Abstract
London dispersion forces are the weakest component of Van der Waals interactions. They arise from attractions between instantaneously induced dipoles on neighbouring atoms. Their relative weakness, in particular for light atoms, such as hydrogen, has led to their importance being largely ignored in discussions of molecular stability and reactivity. This Review highlights the influence of these attractive forces ā usually between CāH moieties in ancillary ligands ā on the physical and chemical properties of organometallic and inorganic molecules. We feature recent examples of organic species that have informed current thinking and follow with a discussion of several prominent inorganic and organometallic complexes wherein dispersion forces have been explicitly identified or calculated. These forces strongly influence the behaviour of such complexes and often have a defining structural role. Attention is also drawn to several compounds in which significant attractive dispersion forces are probably present but have not been investigated.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Structure-property relationships of photofunctional diiridium(II) complexes with tetracationic charge and an unsupported IrāIr bond
Communications Chemistry Open Access 23 November 2022
-
Contrasting behaviour under pressure reveals the reasons for pyramidalization in tris(amido)uranium(III) and tris(arylthiolate) uranium(III) molecules
Nature Communications Open Access 07 July 2022
-
Formation of active species from ruthenium alkylidene catalystsāan insight from computational perspective
Journal of Molecular Modeling Open Access 07 November 2019
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Ā 30Ā days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Tang, K.-T. & Toennies, J. P. Johannes Diderik van der Waals: a pioneer in the molecular sciences and nobel prize winner in 1910. Angew. Chem. Int. Ed. 49, 9574ā9579 (2010).
London, F. Zur Theorie und Systematik der MolekularkrƤfte. Z. Physik. 63, 245 (1930); English translation available in London, F. The general theory of molecular forces. Trans. Faraday Soc. 33, 8bā26 (1937).
Parsegian, V. A. in Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, 2005).
Eisenschitz, R. & London, F. Ćber das VerhƤltnis der van der Waalsschen KrƤfte zu den homƶopolaren BindungskrƤften. Z. Phys. 60, 491ā527 (in German) (1930).
Pace, N. C., Scholtz, J. M. & Grimsley, G. R. Forces stabilizing proteins. FEBS Lett. 588, 2177ā2184 (2014).
Biedermann, F. & Schneider, H.-J. Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216ā5300 (2016).
Mosher, H. S. & Tidwell, T. T. Frank C. Whitmore and steric hindrance: a duo of centennials. J. Chem. Educ. 67, 9ā14 (1990).
Newman, M. S. Steric Effects in Organic Chemistry (Wiley, 1956).
Power, P. P. Some highlights from the development and use of bulky monodentate ligands. J. Organomet. Chem. 689, 3904ā3919 (2004).
Clyburne, J. A. C. & McMullen, N. Unusual structures of main group organometallic compounds containing m-terphenyl ligands. Coord. Chem. Rev. 210, 73ā99 (2000).
Twamley, B., Haubrich, S. T. & Power, P. P. in Advances in Organometallic Chemistry Vol. 44 1ā65 (Academic Press, 1999).
Ni, C. & Power, P. P. in MetalāMetal Bonding Vol. 136 (ed. Parkin, G. ) 59ā111 (Springer, 2010).
Arduengo, A. J. III Looking for stable carbenes: the difficulty in starting anew. Acc. Chem. Res. 32, 913ā921 (1999).
Bourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39ā92 (2000).
Valente, C. et al. Complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314ā3332 (2012).
Scott, N. M. & Nolan, S. P. Stabilization of organometallic species achieved by the use of N-heterocyclic carbene (NHC) ligands. Eur. J. Inorg. Chem. 18, 5ā1828 (2005).
Asay, M., Jones, C. & Driess, M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354ā396 (2011).
Jones, C. Bulky guanidinates for the stabilization of low oxidation state metallacycles. Coord. Chem. Rev. 254, 1273ā1289 (2010).
