Abstract
2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer–substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Two-dimensional Stiefel-Whitney insulators in liganded Xenes
npj Computational Materials Open Access 10 January 2022
-
Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity
npj Computational Materials Open Access 16 November 2021
-
Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials
Nature Communications Open Access 07 October 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Vogt, P. et al. Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).
Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).
Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Mannix, A. J., Kiraly, B., Fisher, B. L., Hersam, M. C. & Guisinger, N. P. Silicon growth at the two-dimensional limit on Ag(111). ACS Nano 8, 7538–7547 (2014).
Shirai, T. et al. Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface. Phys. Rev. B 89, 241403 (2014).
Satta, M., Colonna, S., Flammini, R., Cricenti, A. & Ronci, F. Silicon reactivity at the Ag(111) surface. Phys. Rev. Lett. 115, 026102 (2015).
Rockett, A. The Materials Science for Semiconductors (Springer, 2008).
Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).
Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014).
Douglas, B. & Ho, S.-M. Structure and Chemistry of Crystalline Solids (Springer, 2007).
Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).
Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).
Alexandrova, A. N., Boldyrev, A. I., Zhai, H.-J. & Wang, L.-S. Electronic structure, isomerism, and chemical bonding in B7− and B7 . J. Phys. Chem. A 108, 3509–3517 (2004).
Boustani, I. Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n = 2–14). Phys. Rev. B 55, 16426 (1997).
Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).
Lau, K. C. & Pandey, R. Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007).
Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).
Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).
Ma, F. et al. Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016).
Lau, K. C., Pati, R., Pandey, R. & Pineda, A. C. First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett. 418, 549–554 (2006).
Bezugly, V. et al. Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities. ACS Nano 5, 4997–5005 (2011).
Yu, X., Li, L., Xu, X.-W. & Tang, C.-C. Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116, 20075–20079 (2012).
Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).
Huang, W. et al. A concentric planar doubly π-aromatic B19− cluster. Nat. Chem. 2, 202–206 (2010).
Piazza, Z. A., Hu, H. S., Li, W. L., Zhao, Y. F. & Li, J. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).
Yang, X., Ding, Y. & Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402(R) (2008).
Kunstmann, J., Bezugly, V., Rabbel, H., Rümmeli, M. H. & Cuniberti, G. Unveiling the atomic structure of single-wall boron nanotubes. Adv. Funct. Mater. 24, 4127–4134 (2014).
Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).
Zhang, L. Z., Yan, Q. B., Du, S. X., Su, G. & Gao, H. J. Boron sheet adsorbed on metal surfaces: structures and electronic properties. J. Phys. Chem. A 116, 18202–18206 (2012).
Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).
Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).
Zhang, Z., Yang, Y., Gao, G. & Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 127, 13214–13218 (2015).
Boustani, I., Quandt, A., Hernández, E. & Rubio, A. New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3111 (1999).
Tian, J. et al. One-dimensional boron nanostructures: prediction, synthesis, characterizations, and applications. Nanoscale 2, 1375–1389 (2010).
Wang, Y., Fan, J. & Trenary, M. Surface chemistry of boron oxidation. 1. Reactions of oxygen and water with boron films grown on tantalum(110). Chem. Mater. 5, 192–198 (1993).
Ciuparu, D., Klie, R. F., Zhu, Y. & Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004).
Liu, F. et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010).
Tai, G. et al. Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 127, 15693–15697 (2015).
Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).
Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).
Zhang, Z. et al. Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622–6627 (2016).
Feng, B. et al. Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94, 041408(R) (2016).
Zhao, Y., Zeng, S. & Ni, J. Phonon-mediated superconductivity in borophenes. Appl. Phys. Lett. 108, 242601–242606 (2016).
Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016).
Zhao, Y., Zeng, S. & Ni, J. Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016).
Eremets, M. I. Superconductivity in boron. Science 293, 272–274 (2001).
Sun, L. et al. Pressure-induced superconducting state in crystalline boron nanowires. Phys. Rev. B 79, 140505 (2009).
Jiao, Y., Ma, F., Bell, J., Bilic, A. & Du, A. Two-dimensional boron hydride sheets: high stability, massless dirac fermions, and excellent mechanical properties. Angew. Chem. Int. Ed. 55, 10292–10295 (2016).
Li, W.-L. et al. The planar CoB18− cluster as a motif for metallo-borophenes. Angew. Chem. Int. Ed. 55, 7358–7363 (2016).
Corey, J. Y. in Organic Silicon Compounds Volume 1 and Volume 2 (eds Patai, A. & Rappoport, Z. ) 1–56 (Wiley, 1989). [Au: citation OK?]
Takeda, K. & Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916 (1994).
Cahangirov, S., Topsakal, M., Aktürk, E., S¸ahin, H. & Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).
Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).
Bansil, A., Lin, H. & Das, T. Colloquium: topological band theory. Rev. Mod. Phys. 88, 021004–021037 (2016).
Manoharan, H. C. Topological insulators: a romance with many dimensions. Nat. Nanotechnol. 5, 477–479 (2010).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Bock, H. Fundamentals of silicon chemistry: molecular states of silicon-containing compounds. Angew. Chem. Int. Ed. 28, 1627–1650 (1989).
Ho, K.-M., Shvartsburg, A. A., Pan, B., Lu, Z. Y. & Wang, C.-Z. Structures of medium-sized silicon clusters. Nature 392, 582–585 (1998).
Jose, D. & Datta, A. Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 47, 593–602 (2014).
Guzmán-Verri, G. & Lew Yan Voon, L. Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007).
Cahangirov, S. et al. Atomic structure of the 3 × 3 phase of silicene on Ag(111). Phys. Rev. B 90, 035448 (2014).
Enriquez, H., Vizzini, S., Kara, A., Lalmi, B. & Oughaddou, H. Silicene structures on silver surfaces. J. Phys. Condens. Matter 24, 314211 (2012).
Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003 (2012).
Kikutake, K., Ezawa, M. & Nagaosa, N. Edge states in silicene nanodisks. Phys. Rev. B 88, 115432 (2013).
Tahir, M., Manchon, A., Sabeeh, K. & Schwingenschlögl, U. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Appl. Phys. Lett. 102, 162412 (2013).
Kim, Y., Choi, K., Ihm, J. & Jin, H. Topological domain walls and quantum valley Hall effects in silicene. Phys. Rev. B 89, 085429 (2014).
O'Hare, A., Kusmartsev, F. V. & Kugel, K. I. A. Stable “flat” form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett. 12, 1045–1052 (2012).
Tsai, W. F. et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 4, 1500 (2013).
Erwin, S. C. & Himpsel, F. J. Intrinsic magnetism at silicon surfaces. Nat. Commun. 1, 58 (2010).
Drummond, N., Zólyomi, V. & Fal'ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012).
Ni, Z. et al. Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012).
Kara, A. et al. Physics of silicene stripes. J. Supercond. Nov. Magn. 22, 259–263 (2009).
Aufray, B. et al. Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010).
Speiser, E. et al. Raman spectroscopy study of silicon nanoribbons on Ag(110). Appl. Phys. Lett. 104, 161612 (2014).
Takagi, N. et al. Silicene on Ag(111): geometric and electronic structures of a new honeycomb material of Si. Progress Surface Sci. 90, 1–20 (2015).
Feng, B. et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012).
Jamgotchian, H. et al. Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J. Phys. Condens. Matter 24, 172001 (2012).
Meng, L. et al. Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013).
Chiappe, D. et al. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26, 2096–2101 (2013).
Fleurence, A. et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012).
Chen, M. X. & Weinert, M. Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett. 14, 5189–5193 (2014).
Chen, L. et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 109, 056804 (2012).
Arafune, R., Lin, C. L., Nagao, R., Kawai, M. & Takagi, N. Comment on “Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon”. Phys. Rev. Lett. 110, 229701 (2013).
Feng, B. et al. Observation of Dirac cone warping and chirality effects in silicene. ACS Nano 7, 9049–9054 (2013).
Lin, C.-L. et al. Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801 (2013).
Cahangirov, S. et al. Electronic structure of silicene on Ag(111): strong hybridization effects. Phys. Rev. B 88, 035432 (2013).
Zhuang, J. et al. Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys. Rev. B 91, 161409 (2015).
De Padova, P. et al. Multilayer silicene: clear evidence. 2D Mater. 3, 1–7 (2016).
Acun, A., Poelsema, B., Zandvliet, H. J. W. & van Gastel, R. The instability of silicene on Ag(111). Appl. Phys. Lett. 103, 263119 (2013).
Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).
Molle, A. et al. Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater. 23, 4340–4344 (2013).
Huang, B., Xiang, H. J. & Wei, S.-H. Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. Phys. Rev. Lett. 111, 145502 (2013).
Qiu, J. et al. Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 114, 126101 (2015).
Qiu, J. et al. From silicene to half-silicane by hydrogenation. ACS Nano 9, 11192–11199 (2015).
Du, Y. et al. Tuning the band gap in silicene by oxidation. ACS Nano 8, 10019–10025 (2014).
Li, W. et al. Ordered chlorinated monolayer silicene structures. Phys. Rev. B 93, 155410 (2016).
Du, Y. et al. Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation. Sci. Adv. 2, e1600067 (2016).
