google Scholar 

  10. Deisingh, A. K. Pharmaceutical counterfeiting. Analyst 130, 271–279 (2005).

    CAS  PubMed  Google Scholar 

  11. Newton, P. N., Green, M. D., Fernández, F. M., Day, N. P. J. & White, N. J. Counterfeit anti-infective drugs. Lancet Infect. Dis. 6, 602–613 (2006).

    CAS  PubMed  Google Scholar 

  12. Sheridan, C. Bad medicine. Nat. Biotechnol. 25, 707–709 (2007).

    CAS  PubMed  Google Scholar 

  13. Dégardin, K., Roggo, Y. & Margot, P. Understanding and fighting the medicine counterfeit market. J. Pharm. Biomed. Anal. 87, 167–175 (2014).

    PubMed  Google Scholar 

  14. Nayyar, G. M. L., Breman, J. G., Newton, P. N. & Herrington, J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect. Dis. 12, 488–496 (2012). One example of the significant impact on human health related to counterfeit medicine.

    PubMed  Google Scholar 

  15. Fernandez, F. M., Green, M. D. & Newton, P. N. Prevalence and detection of counterfeit pharmaceuticals: a mini review. Ind. Eng. Chem. Res. 47, 585–590 (2008).

    CAS  Google Scholar 

  16. Lehtonen, M., Oertel, N. & Vogt, H. Features, identity, tracing and cryptography in product authentication. IEEE Int. Tech. Manag. Conf. (ICE) 1–8 (2007). This paper defines the issues with clonable physical functions and contrasts them with the nature of PUFs, as well as describing the defining features of PUFs.

  17. Gooch, J., Daniel, B., Abbate, V. & Frascione, N. Taggant materials in forensic science: a review. Trends Anal. Chem. 83, 49–54 (2016).

    CAS  Google Scholar 

  18. Yoon, B. et al. Recent functional material based approaches to prevent and detect counterfeiting. J. Mater. Chem. C 1, 2388–2403 (2013). A review on clonable taggants using chemical methods.

    CAS  Google Scholar 

  19. Kumar, P., Singh, S. & Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale 8, 14297–14340 (2016).

    CAS  PubMed  Google Scholar 

  20. Paunescu, D., Stark, W. J. & Grass, R. N. Particles with an identity: tracking and tracing in commodity products. Powder Technol. 291, 344–350 (2016). A recent review on graphical, optical and chemical encoding strategies on particles.

    CAS  Google Scholar 

  21. Chen, G., Agren, H., Ohulchanskyy, T. Y. & Prasad, P. N. Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713 (2015).

    CAS  PubMed  Google Scholar 

  22. Tsang, M.-K., Bai, G. & Hao, J. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 44, 1585–1607 (2015).

    CAS  PubMed  Google Scholar 

  23. Lehtonen, M. in Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks (eds Ranasinghe, D. C., Sheng, Q. Z. & Zeadally, S. ) 331–351 (Springer Berlin Heidelberg, 2011). A review describing all aspects of an anti-counterfeiting system using physical, RFID-based anti-counterfeiting tags.

    Google Scholar 

  24. Jung, L., Hayward, J. A., Liang, M. B. & Berrada, A. DNA marking of previously undistinguished items for traceability. US Patent 9266370 (2016).

  25. Sleat, R. & Van Lint, G. Marking apparatus for nucleic acid marking of items. US Patent 8783194 (2014).

  26. Kydd, P. H. Polypeptides as chemical tagging materials. US Patent 4441943 (1984).

  27. Pappu, R., Recht, B., Taylor, J. & Gershenfeld, N. Physical one-way functions. Science 297, 2026–2030 (2002). This paper defines PUFs and demonstrates their use to generate a 1D barcode for data encryption purposes.

    CAS  PubMed  Google Scholar 

  28. Herder, C., Yu, M. D., Koushanfar, F. & Devadas, S. Physical unclonable functions and applications: a tutorial. Proc. IEEE 102, 1126–1141 (2014). A review of data encryption methods based on PUFs, highlighting the different methods used to make PUFs for applications in this area.