Edelmann, F. T. in Advances in Organometallic Chemistry Vol. 57 (eds hill, F. E. & Fink, M. J. ) 183ā352 (Academic Press, 2008).
Mindiola, D. J., Holland, P. L. & Warren, T. H. in Inorganic Syntheses (ed. Rauchfuss, T. B. ) (Wiley, 2010).
Bourget-Merle, L., Lappert, M. F. & Severin, J. R. The chemistry of β-diketiminatometal complexes. Chem. Rev. 102, 3031ā3066 (2002).
Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbonācarbon bonds through dispersion forces. Nature 477, 308ā311 (2011).
Fokin, A. A. et al. Stable alkanes containing very long carbonācarbon bonds. J. Am. Chem. Soc. 134, 13641ā13650 (2012).
Grimme, S. & Schreiner, P. R. Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. Angew. Chem. Int. Ed. 50, 12639ā12642 (2011).
EcheverrĆa, J., Aullón, G., Danovich, D., Shaik, S. & Alvarez, S. Dihydrogen contacts in alkanes are subtle but not faint. Nat. Chem. 3, 323ā330 (2011).
Pyykkƶ, P. Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97, 597ā636 (1997).
Brandenburg, J. G., Hocheim, M., Bredow, T. & Grimme, S. Low-cost quantum chemical methods for noncovalent interactions. J. Phys. Chem. Lett. 5, 4275ā4284 (2014).
Fey, N., Ridgway, B. M., Jover, J., McMullin, C. L. & Harvey, J. N. Organometallic reactivity: the role of metalāligand bond energies from a computational perspective. Dalton Trans. 40, 11184ā11191 (2011).
Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463ā1473 (2004).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787ā1799 (2006).
Alrichs, R., Penco, R. & Scoles, G. Intermolecular forces in simple systems. Chem. Phys. 19, 119ā130 (1977).
Becke, A. D. & Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys. 123, 154101 (2005).
JurecĖka, P., CĖerny, J., Hobza, P. & Salahub, D. R. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J. Comput. Chem. 28, 555ā569 (2007).
Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157ā167 (2008).
Zhao, Y. & Truhlar, D. G. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett. 502, 1ā13 (2011).
Johnson, E. R. & Becke, A. D. Van der Waals interactions from the exchange hole dipole moment: application to bio-organic benchmark systems. J. Chem. Phys. Lett. 432, 600ā603 (2006).
Becke, A. D. & Johnson, E. R. A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J. Chem. Phys. 127, 124108 (2007).
Ruszinsky, A., Perdew, J. P. & Csonka, G. J. A simple but fully nonlocal correction to the random phase approximation. J. Chem. Phys. 134, 114110 (2011).
Eshuis, H., Yarkony, J. & Furche, F. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. J. Chem. Phys. 132, 234114 (2010).
Furche, F. & Perdew, J. P. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J. Chem. Phys. 124, 044103 (2006).
JimĆ©nez-Hoyos, C. A., Janesko, B. G. & Scuseria, G. E. Evaluation of range-separated hybrid and other density functional approaches on test sets relevant for transition metal-based homogeneous catalysts. J. Phys. Chem. A. 113, 11742ā11749 (2009).
Ryde, U., Mata, R. A. & Grimme, S. Does DFT-D estimate accurate energies for the binding of ligands to metal complexes? Dalton Trans. 40, 11176ā11183 (2011).
Swart, M., SolĆ”, M. & Bickelhaupt, F. M. Inter- and intramolecular dispersion interactions. J. Comput. Chem. 32, 1117ā1127 (2011).
Yang, L., Adam, C., Nichol, G. S. & Cockroft, S. L. How much do van der Waals dispersion forces contribute to molecular recognition in solution? Nat. Chem. 5, 1006ā1010 (2013).
Hansen, A. et al. The thermochemistry of london dispersion-driven transition metal reactions: getting the āright answer for the right reasonā. ChemistryOpen 3, 177ā189 (2014).
