Opinion: Studies on the origin of life — the end of the beginning


Understanding how life on Earth might have originated is the major goal of origins of life chemistry. To proceed from simple feedstock molecules and energy sources to a living system requires extensive synthesis and coordinated assembly to occur over numerous steps, which are governed only by environmental factors and inherent chemical reactivity. Demonstrating such a process in the laboratory would show how life can start from the inanimate. If the starting materials were irrefutably primordial and the end result happened to bear an uncanny resemblance to extant biology — for what turned out to be purely chemical reasons, albeit elegantly subtle ones — then it could be a recapitulation of the way that natural life originated. We are not yet close to achieving this end, but recent results suggest that we may have nearly finished the first phase: the beginning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Difficulties of one-carbon compound dimerization and how to achieve the equivalent.
Figure 2: Underlying similarities between extant metabolism and cyanosulfidic protometabolism.
Figure 3: Transition to life: onwards and upwards.
Figure 4: Towards RNA cycling.


  1. 1

    Sutherland, J. D. The origin of life — out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Sleep, N. H. & Zahnle, K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28529–28544 (1998).

    Article  Google Scholar 

  4. 4

    Abramov, O. & Mojzsis, S. J. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459, 419–422 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Gánti, T. The Principles of Life (Oxford Univ. Press, 2003).

    Google Scholar 

  6. 6

    Paterson, T. & Wood, H. C. S. Deuterium exchange of C-methyl protons in 6,7-dimethyl-8-d-ribityl-lumazine, and studies of the mechanism of riboflavin biosynthesis. J. Chem. Soc. D 290–291 (1969).

  7. 7

    Powner, M. W. & Sutherland, J. D. Prebiotic chemistry: a new modus operandi. Phil. Trans. R. Soc. B 366, 2870–2877 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).

    CAS  Article  Google Scholar 

  9. 9

    Parker, E. T. et al. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc. Natl Acad. Sci. USA 108, 5526–5531 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Sanchez, R. A., Ferris, J. P. & Orgel, L. E. Studies in prebiotic synthesis II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J. Mol. Biol. 80, 223–253 (1967).

    Google Scholar 

  11. 11

    Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 4, 895–899 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. 52, 5845–5847 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Sauer, M. C., Crowell, R. A. & Shkrob, I. A. Electron photodetachment from aqueous anions. 1. Quantum yields for generation of hydrated electron by 193 and 248 nm laser photoexcitation of miscellaneous inorganic anions. J. Phys. Chem. A 108, 5490–5502 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Zard, S. Z. Iminyl radicals: a fresh look at a forgotten species (and some of its relatives). Synlett 1996, 1148–1154 (1996).

    Article  Google Scholar 

  15. 15

    Lohrmann, R. &. Orgel, L. E. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science 171, 490–494 (1971).

    CAS  Article  Google Scholar 

  16. 16

    Schoffstall, A. M. Prebiotic phosphorylation of nucleosides in formamide. Orig. Life 7, 399–412 (1976).

    CAS  Article  Google Scholar 

  17. 17

    Burcar, B. et al. Darwin's warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew. Chem. Int. Ed. 55, 13249–13253 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Jackson, J. B. Natural pH gradients in hydrothermal alkali vents were unlikely to have played a role in the origin of life. J. Mol. Evol. 83, 1–11 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Martin, W. F., Sousa, F. L. & Lane, N. Energy at life's origin. Science 344, 1092–1093 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Springsteen, G. Reaching back to jump forward: recent efforts towards a systems-level hypothesis for an early RNA world. ChemBioChem 16, 1411–1413 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Sojo, V., Herschy, B., Whicher, A., Camprubí, E. & Lane, N. The origin of life in alkaline hydrothermal vents. Astrobiology 16, 181–197 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Schenk, G., Duggleby, R. G. & Nixon, P. F. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int. J. Biochem. Cell Biol. 30, 1297–1318 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Chipman, D. M., Duggleby, R. G. & Tittmann, K. Mechanisms of acetohydroxyacid synthases. Curr. Opin. Chem. Biol. 9, 475–481 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Wong, S. H., Lonhienne, T. G., Winzor, D. J., Schenk, G. & Guddat, L. W. Bacterial and plant ketol-acid reductoisomerases have different mechanisms of induced fit during the catalytic cycle. J. Mol. Biol. 424, 168–179 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Pirrung, M. C., Holmes, C. P., Horowitz, D. M. & Nunn, D. S. Mechanism and stereochemistry of α,β-dihydroxyacid dehydratase. J. Am. Chem. Soc. 113, 1020–1025 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Richard, J. P. Acid–base catalysis of the elimination and isomerization reactions of triose phosphates. J. Am. Chem. Soc. 106, 4926–4936 (1984).

    CAS  Article  Google Scholar 

  28. 28

    Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 3, 130156 (2013).

    Article  Google Scholar 

  29. 29

    Kuhn, H. Model consideration for the origin of life. Naturwissenschaften 63, 68–80 (1976).

    CAS  Article  Google Scholar 

  30. 30

    Jiménez, J. I., Xulvi-Brunet, R., Campbell, G. W., Turk-MacLeod, R. & Chen, I. A. Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc. Natl Acad. Sci. USA 110, 14984–14989 (2013).

    Article  Google Scholar 

  31. 31

    Engelhart, A. E., Powner, M. W. & Szostak, J. W. Functional RNAs exhibit tolerance for non-heritable 2′–5′ versus 3′–5′ backbone heterogeneity. Nat. Chem. 5, 390–394 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 5, 383–389 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Usher, D. A. & McHale, A. H. Hydrolytic stability of helical RNA: a selective advantage for the natural 3′,5′-bond. Proc. Natl Acad. Sci. USA 73, 1149–1153 (1976).

    CAS  Article  Google Scholar 

  35. 35

    Usher, D. A. Early chemical evolution of nucleic acids: a theoretical model. Science 196, 311–313 (1977).

    CAS  Article  Google Scholar 

  36. 36

    Rohatgi, R., Bartel, D. P. & Szostak, J. W. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3′–5′ phosphodiester bonds. J. Am. Chem. Soc. 118, 3340–3344 (1996).

    CAS  Article  Google Scholar 

  37. 37

    Kuusela, S. & Lönnberg, H. Metal ion-promoted hydrolysis of uridine 2′,3′-cyclic monophosphate: effect of metal chelates and uncomplexed aquo ions. J. Phys. Org. Chem. 5, 803–811 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Lehman, N. A recombination-based model for the origin and early evolution of genetic information. Chem. Biodivers. 5, 1707–1717 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Pace, N. R. Origin of life-facing up to the physical setting. Cell 65, 531–533 (1991).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Medical Research Council (No. MC_UP_A024_1009), and a grant from the Simons Foundation (No. 290362 to J.D.S.). J.D.S. thanks members of his group for helpful discussions and suggestions.

Author information



Corresponding author

Correspondence to John D. Sutherland.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sutherland, J. Opinion: Studies on the origin of life — the end of the beginning. Nat Rev Chem 1, 0012 (2017). https://doi.org/10.1038/s41570-016-0012

Download citation

Further reading