    Google Scholar 

  29. Andres, J., Hersch, R. D., Moser, J.-E. & Chauvin, A.-S. A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks. Adv. Funct. Mater. 24, 5029–5036 (2014).

    CAS  Google Scholar 

  30. Fei, J. & Liu, R. Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs. Mater. Sci. Eng. C 63, 657–662 (2016).

    CAS  Google Scholar 

  31. Baride, A. et al. A NIR-to-NIR upconversion luminescence system for security printing applications. RSC Adv. 5, 101338–101346 (2015).

    CAS  Google Scholar 

  32. De Cremer, G. et al. Optical encoding of silver zeolite microcarriers. Adv. Mater. 22, 957–960 (2010).

    CAS  PubMed  Google Scholar 

  33. Loving, C. D. Composite microdot and method of forming the same. EP Patent 0629989 A1 (1994).

  34. Swiegers, G. F., Bootle, B. W. & George, G. M. Method and system for identifying items. US Patent 20120242460 A1 (2012).

  35. Lee, P. K. Method of tagging with color-coded microparticles. US Patent 4053433 A (1977).

  36. Chambers, J., Yan, W., Garhwal, A. & Kankanhalli, M. Currency security and forensics: a survey. Multimed. Tools Appl. 74, 4013–4043 (2015).

    Google Scholar 

  37. Huang, S. & Wu, J. K. Optical watermarking for printed document authentication. IEEE Trans. Inform. Forens. Secur. 2, 164–173 (2007).

    Google Scholar 

  38. Dejneka, M. J. et al. Rare earth-doped glass microbarcodes. Proc. Natl Acad. Sci. USA 100, 389–393 (2003).

    CAS  PubMed  Google Scholar 

  39. Nicewarner-Peña, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    PubMed  Google Scholar 

  40. Zhang, Y. et al. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136, 4893–4896 (2014).

    CAS  PubMed  Google Scholar 

  41. Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 13, 524–529 (2014).

    CAS  PubMed  Google Scholar 

  42. Penn, S. G., Norton, S. M., Walton, I. D., Freeman, R. G. & Davis, G. in Optical Security and Counterfeit Deterrence Techniques V (ed. van Renesse, R. L. ) 337–340 (SPIE, 2004).

    Google Scholar 

  43. Pham, H. H., Gourevich, I., Jonkman, J. E. N. & Kumacheva, E. Polymer nanostructured material for the recording of biometric features. J. Mater. Chem. 17, 523–526 (2007).

    CAS  Google Scholar 

  44. Pham, H. H., Gourevich, I., Oh, J. K., Jonkman, J. E. N. & Kumacheva, E. A multidye nanostructured material for optical data storage and security data encryption. Adv. Mater. 16, 516–520 (2004).

    CAS  Google Scholar 

  45. Fayazpour, F. et al. Digitally encoded drug tablets to combat counterfeiting. Adv. Mater. 19, 3854–3858 (2007).

    CAS  Google Scholar 

  46. Finkel, N. H., Lou, X., Wang, C. & He, L. Peer reviewed: barcoding the microworld. Anal. Chem. 76, 352A–359A (2004).

    CAS  PubMed  Google Scholar 

  47. Wang, M., Duong, B., Fenniri, H. & Su, M. Nanomaterial-based barcodes. Nanoscale 7, 11240–11247 (2015).

    CAS  PubMed  Google Scholar 

  48. Gonzalez-García, L. et al. Tuning dichroic plasmon resonance modes of gold nanoparticles in optical thin films. Adv. Funct. Mater. 23, 1655–1663 (2013).

    Google Scholar 

  49. Sangeetha, N. M. et al. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags. Nanoscale 5, 9587–9592 (2013).

    CAS  PubMed  Google Scholar 

  50. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    CAS  PubMed  Google Scholar 

  51. Hu, H., Chen, Q.-W., Tang, J., Hu, X.-Y. & Zhou, X.-H. Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures. J. Mater. Chem. 22, 11048–11053 (2012).