Kronik, L. & Tkatchenko, A. Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc. Chem. Res. 47, 3208ā3216 (2014).
Berland, K. et al. I. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).
Grimme, S. in The Chemical Bond: Chemical Bonding Across the Periodic Table (eds Frenking, G. & Shaik, S. ) 477ā500 (Wiley, 2014).
Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105ā5154 (2016).
Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 68, 441ā451 (1964).
Gomberg, M. Triphenylmethyl, ein Fall von dreiwerthigem Kohlenstoff. Ber. Dtsch. Chem. Ges. 33, 3150ā3163 (in German) (1900).
Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757ā771 (1900).
Lankamp, H., Nauta, W. Th. & MacLean, C. A new interpretation of the monomer-dimer equilibrium of triphenylmethyl- and alkylsubstituted-diphenyl methyl-radicals in solution. Tetrahedron Lett. 9, 249ā254 (1968).
Stein, M., Winter, W. & Rieker, A. Hexakis(2,6-di-tert-butyl-4-biphenylyl)ethane ā the first unbridged hexaarylethane. Angew. Chem. Int. Ed. Engl. 17, 692ā694 (1978).
Kahr, B., van Engen, D. & Mislow, K. Length of the ethane bond in hexaphenylethane and its derivatives. J. Am. Chem. Soc. 108, 8305ā8307 (1986).
Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry ā reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274ā12296 (2016).
Schwertfeger, H., Fokin, A. A. & Schreiner, P. R. Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022ā1036 (2008).
Maier, G., Pfriem, S., SchƤfer, R. & Mausch, R. Tetra-tert-butyltetrahedrane. Angew. Chem. Int. Ed. 17, 520ā521 (1978).
Balci, M., McKee, M. & Schleyer, P. v. R. Theoretical study of tetramethyl- and tetra-tert-butyl-substituted cyclobutadiene and tetrahedrane. J. Phys. Chem. 104, 1246ā1255 (2000).
Monteiro, N. K. V., de Oliveira, J. F. & Firme, C. L. Stability and electronic structures of substituted tetrahedranes, silicon and germanium parents ā a DFT, ADMP, QTAIM and GVB study. New. J. Chem. 38, 5892ā5904 (2014).
Nemirowski, A., Reisenauer, H. P. & Schreiner, P. R. Tetrahedrane ā dossier of an unknown. Chem. Eur. J. 12, 7411ā7420 (2006).
Wiberg, N. Sterically overloaded supersilylated main group elements and main group element clusters. Coord. Chem. Rev. 163, 217ā252 (1997).
SchƤfer, A., Weidenbruch, M., Peters, K. & von Schnering, H. Hexa-tert-butylcyclotrisilane, a strained molecule with unusually long SiāSi and SiāC bonds. Angew. Chem. Int. Ed. 23, 302ā303 (1984).
Wiberg, N., Schuster, A., Simon, A. & Peters, K. Hexa-tert-butyldisilane ā the molecule with the longest SiāSi bond. Angew. Chem. Int. Ed. 25, 79ā80 (1986).
Pyykkƶ, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1ā118. Chem. Eur. J. 15, 186ā197 (2008).
Pauling, L. Nature of the Chemical Bond 239 (Cornell Univ. Press, 1960).
Paolini, J. P. The bond orderābond length relationship. J. Comput. Chem. 11, 1160ā1163 (1990).
Bock, H., Meuret, J. & Ruppert, K. Sterically overcrowded or charge perturbed molecules: XXIII. Hexakis(trimethylsilyl)disilane: structure and photoelectron spectrum of a sterically overcrowded molecule. J. Organomet. Chem. 445, 19ā28 (1993).
Weidenbruch, M. et al. Hexa-t-butyldigerman und Hexa-t-butylcyclotrigerman: moleküle mit den derzeit lƤngsten GeāGeā und GeāC-Bindungen. J. Organomet. Chem. 341, 335ā343 (in German) (1988).