Hersam, M. C., Guisinger, N. P., Lee, J., Cheng, K. & Lyding, J. W. Variable temperature study of the passivation of dangling bonds at Si(100)-2 × 1 reconstructed surfaces with H and D. Appl. Phys. Lett. 80, 201 (2002).
Jiang, S., Arguilla, M. Q., Cultrara, N. D. & Goldberger, J. E. Covalently-controlled properties by design in group IV graphane analogues. Acc. Chem. Res. 48, 144–151 (2015).
Si, C. et al. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 89, 115429 (2014).
Li, L. et al. Buckled germanene formation on Pt(111). Adv. Mater. 26, 4820–4824 (2014).
Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).
Derivaz, M. et al. Continuous germanene layer on Al(111). Nano Lett. 15, 2510–2516 (2015).
Bampoulis, P. et al. Germanene termination of Ge2Pt crystals on Ge(110). J. Phys. Condens. Matter 26, 442001 (2014).
Zhang, L. et al. Structural and electronic properties of germanene on MoS2 . Phys. Rev. Lett. 116, 256804 (2016).
Švec, M. et al. Silicene versus two-dimensional ordered silicide: atomic and electronic structure of Si-(√19 × √19) R23.4°/Pt(111). Phys. Rev. B 89, 201412 (2014).
Jiang, S. et al. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 5, 3389 (2014).
Liu, C.-C., Jiang, H. & Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011).
Broek, B. V. D. et al. Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization. 2D Mater. 1, 021004 (2014).
Møller, P. J. & Dittmar-Wituski, A. On the growth of epitaxial ultrathin films of α-Sn on CdTe(110). Mater. Sci. Eng. B 17, 112–117 (1993).
Osaka, T., Omi, H., Yamamoto, K. & Ohtake, A. Surface phase transition and interface interaction in the α-Sn/InSb{111} system. Phys. Rev. B 50, 7567–7572 (1994).
Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).
Chou, B.-H. et al. Hydrogenated ultra-thin tin films predicted as two- dimensional topological insulators. New J. Phys. 16, 115008 (2014).
Wu, S.-C., Shan, G. & Yan, B. Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. Phys. Rev. Lett. 113, 256401 (2014).
Zhang, G.-F., Li, Y. & Wu, C. Honeycomb lattice with multiorbital structure: topological and quantum anomalous Hall insulators with large gaps. Phys. Rev. B 90, 075114 (2014).
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).
Liu, B. et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).
Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 1–9 (2016).
Toy, A. D. F. in The Chemistry of Phosphorus 389–406 (Elsevier, 1973).
Zhu, Z. & Tománek, D. Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).
Guan, J., Zhu, Z. & Tománek, D. Tiling phosphorene. ACS Nano 8, 12763–12768 (2014).
Köpf, M. et al. Access and in situ growth of phosphorene-precursor black phosphorus. J. Crystal Growth 405, 6–10 (2014).
Nilges, T., Kersting, M. & Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181, 1707–1711 (2008).
Lange, S., Schmidt, P. & Nilges, T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem. 46, 4028–4035 (2007).
Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).
Kang, J. et al. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl Acad. Sci. USA 113, 11688–11693 (2016).
Kang, J. et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015).
Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).
Smith, J. B., Hagaman, D. & Ji, H.-F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 1–8 (2016).
Li, X. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 1–6 (2015).
Zhang, J. L. et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903–4908 (2016).
Ryder, C. R., Wood, J. D., Wells, S. A. & Hersam, M. C. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016).
Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).
Tayari, V. et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6, 7702 (2015).
Doganov, R. A. et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl. Phys. Lett. 106, 083505 (2015).
Xiang, D. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).
Ryder, C. R. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).
Hofmann, P. The surfaces of bismuth: structural and electronic properties. Progress Surface Sci. 81, 191–245 (2006).
Lu, Y. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 15, 80–87 (2015).
Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).
Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).
De Renzi, V., Betti, M. G. & Mariani, C. Quantum size effects and temperature dependence of low-energy electronic excitations in thin Bi crystals. Phys. Rev. B 48, 4767–4776 (1993).
Cho, S. et al. Growth-mode modification of Bi on CdTe(111)A using Te monolayer deposition. Phys. Rev. B 58, 2324–2328 (1998).
Nagao, T. et al. Nanofilm allotrope and phase transformation of ultrathin bi film on si(111)-7 × 7. Phys. Rev. Lett. 93, 105501 (2004).
Yaginuma, S. et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf. Sci. 601, 3593–3600 (2007).
Scott, S., Kral, M. & Brown, S. Bi on graphite: morphology and growth characteristics of star-shaped dendrites. Phys. Rev. B 73, 205424 (2006).
Chen, M. et al. Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: a scanning tunneling microscopy study. Appl. Phys. Lett. 101, 081603 (2012).