    CAS  Google Scholar 

  52. Hu, H. et al. Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. Sci. Rep. 3, 1484 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Hu, H., Zhong, H., Chen, C. & Chen, Q. Magnetically responsive photonic watermarks on banknotes. J. Mater. Chem. C 2, 3695–3702 (2014).

    CAS  Google Scholar 

  54. Lee, H. S., Shim, T. S., Hwang, H., Yang, S.-M. & Kim, S.-H. Colloidal photonic crystals toward structural color palettes for security materials. Chem. Mater. 25, 2684–2690 (2013).

    CAS  Google Scholar 

  55. Xuan, R. & Ge, J. Invisible photonic prints shown by water. J. Mater. Chem. 22, 367–372 (2012).

    CAS  Google Scholar 

  56. Nam, H., Song, K., Ha, D. & Kim, T. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors. Sci. Rep. 6, 30885 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Khan, M. K., Bsoul, A., Walus, K., Hamad, W. Y. & MacLachlan, M. J. Photonic patterns printed in chiral nematic mesoporous resins. Angew. Chem. Int. Ed. 54, 4304–4308 (2015).

    CAS  Google Scholar 

  58. Liu, X., Wang, J., Tang, L., Xie, L. & Ying, Y. Flexible plasmonic metasurfaces with user-designed patterns for molecular sensing and cryptography. Adv. Funct. Mater. 26, 5515–5523 (2016).

    CAS  Google Scholar 

  59. Poncelet, O., Tallier, G., Simonis, P., Cornet, A. & Francis, L. A. Synthesis of bio-inspired multilayer polarizers and their application to anti-counterfeiting. Bioinspir. Biomim. 10, 026004 (2015).

    CAS  PubMed  Google Scholar 

  60. He, L., Wang, M., Ge, J. & Yin, Y. Magnetic assembly route to colloidal responsive photonic nanostructures. Acc. Chem. Res. 45, 1431–1440 (2012).

    CAS  PubMed  Google Scholar 

  61. Nie, X.-K. et al. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting. Nanoscale 6, 13097–13103 (2014).

    CAS  PubMed  Google Scholar 

  62. Yoon, B. et al. Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv. Mater. 23, 5492–5497 (2011).

    CAS  PubMed  Google Scholar 

  63. Wang, Q., Cai, J., Chen, K., Liu, X. & Zhang, L. Construction of fluorescent cellulose biobased plastics and their potential application in anti-counterfeiting banknotes. Macromol. Mater. Eng. 301, 377–382 (2016).

    CAS  Google Scholar 

  64. Sun, H. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, 3601 (2014).

    PubMed  Google Scholar 

  65. Han, T., Feng, X., Chen, D. & Dong, Y. A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. J. Mater. Chem. C 3, 7446–7454 (2015).

    CAS  Google Scholar 

  66. Tang, H.-W., Wong, M. Y.-M., Chan, S. L.-F., Che, C.-M. & Ng, K.-M. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Anal. Chem. 83, 453–458 (2011).

    CAS  PubMed  Google Scholar 

  67. Zhou, M., Chang, S. & Grover, C. P. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots. Opt. Express 12, 2925–2931 (2004).

    CAS  PubMed  Google Scholar 

  68. Bao, B. et al. Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small 11, 1649–1654 (2015).

    CAS  PubMed  Google Scholar 

  69. Jiang, K. et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew. Chem. Int. Ed. 55, 7231–7235 (2016).

    CAS  Google Scholar 

  70. Chen, L., Lai, C., Marchewka, R., Berry, R. M. & Tam, K. C. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale 8, 13288–13296 (2016).