Puff, H. et al. BindungsabstƤnde zwischen organylsubstituierten Zinnatomen: III. Offenkettige Verbindungen. J. Organomet. Chem. 363, 265ā280 (in German) (1989).
Wiberg, N. et al. Tetrasupersilyl-tristannaallene and -tristannacyclopropene (tBu3Si)4Sn3 ā isomers with the shortest S=Sn double bonds to date. Eur. J. Inorg. Chem. 1999, 1211ā1218 (1999).
Peng, Y. et al. Substituent effects in ditetrel alkyne analogues: multiple versus single bonded isomers. Chem. Sci. 1, 461ā468 (2010).
Wiberg, N., Amelunxen, K., Blank, T., Nƶth, H. & Knizek, J. Tetrasupersilyldialuminum [(t-Bu)3Si]2AlāAl[Si(t-Bu)3]2: the dialane(4) with the longest AlāAl bond to date. J. Organometallics 17, 5431ā5433 (1998).
Uhl, W. Tetrakis[bis(trimethylsilyl)methyl]dialan(4), eine Verbindung mit AluminiumāAluminium-Bindung. Z. Naturforsch. B 43, 1113ā1118 (in German) (1988).
Wehmschulte, R. J. et al. Reduction of a tetraaryldialane to generate AlāAl Ļ-bonding. Inorg. Chem. 32, 2983ā2984 (1993).
Wiberg, N. et al. Ditrielanes (R3Si)2EāE(SiR3)2 and heterocubanes (R3Si)4E4Y4 (R3Si = tBu3Si, tBu2PhSi; E = Al, Ga, In, Tl; Y = O, Se). Eur. J. Inorg. Chem. 341ā350 (2002).
Wiberg, N. et al. Tris(tri-tert-butylsilyl)digallanyl (tBu3Si)3Ga2: a new type of compound for a heavy group 13 element. Angew. Chem. Int. Ed. 36, 1213ā1215 (1997).
Power, P. P. Ļ-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463ā3503 (1999).
Fischer, R. C. & Power, P. P. Ļ-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877ā3923 (2010).
Arp, H., Baumgartner, J., Marschner, C., Zark, P. & Müller, T. Dispersion energy enforced dimerization of a cyclic disilylated plumbylene. J. Am. Chem. Soc. 134, 6409ā6415 (2012).
Weidenbruch, M., Kilian, H., Peters, K., von Schnering, H. G. & Marsmann, H. Compounds of germanium and tin, 16. A tetraaryldistannene with a long tinātin multiple bond and differing environments at the tin atoms. Chem. Ber. 128, 983ā985 (1995).
Guo, J.-D., Liptrot, D. J., Nagase, S. & Power, P. P. The multiple bonding in heavier group 14 element alkene analogues is stabilized mainly by dispersion force effects. Chem. Sci. 6, 6235ā6244 (2015).
Lee, V. Ya. et al. (tBu2MeSi)2SnSn(SiMetBu2)2: a distannene with a > Sn=Sn < double bond that is stable both in the solid state and in solution. J. Am. Chem. Soc. 128, 11643ā11651 (2006).
Guo, J.-D., Nagase, S. & Power, P. P. Dispersion force effects on the dissociation of āJack-in-the-boxā diphosphanes and diarsanes. Organometallics 34, 2028ā2033 (2015).
Hinchley, S. L. et al. Spontaneous generation of stable pnictinyl radicals from āJack-in-the-boxā dipnictines: a solid-state, gas-phase, and theoretical investigation of the origins of steric Stabilization. J. Am. Chem. Soc. 123, 9045ā9053 (2001).
