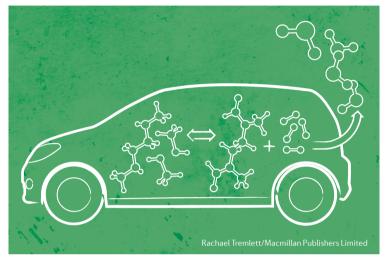
HYDROGEN STORAGE


A reformed approach

Potentially, CH₃OH/NH₃ mixtures could reversibly store up to 9.5 wt% H₂ while trapping carbon in the form of urea

22

The intermittency of renewable energy sources means that we need efficient technologies to store energy. One way to accomplish this is to use this energy to drive a reaction that affords a fuel such as H_{2} . As this energy carrier is difficult to store at room temperature, researchers turn to latent H₂ sources, such as methanol (CH₂OH). Although CH₂OH reacts with H₂O to afford CO₂ and the desired H₂, this steam-reforming process requires high temperatures. By contrast, the reversible conversion of CH₃OH and an amine to a formamide and H_2 — termed 'amine reforming' — is a mild and practical means of H₂ storage according to the group of Surva Prakash, who report their findings in the Journal of the

American Chemical Society. Reversing steam reforming is problematic because the oxidized and dehydrogenated product of $CH_{3}OH$ (namely, CO_{3}) is volatile and requires separation from H₂. "An attractive alternative is to avoid the release of CO₂ altogether," states Prakash, a goal well met by their amine reforming reaction, in which a ruthenium catalyst dehydrogenates CH₃OH to formaldehyde (CH₂O), which then condenses with a secondary amine to form a carbinolamine. Subsequent dehydrogenation of this product affords a formamide - a non-volatile store of CH₃OHderived CO. The secondary diamine N,N'-dimethylethylenediamine reacts reversibly with two equivalents of CH₃OH to liberate a bis(formamide) and four equivalents of H₂; the weight of H₂ is 5.3% of the total. The conversion of ethylenediamine to the corresponding cyclic urea and H₂ would seem a better choice (6.6 wt% H₂), but the primary amines tested were found to react sluggishly.

Just as crucial as the choice of substrate is the type of catalyst used. The dehydrogenative coupling of CH₃OH with N,N'-dimethylethylenediamine proceeds smoothly (toluene, 5 mol% K₃PO₄, 120 °C, 90% yield) with the secondary amine complex $[Ru{HN(CH_2CH_2P^iPr_2)_2}H(CO)Cl].$ The catalyst is bidirectional as it also hydrogenates the bis(formamide) back to the precursors (>95% yield). The mechanism involves interconversion of a hydridoruthenium amine with a ruthenium amide and H₂; the complex of the methylated amine analogue, MeN(CH₂CH₂PⁱPr₂),, is inactive. Other catalysts mediate deleterious dehydrogenation of CH₂O to CO, and the presence of the latter in the H₂ produced — even in trace quantities - poisons H₂ oxidation catalysts in fuel cells.

It is promising that a commercially available catalyst can reversibly dehydrocouple CH_3OH and amines to give CO- and CO_2 -free H_2 . This study compares favourably with work in which elaborate catalysts mediated a similar reaction with CH_3CH_2OH , a heavier H_2 carrier with a CH_3 group that is inert

under the reaction conditions. However, although Prakash's team can drive CH₃OH dehydrocoupling in either direction by controlling H₂ pressure, it needs heat and is slow in the absence of solvent, the weight of which (not to mention that of the catalyst) makes the total H, weight percentage much lower than the US Department of Energy target (5.5 wt% H₂ by 2020). Acknowledging this, Prakash is also looking for bidirectional catalysts for steam reforming under mild conditions. "Potentially, CH₂OH/NH₂ mixtures could reversibly store up to 9.5 wt% H₂ while trapping carbon in the form of urea," notes Prakash. Once developed, these technologies would boost the utility of a methanol economy, something that our environment will no doubt welcome. David Schilter

ORIGINAL ARTICLE Kothandaraman, J. et al. Efficient reversible hydrogen carrier system based on amine reforming of methanol. J. Am. Chem. Soc. 139, 2549–2552 (2017) WEB SITE

US Department of Energy Office of Energy Efficiency & Renewable Energy: https://energy. gov/eere/fuelcells/materials-based-hydrogenstorage