    CAS  PubMed  Google Scholar 

  71. Song, Z. et al. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. Int. Ed. 128, 2823–2827 (2016).

    Google Scholar 

  72. Zhang, X. et al. Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence. RSC Adv. 6, 79620–79624 (2016).

    CAS  Google Scholar 

  73. White, K. A. et al. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 131, 18069–18071 (2009).

    CAS  PubMed  Google Scholar 

  74. Mei, J.-F. et al. A novel photo-responsive europium(iii) complex for advanced anti-counterfeiting and encryption. Dalton Trans. 45, 5451–5454 (2016).

    CAS  PubMed  Google Scholar 

  75. da Luz, L. L. et al. Inkjet printing of lanthanide–organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 7, 27115–27123 (2015).

    CAS  PubMed  Google Scholar 

  76. Gupta, B. K., Haranath, D., Saini, S., Singh, V. N. & Shanker, V. Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21, 055607 (2010).

    PubMed  Google Scholar 

  77. Reardon, D. F. Method for identifying articles and process for maintaining security. US Patent 20080305243 (2008).

  78. Aboutanos, V., Tiller, T., Reinhard, C. & Rascagnères, S. Secure document comprising luminescent chelates. WO Patent 2010130681 A1 (2010).

  79. Mirochnik, A. G. & Karacev, V. E. Compound of di (nitrate) acetylacetonatobis (1,10-fenantrolin) lantanoid(iii), applicable for luminescent additive to ink, and ink for hidden marking of valuables description. US Patent 20090145328 (2009).

  80. Kim, W. J., Nyk, M. & Prasad, P. N. Color-coded multilayer photopatterned microstructures using lanthanide(iii) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology 20, 185301 (2009).

    PubMed  Google Scholar 

  81. Blumenthal, T. et al. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications. Nanotechnology 23, 185305 (2012).

    PubMed  Google Scholar 

  82. Meruga, J. M. et al. Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology 23, 395201 (2012).

    PubMed  Google Scholar 

  83. Meruga, J. M., Baride, A., Cross, W., Kellar, J. J. & May, P. S. Red–green–blue printing using luminescence-upconversion inks. J. Mater. Chem. C 2, 2221–2227 (2014).

    CAS  Google Scholar 

  84. Meruga, J. M. et al. Multi-layered covert QR codes for increased capacity and security. Int. J. Comput. Appl. 37, 17–27 (2015).

    Google Scholar 

  85. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 8, 32–36 (2014).

    CAS  Google Scholar 

  86. Kumar, P., Dwivedi, J. & Gupta, B. K. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J. Mater. Chem. C 2, 10468–10475 (2014).

    CAS  Google Scholar 

  87. You, M. et al. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale 7, 4423–4431 (2015).

    CAS  PubMed  Google Scholar 

  88. You, M. et al. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting. Nanoscale 8, 10096–10104 (2016).

    CAS  PubMed  Google Scholar 

  89. Paunescu, D., Fuhrer, R. & Grass, R. N. Protection and deprotection of DNA — high-temperature stability of nucleic acid barcodes for polymer labeling. Angew. Chem. Int. Ed. 52, 4269–4272 (2013).

    CAS  Google Scholar 

  90. Mullard, A. DNA tags help the hunt for drugs. Nature 530, 367–369 (2016).

    CAS  PubMed  Google Scholar 

  91. Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4, 832–839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Puddu, M., Paunescu, D., Stark, W. J. & Grass, R. N. Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags. ACS Nano 8, 2677–2685 (2014).

    CAS  PubMed  Google Scholar 

  93. Shoshani, S., Piran, R., Arava, Y. & Keinan, E. A molecular cryptosystem for images by DNA computing. Angew. Chem. Int. Ed. 51, 2883–2887 (2012).

    CAS  Google Scholar 

  94. Tanaka, K., Okamoto, A. & Saito, I. Public-key system using DNA as a one-way function for key distribution. Biosystems 81, 25–29 (2005).

    CAS  PubMed  Google Scholar 

  95. Nellore, V., Xi, S. & Dwyer, C. Self-assembled resonance energy transfer keys for secure communication over classical channels. ACS Nano 9, 11840–11848 (2015).