Seidu, I., Seth, M. & Ziegler, T. Role played by isopropyl substituents in stabilizing the putative triple bond in Arā²EEArā²[E = Si, Ge, Sn; Arā² = C6H3-2,6-(C6H3-2,6-Pri2)2] and Ar*PbPbAr* [Ar* = C6H3-2,6-(C6H2-2,4,6-Pri3)2]. Inorg. Chem. 52, 8378ā8388 (2013).
Stender, M., Phillips, A. D., Wright, R. J. & Power, P. P. Synthesis and characterization of a digermanium analogue of an alkyne. Angew. Chem. Int. Ed. 41, 1785ā1787 (2002).
Phillips, A. D., Wright, R. J., Olmstead, M. M. & Power, P. P. Synthesis and characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-Pri2): a tin analogue of an alkyne. J. Am. Chem. Soc. 124, 5930ā5931 (2002).
Pu, L., Twamley, B. & Power, P. P. Synthesis and characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): a stable heavier group 14 element analogue of an alkyne. J. Am. Chem. Soc. 122, 3524ā3525 (2000).
Mitoraj, M., Michalak, A. & Ziegler, T. A. Combined charge and energy decomposition scheme for bond analysis. J. Chem. Theor. Comput. 5, 962ā975 (2009).
Wu, L.-C., Jones, C., Stasch, A., Platts, J. A. & Overgaard, J. Non-nuclear attractor in a molecular compound under external pressure. Eur. J. Inorg. Chem. 32, 5536ā5540 (2014).
Wagner, J. P. & Schreiner, P. R. London dispersion decisively contributes to the thermodynamic stability of bulky NHC-coordinated main group compounds. J. Chem. Theor. Comp. 12, 231ā237 (2016).
HƤnninen, M., Pal, K., Day, B. M., Pugh, T. & Layfield, R. A three-coordinate ironāsilylene complex stabilized by ligandāligand dispersion forces. Dalton Trans. 45, 11301ā11305 (2016).
Albers, L., Rathjen, S., Baumgartner, J., Marschner, C. & Müller, T. Dispersion-energy-driven WagnerāMeerwein rearrangements in oligosilanes. J. Am. Chem. Soc. 138, 6886ā6892 (2016).
Andersen, R. A. et al. The molecular structures of bis(pentamethylcyclopentadienyl)-calcium and -ytterbium in the gas phase; two bent metallocenes. J. Organomet. Chem. 312, C49āC52 (1986).
Andersen, R. A., Blom, R., Boncella, J. M., Burns, C. J. & Volden, H. V. The thermal average molecular structures of bis(pentamethylcyclopentadienyl)magnesium(ii), -calcium(ii) and -ytterbium(ii) in the gas phase. Acta Chem. Scand. 41A, 24ā35 (1987).
Andersen, R. A., Blom, R., Burns, C. J. & Volden, H. V. Synthesis and thermal average gas phase molecular structures of bis(pentamethylcyclopentadienyl)-strontium and -barium; the first organo-strontium and -barium structures. J. Chem. Soc., Chem. Commun. 768ā769 (1987).
Blom, R., Faegri, K. Jr & Volden, H. V. Molecular structures of alkaline earth-metal metallocenes: electron diffraction and ab initio investigations. Organometallics 9, 372ā379 (1990).
Williams, R. A., Hanusa, T. P. & Huffman, J. C. Structures of ionic decamethylmetallocenes: crystallographic characterization of bis(pentamethylcyclopentadienyl)calcium and -barium and a comparison with related organolanthanide species. Organometallics 9, 1128ā1134 (1990).
Hollis, T. K., Burdett, J. K. & Bosnich, B. Why are bis(pentamethylcyclopentadienyl) complexes, [MCp2*], of calcium, strontium, barium, samarium, europium, and ytterbium bent? Organometallics 12, 3385ā3386 (1993).
Timofeeva, T. V., Lii, J.-H. & Allinger, N. L. Molecular mechanics explanation of the metallocene bent sandwich structure. J. Am. Chem. Soc. 117, 7452ā7459 (1995).