Hattab, H. et al. Epitaxial Bi(111) films on Si(001): strain state, surface morphology, and defect structure. Thin Solid Films 516, 8227–8231 (2008).
Koitzsch, C. et al. Growth of thin Bi films on W(110). Surf. Sci. 527, 51–56 (2003).
Hirahara, T. et al. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3 . Phys. Rev. Lett. 107, 166801 (2011).
Hirahara, T. et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys. Rev. Lett. 97, 146803 (2006).
Walker, E. S., Na, S. R., Jung, D., March, S. D. & Kim, J. S. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 16, 6931–6938 (2016).
Kokubo, I., Yoshiike, Y., Nakatsuji, K. & Hirayama, H. Ultrathin Bi(110) films on Si(111)√3 × √3-B substrates. Phys. Rev. B 91, 075429 (2015).
Kowalczyk, P. J. et al. Surface science. Surf. Sci. 605, 659–667 (2011).
Sun, J.-T. et al. Energy-gap opening in a Bi(110) nanoribbon induced by edge reconstruction. Phys. Rev. Lett. 109, 246804 (2012).
Ast, C. & Höchst, H. Electronic structure of a bismuth bilayer. Phys. Rev. B 67, 113102 (2003).
Ma, Y., Dai, Y., Kou, L., Frauenheim, T. & Heine, T. Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 15, 1083–1089 (2015).
Holdren, J. P. Materials genome initiative for global competitiveness. (National Science and Technology Council and Office of Science and Technology Policy, 2011).
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. http://dx.doi.org/10.1038/nmat4703 (2016).
Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015).
Kamal, C. & Ezawa, M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015).
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).
Kang, J. et al. Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nat. Commun. 5, 5478 (2014).
Zheng, H. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1309–1312 (2009).
Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).
Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).
Rodríguez-Manzo, J. A., Pham-Huu, C. & Banhart, F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5, 1529–1534 (2011).
Edwards, R. S. & Coleman, K. S. Graphene film growth on polycrystalline metals. Acc. Chem. Res. 46, 23–30 (2013).
Koma, A. Van der Waals epitaxy — a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992).
Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 1–5 (2010).
Xue, J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).
Yaginuma, S. et al. Electronic structure of ultrathin bismuth films with A7 and black-phosphorus-like structures. J. Phys. Soc. Jpn 77, 014701 (2008).
Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).
Acknowledgements
This work was performed at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge funding from the Office of Naval Research (Grant No. N00014-14-1-0669) and the National Science Foundation Graduate Fellowship Program (DGE-1324585).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Glossary
- Ultrahigh vacuum
-
Pressures less than ∼10−7 Pa (that is, 10−9 mbar or 10−9 torr), at which the rate of atomic impingement is low enough to preserve atomically clean surfaces for highly reactive samples.
- n-Fold symmetry
-
A term to denote the degree of rotational symmetry of a 2D material with respect to the normal direction of the substrate or material basal plane. The number of equivalent rotational configurations is denoted by n (for example, triangles, squares and hexagons have 3, 4 and 6-fold symmetry, respectively).
- Topologically non-trivial electronic states
-
Materials in which the electronic structure is modified by strong spin—orbit coupling effects to exhibit topologically protected electronic states. These states are localized to the surfaces of 3D materials or the edges of 2D materials. Electronic charge carriers in these states are intrinsically protected from scattering.
- Epitaxial
-
A growth mode of materials, in which the overlayer material exhibits a well-defined crystallographic relationship with the substrate.
- Functionalizations
-
Intentional chemical modifications of a material to selectively alter its properties.
- Spintronics
-
Proposed methodology for devices based on the manipulation of electron spin (as opposed to the manipulation of charge in conventional electronics).
- Dopants
-
Atomic or molecular species added to a material to controllably tune its properties. These may include species that modify the carrier concentration, magnetic properties, or chemical reactivity.
Rights and permissions
About this article
Cite this article
Mannix, A., Kiraly, B., Hersam, M. et al. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem 1, 0014 (2017). https://doi.org/10.1038/s41570-016-0014
Published:
DOI: https://doi.org/10.1038/s41570-016-0014
This article is cited by
-
Chemical Synthesis of Organo-siloxene 2D Materials from Calcium Di-Silicide: Characterization, Dielectric and Electrochemical Studies
Silicon (2023)
-
A review of low-cost approaches to synthesize graphene and its functional composites
Journal of Materials Science (2023)
-
Nanoclusters as Synthons for Unit-Cell-Size Comparable One-Dimensional Nanostructures
Chemical Research in Chinese Universities (2023)
-
Two-dimensional Stiefel-Whitney insulators in liganded Xenes
npj Computational Materials (2022)
-
2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications
Nano Research (2022)