    CAS  PubMed  Google Scholar 

  96. Glover, A., Aziz, N., Pillmoor, J., McCallien, D. W. J. & Croud, V. B. Evaluation of DNA as a taggant for fuels. Fuel 90, 2142–2146 (2011).

    CAS  Google Scholar 

  97. Butland, C. L. & Baggot, B. Labeling technique for countering product diversion and product counterfeiting. US Patent 6030657 (2000).

  98. Gooch, J., Koh, C., Daniel, B., Abbate, V. & Frascione, N. Establishing evidence of contact transfer in criminal investigation by a novel ‘peptide coding’ reagent. Talanta 144, 1065–1069 (2015).

    CAS  PubMed  Google Scholar 

  99. Gooch, J., Goh, H., Daniel, B., Abbate, V. & Frascione, N. Monitoring criminal activity through invisible fluorescent “peptide coding” taggants. Anal. Chem. 88, 4456–4460 (2016).

    CAS  PubMed  Google Scholar 

  100. Laure, C., Karamessini, D., Milenkovic, O., Charles, L. & Lutz, J.-F. Coding in 2D: using intentional dispersity to enhance the information capacity of sequence-coded polymer barcodes. Angew. Chem. Int. Ed. 55, 10722–10725 (2016).

    CAS  Google Scholar 

  101. Duong, B. et al. Printed multilayer microtaggants with phase change nanoparticles for enhanced labeling security. ACS Appl. Mater. Interfaces 6, 8909–8912 (2014).

    CAS  PubMed  Google Scholar 

  102. Duong, B., Liu, H., Ma, L. & Su, M. Covert thermal barcodes based on phase change nanoparticles. Sci. Rep. 4, 5170 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wise, S. H. & Almirall, J. R. Chemical taggant detection and analysis by laser-induced breakdown spectroscopy. Appl. Opt. 47, G15–G20 (2008).

    CAS  PubMed  Google Scholar 

  104. Cleary, M. Method of identifying a surface. US Patent 5811152 (1998).

  105. Buchanan, J. D. R. et al. Forgery: ‘fingerprinting’ documents and packaging. Nature 436, 475–475 (2005).

    CAS  PubMed  Google Scholar 

  106. Cowburn, R. Laser surface authentication — reading Nature's own security code. Contemp. Phys. 49, 331–342 (2008).

    CAS  Google Scholar 

  107. Geng, Y. et al. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci. Rep. 6, 26840 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bae, H. J. et al. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv. Mater. 27, 2083–2089 (2015). This paper examines a PUF made from polymer films, defines the need for PUFs in anti-counterfeiting and highlights the issues with clonable tags.

    CAS  PubMed  Google Scholar 

  109. Gassend, B., Clarke, D., van Dijk, M. & Devadas, S. Silicon physical random functions. Proc 9th ACM conf. comput. commun. secur. 148–160 (2002).

  110. Kim, J. et al. Anti-counterfeit nanoscale fingerprints based on randomly distributed nanowires. Nanotechnology 25, 155303 (2014).

    PubMed  Google Scholar 

  111. Fernandes, D., Krysmann, M. J. & Kelarakis, A. Carbogenically coated silica nanoparticles and their forensic applications. Chem. Commun. 52, 8294–8296 (2016).

    CAS  Google Scholar 

  112. Matoba, O., Sawasaki, T. & Nitta, K. Optical authentication method using a three-dimensional phase object with various wavelength readouts. Appl. Opt. 47, 4400–4404 (2008).

    PubMed  Google Scholar 

  113. Haist, T. & Tiziani, H. J. Optical detection of random features for high security applications. Opt. Commun. 147, 173–179 (1998).

    CAS  Google Scholar 

  114. Yeh, C.-H., Sung, P.-Y., Kuo, C.-H. & Yeh, R.-N. Robust laser speckle recognition system for authenticity identification. Opt. Express 20, 24382–24393 (2012).