Rekken, B.-D. et al. Dispersion forces and counterintuitive steric effects in main group molecules: heavier group 14 (SiāPb) dichalcogenolate carbene analogues with sub-90° interligand bond angles. J. Am. Chem. Soc. 135, 10134 (2013).
Eaborn, C. & Smith, J. D. Organometallic compounds containing tris(trimethylsilyl)methyl or related ligands. J. Chem. Soc., Dalton Trans. 1541ā1552 (2001).
Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Crystal structure of the tetrahydrofuran adduct of tris(trimethylsilyl)-methyl-lithium, [Li(thf)4][Li{C(SiMe3)3}2], an ate derivative of lithium. J. Chem. Soc., Chem. Commun. 827ā828 (1983).
Buttrus, N. H. et al. The crystal structure of [(pmdeta)Li(μ-Cl)Li(pmdeta)][Li{C(SiMe3)3}2] [pmdeta = Me2N(CH2)2NMe(CH2)2NMe2]. A novel linear chlorine-centred cation. J. Chem. Soc., Chem. Commun. 969ā970 (1986).
Al-Juaid, S. S. et al. Metalation of tris(trimethylsilyl)- and tris(dimethylphenylsilyl)methane with methylsodium: the first dialkylsodate. Angew. Chem. Int. Ed. 33, 1268ā1270 (1994).
Al-Juaid, S. S. et al. Crystal structures of organometallic compounds of lithium and magnesium containing the bulky ligands C(SiMe3)2(SiMe2X) X = Me, Ph, NMe2, or C5H4N-2. J. Organomet. Chem. 631, 76ā86 (2001).
Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. A novel monomeric alkylālithium compound. Crystal structure of [Li{C(SiMe2Ph)3}(tetrahydrofuran)]. J. Chem. Soc., Chem. Commun. 1390ā1391 (1983).
Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Preparation and crystal structure of the tetrahydrofuran adduct of lithium bis [tris(trimethylsilyl)methyl]cuprate, [Li(THF)4] [Cu{C(SiMe3)3}2]. The first structural characterization of a Gilman reagent. J. Organomet. Chem. 263, c23āc25 (1984).
Al-Juaid, S. S., Eaborn, C., Hitchcock, P. B., McGeary, C. A. & Smith, J. D. The crystal structure of bis{tris(trimethylsilyl)methyl}magnesium: an example of two-co-ordinate magnesium in the solid state. J. Chem. Soc., Chem. Commun. 1989, 273ā274 (1989).
Al-Juaid, S. S. et al. Preparation, crystal structure, and reactivity of bis {tris(trimethylsilyl) methyl} magnesium. J. Organomet. Chem. 480, 199ā203 (1994).
Eaborn, C. & Hitchcock, P. B. The first structurally characterised solvent-free Ļ-bonded diorganocalcium, Ca[C(SiMe3)3]2 . Chem. Commun. 1961ā1962 (1997).
Westerhausen, M., Rademacher, B. & Poll, W. Trimethylsilyl-substituierte Derivate des Dimethylzinks ā Synthese, spektroskopische Charakterisierung und Struktur. J. Organomet. Chem. 421, 175ā188 (in German) (1991).
Eaborn, C., Jones, K. L., Smith, J. D. & Tavakkoli, K. The remarkable thermal stability of benzyl[tris(dimethylphenylsily)methyl]mercury. How can a bulky ligand stabilize an organometallic compound towards unimolecular dissociation? J. Chem. Soc., Chem. Commun. 1201ā1202 (1989).
Al-Juaid, S. S., Eaborn, C., Lickiss, P. D., Smith, J. Davis, Tavakkoli, K. & Webb, A. D. Preparation, spectroscopic properties and thermal stabilities of organomercury compounds containing the bulky ligand (Me3Si)3C or (PhMe2Si)3C. J. Organomet. Chem. 510, 143ā151 (1996).
Ghotra, J. S., Hursthouse, M. B. & Welch, A. J. Three-co-ordinate scandium(iii) and europium(iii); crystal and molecular structures of their trishexamethyldisilylamides. J. Chem. Soc., Chem. Commun. 6, 9ā670 (1973).
Evans, W. J., Hughes, L. A. & Hanusa, T. P. Synthesis and crystallographic characterization of an unsolvated, monomeric samarium bis(pentamethylcyclopentadienyl) organolanthanide complex, (C5Me5)2Sm. J. Am. Chem. Soc. 106, 4270ā4272 (1984).
Evans, W. J., Forrestal, K. J. & Ziller, J. W. Reaction chemistry of sterically crowded tris(pentamethylcyclopentadienyl)samarium. J. Am. Chem. Soc. 120, 9273ā9282 (1998).
Evans, W. J., Hughes, L. A. & Hanusa, T. P. Synthesis and X-ray crystal structure of bis(pentamethylcyclopentadienyl) complexes of samarium and europium: (C5Me5)2Sm and (C5Me5)2Eu. Organometallics 5, 1285ā1288 (1986).
Evans, W. J., Gonzales, S. L. & Ziller, J. W. Synthesis and X-ray crystal structure of the first tris(pentamethylcyclopentadienyl)metal complex: (Ī·5-C5Me5)3Sm. J. Am. Chem. Soc. 113, 7423ā7424 (1991).
Ahlquist, M. S. G. & Norrby, P.-O. Dispersion and back-donation gives tetracoordinate [Pd(PPh3)4]. Angew. Chem. Int. Ed. 50, 11794ā11797 (2011).
Lyngvi, E., Sanhueza, I. A. & Schoenebeck, F. Dispersion makes the difference: bisligated transition states found for the oxidative addition of Pd(PtBu3)2 to Ar-OSO2R and dispersion-controlled chemoselectivity in reactions with Pd[P(iPr)(tBu2)]2 . Organometallics 34, 805ā812 (2015).
Maseras, F. & Eisenstein, O. Opposing steric and electronic contributions in OsCl2H2(PPr3i)2. A theoretical study of an unusual structure. New J. Chem. 22, 5ā9 (1998).
Minenkov, Y., Occhipinti, G., Heyndrickx, W. & Jensen, V. R. The nature of the barrier to phosphane dissociation from grubbs olefin metathesis catalysts. Eur. J. Inorg. Chem. 1507ā1516 (2012).
Minenkov, Y., Singstad, A., Occhipinti, G. & Jensen, V. R. The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans. 41, 5526ā5541 (2012).
Wolters, L. P., Koekkoek, R. & Bickelhaupt, F. M. Role of steric attraction and bite-angle flexibility in metal-mediated CāH bond activation. ACS Catal. 5, 5766ā5775 (2015).
Wolstenholme, D. J., Dobson, J. L. & McGrady, G. S. Homopolar dihydrogen bonding in main group hydrides: discovery, consequences, and applications. Dalton Trans. 44, 9718ā9731 (2015).
Ndambuki, S. & Ziegler, T. Analysis of the putative CrāCr quintuple bond in Arā²CrCrArā² (Arā² = C6H3-2,6(C6H3-2,6-Pri2)2 based on the combined natural orbitals for chemical valence and extended transition state method. Inorg. Chem. 51, 7794ā7800 (2012).
Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(i) centers. Science 310, 844ā861 (2005).
Power, P. P. Stable two-coordinate, open-shell (d1ād9) transition metal complexes. Chem. Rev. 112, 3482ā3507 (2012).
Wagner, C. L. et al. Dispersion-force-assisted disproportionation: a stable two-coordinate copper(ii) complex. Angew. Chem. Int. Ed. 55, 10444ā10447 (2016).