    PubMed  Google Scholar 

  115. Nakayama, K. & Ohtsubo, J. Optical security device providing fingerprint and designed pattern indicator using fingerprint texture in liquid crystal. Opt. Eng. 51, 040506 (2012).

    Google Scholar 

  116. Tian, L. et al. Plasmonic nanogels for unclonable optical tagging. ACS Appl. Mater. Interfaces 8, 4031–4041 (2016).

    CAS  PubMed  Google Scholar 

  117. Ivanova, O., Elliott, A., Campbell, T. & Williams, C. B. Unclonable security features for additive manufacturing. Addit. Manuf. 1–4, 24–31 (2014).

    Google Scholar 

  118. Johansen, S., Radziwon, M., Tavares, L. & Rubahn, H.-G. Nanotag luminescent fingerprint anti-counterfeiting technology. Nanoscale Res. Lett. 7, 1–5 (2012).

    Google Scholar 

  119. Radziwon, M., Johansen, S. & Rubahn, H.-G. Anti-counterfeit solution from organic semiconductor. Procedia Eng. 69, 1405–1409 (2014).

    CAS  Google Scholar 

  120. Smith, A. F., Patton, P. & Skrabalak, S. E. Plasmonic nanoparticles as a physically unclonable function for responsive anti-counterfeit nanofingerprints. Adv. Funct. Mater. 26, 1315–1321 (2016).

    CAS  Google Scholar 

  121. Zheng, Y. et al. Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater. 28, 2330–2336 (2016).

    CAS  PubMed  Google Scholar 

  122. Chong, C. N., Jiang, D., Zhang, J. & Guo, L. Anti-counterfeiting with a random pattern. Sec. Inter. Conf. Emerging Secur. Inf. Syst. Technol. 146–153 (2008).

  123. Meldal, M. & Christensen, S. F. Microparticle matrix encoding of beads. Angew. Chem. Int. Ed. 49, 3473–3476 (2010).

    CAS  Google Scholar 

  124. Demirok, U. K., Burdick, J. & Wang, J. Orthogonal multi-readout identification of alloy nanowire barcodes. J. Am. Chem. Soc. 131, 22–23 (2009).

    CAS  PubMed  Google Scholar 

  125. Hu, Z. et al. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. Nat. Nanotechnol. 11, 559–565 (2016).

    CAS  PubMed  Google Scholar 

  126. Michael, K. L., Taylor, L. C., Schultz, S. L. & Walt, D. R. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem. 70, 1242–1248 (1998).

    CAS  PubMed  Google Scholar 

  127. Wagner, I. & Musso, H. New naturally occurring amino acids. Angew. Chem. Int. Ed. Engl. 22, 816–828 (1983).

    Google Scholar 

  128. Wolfbeis, O. S. Probes, sensors, and labels: why is real progress slow? Angew. Chem. Int. Ed. 52, 9864–9865 (2013).

    CAS  Google Scholar 

  129. Horstmeyer, R., Judkewitz, B., Vellekoop, I. M., Assawaworrarit, S. & Yang, C. Physical key-protected one-time pad. Sci. Rep. 3, 3543 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Zhang, H. & Tzortzakis, S. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces. Appl. Phys. Lett. 108, 211107 (2016).

    Google Scholar 

  131. Goorden, S. A., Horstmann, M., Mosk, A. P., Š koric, B. & Pinkse, P. W. H. Quantum-secure authentication of a physical unclonable key. Optica 1, 421–424 (2014).

    Google Scholar 

  132. Wolterink, T. A. W. et al. Programmable two-photon quantum interference in 103 channels in opaque scattering media. Phys. Rev. A 93, 053817 (2016).

    Google Scholar 

  133. McGrew, S. P. Holographic technology for anti-counterfeit security: present and future. NLI Ltdhttp://www.nli-ltd.com/publications/anticounterfeit_security.php (1996).

  134. Lu, Y. T. & Chi, S. Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications. Optik 114, 161–167 (2003).

    Google Scholar 

  135. Huang, C. et al. Unbreakable codes in electrospun fibers: digitally encoded polymers to stop medicine counterfeiting. Adv. Mater. 22, 2657–2662 (2010).