Boynton, J. N. et al. Linear and nonlinear two-coordinate vanadium complexes: synthesis, characterization, and magnetic properties of V(ii) amides. J. Am. Chem. Soc. 135, 10720ā10728 (2013).
Lin, C.-Y. et al. Dispersion force stabilized two-coordinate transition metalāamido complexes of the āN(SiMe3)Dipp (Dipp = C6H3-2,6-Pri2) ligand: structural, spectroscopic, magnetic, and computational studies. Inorg. Chem. 52, 13584ā13593 (2013).
Faust, M. et al. The instability of Ni{N(SiMe3)2}2: a fifty year old transition metal silylamide mystery. Angew. Chem. Int. Ed. 54, 12914ā12917 (2015).
Bower, B. K. & Tennent, H. G. Transition metal bicyclo[2.2.1]hept-1-yls. J. Am. Chem. Soc. 94, 2512ā2518 (1972).
Liptrot, D. J., Guo, J.-D., Nagase, S. & Power, P. P. Dispersion forces, disproportionation and stable high-valent late transition metal alkyls. Angew. Chem. Int. Ed. 55, 13655ā13659 (2016).
Lewis, R. A. et al. Reactivity and Mƶssbauer spectroscopic characterization of an Fe(iv) ketimide complex and reinvestigation of an Fe(iv) norbornyl complex. Inorg. Chem. 52, 8218ā8227 (2013).
Byrne, E. K. & Theopold, K. H. Redox chemistry of tetrakis(1-norbornyl)cobalt. Synthesis and characterization of a cobalt(v) alkyl and self-exchange rate of a Co(iii)/Co(iv) couple. J. Am. Chem. Soc. 193, 1282ā1283 (1987).
Ruspic, C., Moss, J. R., Schürmann, M. & Harder, S. Remarkable stability of metallocenes with superbulky ligands: spontaneous reduction of SmIII to Smii. Angew. Chem. Int. Ed. 47, 2121ā2126 (2008).
Acknowledgements
The authors are grateful to the David Parkin Visiting Professorship at the University of Bath (P.P.P.), the English-Speaking Union Lindemann Trust Fellowship (D.J.L.), the US National Science Foundation (CHE-1565501) and M. Hill for his generosity, invaluable advice and support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Glossary
- Terphenyls
-
In this Review, a terphenyl ligand consists of a central aryl ring substituted by two further aryl rings at the ortho (that is, flanking) positions relative to the carbon atom (ipso) through which the terphenyl ligand is attached to the reactive centre. They are denoted by the abbreviation , where the superscript R refers to the type of substituents on the aryl rings and the numeral indicates the number of R substituents present: for example, Ar\(^{{\rm ME}_{\rm 6} } \) = C6H3-2,6-(C6H2-2,4,6-Me3)2 and Ar\(^{i{\rm -Pr}_{\rm 4} } \) = C6H3-2,6-(C6H3-2,6-iPr6)2.
- Extended transition stateānatural orbitals for chemical valence
-
(ETSāNOCV). A scheme for the analysis of chemical bonds based on the decomposition of the bonding on the basis of charge and energy90.
Rights and permissions
About this article
Cite this article
Liptrot, D., Power, P. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat Rev Chem 1, 0004 (2017). https://doi.org/10.1038/s41570-016-0004
Published:
DOI: https://doi.org/10.1038/s41570-016-0004
This article is cited by
-
Tri-tert-butyl methane and its halogen analogues: a computational study of intramolecular interactions in a family of sterically crowded molecules
Structural Chemistry (2023)
-
Structure-property relationships of photofunctional diiridium(II) complexes with tetracationic charge and an unsupported IrāIr bond
Communications Chemistry (2022)
-
Contrasting behaviour under pressure reveals the reasons for pyramidalization in tris(amido)uranium(III) and tris(arylthiolate) uranium(III) molecules
Nature Communications (2022)
-
Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation
Nature Communications (2019)
-
DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety
Journal of Chemical Sciences (2019)