    CAS  PubMed  Google Scholar 

  136. Yoon, B. et al. An inkjet-printable microemulsion system for colorimetric polydiacetylene supramolecules on paper substrates. J. Mater. Chem. 22, 8680–8686 (2012).

    CAS  Google Scholar 

  137. Li, R. et al. Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and Raman probes as covert tag for anticounterfeiting applications. ACS Appl. Mater. Interfaces 8, 9384–9394 (2016).

    CAS  PubMed  Google Scholar 

  138. Osberg, K. D., Rycenga, M., Bourret, G. R., Brown, K. A. & Mirkin, C. A. Dispersible surface-enhanced Raman scattering nanosheets. Adv. Mater. 24, 6065–6070 (2012).

    CAS  PubMed  Google Scholar 

  139. Liu, Y., Lee, Y. H., Zhang, Q., Cui, Y. & Ling, X. Y. Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications. J. Mater. Chem. C 4, 4312–4319 (2016).

    CAS  Google Scholar 

  140. Li, D., Tang, L., Wang, J., Liu, X. & Ying, Y. Multidimensional SERS barcodes on flexible patterned plasmonic metafilm for anticounterfeiting applications. Adv. Opt. Mater. 4, 1475–1480 (2016).

    CAS  Google Scholar 

  141. Si, K. J. et al. Dual-coded plasmene nanosheets as next-generation anticounterfeit security labels. Adv. Opt. Mater. 3, 1710–1717 (2015).

    CAS  Google Scholar 

  142. Cui, Y., Hegde, R. S., Phang, I. Y., Lee, H. K. & Ling, X. Y. Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. Nanoscale 6, 282–288 (2014).

    CAS  PubMed  Google Scholar 

  143. Cui, Y. et al. Multiplex plasmonic anti-counterfeiting security labels based on surface-enhanced Raman scattering. Chem. Commun. 51, 5363–5366 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Villum Fonden for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Just Sørensen.

Ethics declarations

Competing interests

The authors have filed a patent application describing an optical authentication system based on phyical unclonable functions. The new system is unrelated to the content of this Review although related to the area.

PowerPoint slides

Glossary

Anti-counterfeiting systems

Systems comprising anti-counterfeiting tags, the means of authenticating the tags and specific points in the supply chain in which the authenticity of the products is confirmed by reading and validating the anti-counterfeiting tags.

Anti-counterfeiting tags

Physical marks that are placed on or inside products to ensure their authenticity. The nature of the mark must ensure that the tag can be read and validated in the anti-counterfeiting system.

Anti-counterfeiting methods

Initiatives undertaken by goods manufacturers to prevent the sale of counterfeit products. These include tagging genuine products with anti-counterfeiting tags.

Chemical anti-counterfeiting tag

A physical mark in or on an anti-counterfeiting tag that is based on the readout of a physical–chemical property.

PUF key

A physical object (the PUF tag) that carries a physical unclonable function (PUF) and the response (the PUF pattern), which has been recorded in a list of PUF keys (a database).

Stochastic process

A random process used to generate a random pattern in contrast to a pattern obtained from deterministic approaches.

PUF system

An anti-counterfeiting system based on physical unclonable functions (PUFs) that differs from regular anti-counterfeiting systems because it requires a record of all the PUF keys.

Encoding capacity

The number of data points a data storage system can carry. Here, it refers to the number of all the possible different physical unclonable functions produced when using a specific anti-counterfeiting system.

Taggant

An entity that produces a specific response and that can be a part of an anti-counterfeiting tag. Selected taggants can be used in a stochastic process to make random patterns.

Base number

The number of distinct responses within a single pixel in a tag (for example, in a binary system the base number is 2, because the taggant is either present (1) or not present (0)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arppe, R., Sørensen, T. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat Rev Chem 1, 0031 (2017). https://doi.org/10.1038/s41570-017-0031

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing