Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting

Abstract

Sunlight is by far the most plentiful renewable energy resource, providing Earth with enough power to meet all of humanity's needs several hundred times over. However, it is both diffuse and intermittent, which presents problems regarding how best to harvest this energy and store it for times when the sun is not shining. Devices that use sunlight to split water into hydrogen and oxygen could be one solution to these problems, because hydrogen is an excellent fuel. However, if such devices are to become widely adopted, they must be cheap to produce and operate. Therefore, the development of electrocatalysts for water splitting that comprise only inexpensive, earth-abundant elements is critical. In this Review, we investigate progress towards such electrocatalysts, with special emphasis on how they might be incorporated into photoelectrocatalytic water-splitting systems and the challenges that remain in developing these devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artificial photosynthesis systems for solar-to-hydrogen applications.
Figure 2: Trasatti's HER volcano plot.
Figure 3: OER at neutral pH mediated by a cobalt-oxide catalyst.

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006). As powerful today as when it was written 10 years ago, this article by two of the leaders in the field explains why renewable energy storage is so important.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Armaroli, N. & Balzani, V. Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22, 32–57 (2016). A well-argued and up-to-date summary of our options for solar fuels generation and the broader techno-economic factors affecting the field.

    Article  CAS  PubMed  Google Scholar 

  5. Styring, S. Artificial photosynthesis for solar fuels. Faraday Discuss. 155, 357–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Le Formal, F., Bourée, W. S., Prévot, M. S. & Sivula, K. Challenges towards economic fuel generation from renewable electricity: the need for efficient electro-catalysis. Chimia 69, 789–798 (2015).

    Article  CAS  Google Scholar 

  7. Joya, K. S., Joya, Y. F., Ocakoglu, K. & van de Krol, R. Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew. Chem. Int. Ed. 52, 10426–10437 (2013).

    Article  CAS  Google Scholar 

  8. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    Article  CAS  Google Scholar 

  9. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). An article exploring how different electrocatalysts can be compared for the OER and HER in the context of solar-to-fuels devices.

    Article  CAS  PubMed  Google Scholar 

  10. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  11. Faber, M. S. & Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014).

    Article  CAS  Google Scholar 

  12. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Zeng, M. & Li, Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14942–14962 (2015).

    Article  CAS  Google Scholar 

  15. Kang, D. et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Roger, I. & Symes, M. D. First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. J. Mater. Chem. A 4, 6724–6741 (2016).

    Article  CAS  Google Scholar 

  17. Fukuzumi, S., Yamada, Y., Suenobu, T., Ohkubo, K. & Kotani, H. Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ. Sci. 4, 2754–2766 (2011).

    Article  CAS  Google Scholar 

  18. Ismail, A. A. & Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol. Energy Mater Sol. Cells 128, 85–101 (2014).

    Article  CAS  Google Scholar 

  19. Parent, A. R. & Sakai, K. Progress in base-metal water oxidation catalysis. ChemSusChem 7, 2070–2080 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Fan, C., Piron, D. L., Sleb, A. & Paradis, P. Study of electrodeposited nickel–molybdenum, nickel–tungsten, cobalt–molybdenum, and cobalt–tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382–387 (1994).

    Article  CAS  Google Scholar 

  21. Arul Raj, I. & Vasu, K. I. Transition metal-based hydrogen electrodes in alkaline solution — electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20, 32–38 (1990).

    Article  Google Scholar 

  22. McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013).

    Article  CAS  Google Scholar 

  23. Wang, Y. et al. A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution. ChemElectroChem. 1, 1138–1144 (2014).

    Article  CAS  Google Scholar 

  24. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  25. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  CAS  Google Scholar 

  26. Sheng, W., Myint, M., Chen, J. G. & Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013).

    Article  CAS  Google Scholar 

  27. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005). This paper showed how computational methods could be used to identify new HER catalysts (in this case MoS 2 ) and then demonstrated the same experimentally.

    Article  CAS  PubMed  Google Scholar 

  28. Jaegermann, W. & Tributsch, H. Interfacial properties of semiconducting transition metal chalcogenides. Prog. Surf. Sci. 29, 1–167 (1988).

    Article  CAS  Google Scholar 

  29. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  32. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Faber, M. S. et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, Y. et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Tran, P. D. et al. Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 6, 2452–2459 (2013).

    Article  CAS  Google Scholar 

  37. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, Y.-F., Gao, M.-R., Zheng, Y.-R., Jiang, J. & Yu, S.-H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 52, 8546–8550 (2013).

    Article  CAS  Google Scholar 

  39. Kiran, V., Mukherjee, D., Jenjeti, R. N. & Sampath, S. Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS2(1 − x) Se2x . Nanoscale 6, 12856–12863 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, H. et al. One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20, 29–36 (2016).

    Article  CAS  Google Scholar 

  41. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly Active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014).

    Article  CAS  Google Scholar 

  43. Jiang, P. et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: fep nanowire array as the active phase. Angew. Chem. Int. Ed. 53, 12855–12859 (2014).

    Article  CAS  Google Scholar 

  44. Kibsgaard, J. & Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433–14437 (2014).

    Article  CAS  Google Scholar 

  45. Liang, H.-W. et al. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, W.-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  47. Cao, B., Veith, G. M., Neuefeind, J. C., Adzic, R. R. & Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Vrubel, H. & Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51, 12703–12706 (2012).

    Article  CAS  Google Scholar 

  49. Liao, L. et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014).

    Article  CAS  Google Scholar 

  50. Shi, Z. et al. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 4, 6006–6013 (2016).

    Article  CAS  Google Scholar 

  51. Fan, L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, Q. et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 6, 6567 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Merrill, M. D. & Dougherty, R. C. Metal Oxide Catalysts for the Evolution of O2 from H2O. J. Phys. Chem. C 112, 3655–3666 (2008).

    Article  CAS  Google Scholar 

  54. Lu, X. & Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Gong, M. et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Li, X., Walsh, F. C. & Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 13, 1162–1167 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    Article  CAS  Google Scholar 

  58. Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Friebel, D. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Lambert, T. N. et al. Electrodeposited NixCo3 − xO4 nanostructured films as bifunctional oxygen electrocatalysts. Chem. Commun. 51, 9511–9514 (2015).

    Article  CAS  Google Scholar 

  61. Tian, J. et al. Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 3, 20056–20059 (2015).

    Article  CAS  Google Scholar 

  62. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Smith, A. M., Trotochaud, L., Burke, M. S. & Boettcher, S. W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chem. Commun. 51, 5261–5263 (2015).

    Article  CAS  Google Scholar 

  64. Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638 –3648 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Roger, I. & Symes, M. D. Efficient electrocatalytic water oxidation at neutral and high pH by adventitious nickel at nanomolar concentrations. J. Am. Chem. Soc. 137, 13980–13988 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A. Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682–688 (2014).

    Article  CAS  Google Scholar 

  69. Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008). The paper that ignited the field in terms of oxygen evolution electrocatalysis under mild conditions.

    Article  CAS  PubMed  Google Scholar 

  71. Lutterman, D. A., Surendranath, Y. & Nocera, D. G. A. Self-healing oxygen-evolving catalyst. J. Am. Chem. Soc. 131, 3838–3839 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Surendranath, Y., Dinca, M. & Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 131, 2615–2620 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Risch, M. et al. Cobalt–oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 131, 6936–6937 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. McAlpin, J. G. et al. EPR evidence for Co(iv) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Esswein, A. J., Surendranath, Y., Reece, S. Y. & Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 4, 499–504 (2011).

    Article  CAS  Google Scholar 

  78. Koza, J. A., He, Z., Miller, A. S. & Switzer, J. A. Electrodeposition of crystalline Co3O4 — a catalyst for the oxygen evolution reaction. Chem. Mater. 24, 3567–3573 (2012).

    Article  CAS  Google Scholar 

  79. Gerken, J. B., Landis, E. C., Hamers, R. J. & Stahl, S. S. Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions. ChemSusChem 3, 1176–1179 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Bloor, L. G., Molina, P. I., Symes, M. D. & Cronin, L. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J. Am. Chem. Soc. 136, 3304–3311 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, N., You, B., Sheng, M. & Sun, Y. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54, 6251–6254 (2015).

    Article  CAS  Google Scholar 

  83. Li, D., Baydoun, H., Verani, C. N. & Brock, S. L. Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006–4009 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Dinca, M., Surendranath, Y. & Nocera, D. G. Nickel–borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bediako, D. K., Surendranath, Y. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Bediako, D. K. et al. Structure–activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801–6809 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, L.-K. Hu, J.-M. Zhang, J.-Q. & Cao, C.-N. A silica co-electrodeposition route to highly active Ni-based film electrodes. J. Mater. Chem. A 1, 12885–12892 (2013).

    Article  CAS  Google Scholar 

  88. Zhao, Y. et al. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 138, 6517–6524 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Barber, J. Crystal structure of the oxygen-evolving complex of photosystem II. Inorg. Chem. 47, 1700–1710 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Gorlin, Y. & Jaramillo, T. F. A. Bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Ramírez, A. et al. Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118, 14073–14081 (2014).

    Article  CAS  Google Scholar 

  92. Zhou, F. et al. Improvement of catalytic water oxidation on MnOx films by heat treatment. ChemSusChem 6, 643–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Zaharieva, I. et al. Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 5, 7081–7089 (2012).

    Article  CAS  Google Scholar 

  94. Mattioli, G., Zaharieva, I., Dau, H. & Guidoni, L. Atomistic texture of amorphous manganese oxides for electrochemical water splitting revealed by ab initio calculations combined with X-ray spectroscopy. J. Am. Chem. Soc. 137, 10254 –10267 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Gorlin, Y. et al. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525–8534 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Zhou, F. et al. Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2, 1013–1021 (2012).

    Article  CAS  Google Scholar 

  97. Takashima, T., Hashimoto, K. & Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 134, 1519–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Takashima, T., Hashimoto, K. & Nakamura, R. Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J. Am. Chem. Soc. 134, 18153–18156 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Huynh, M., Bediako, D. K., Liu, Y. & Nocera, D. G. Nucleation and growth mechanisms of an electrodeposited manganese oxide oxygen evolution catalyst. J. Phys. Chem. C 118, 17142–17152 (2014).

    Article  CAS  Google Scholar 

  100. Huynh, M., Bediako, D. K. & Nocera, D. G. A. Functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434438 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Berglund, S. P. et al. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction. J. Am. Chem. Soc. 136, 15351544 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Ding, Q. et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2 . J. Am. Chem. Soc. 136, 85048507 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Cabán-Acevedo, M. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 12451251 (2015).

    Article  PubMed  CAS  Google Scholar 

  106. Downes, C. A. & Marinescu, S. C. Efficient electrochemical and photoelectrochemical H2 production from water by a cobalt dithiolene one-dimensional metal–organic surface. J. Am. Chem. Soc. 137, 13740–13743 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. McKone, J. R. et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573–3583 (2011).

    Article  CAS  Google Scholar 

  108. Morales-Guio, C. G. et al. Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst. J. Am. Chem. Soc. 137, 70357038 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Lang, D., Cheng, F. & Xiang, Q. Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification. Catal. Sci. Technol. 6, 62076216 (2016).

    Article  CAS  Google Scholar 

  110. Meng, P., Wang, M., Yang, Y., Zhang, S. & Sun, L. CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H2 evolution from neutral water. J. Mater. Chem. A 3, 18852–18859 (2015).

    Article  CAS  Google Scholar 

  111. Lin, C.-Y., Lai, Y.-H., Mersch, D. & Reisner, E. Cu2O |NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 3, 3482–3487 (2012).

    Article  CAS  Google Scholar 

  112. Yang, C. et al. Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. Nanoscale 6, 6506–6510 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Dubale, A. A. et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 3, 12482–12499 (2015).

    Article  CAS  Google Scholar 

  114. Morales-Guio, C. G., Tilley, S. D., Vrubel, H., Grätzel, M. & Hu, X. Hydrogen evolution from a copper(i) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014).

    Article  PubMed  CAS  Google Scholar 

  115. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). The first photoelectrochemical cell for water splitting.

    Article  CAS  PubMed  Google Scholar 

  117. Hodes, G., Cahen, D. & Manassen, J. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature 260, 312–313 (1976).

    Article  CAS  Google Scholar 

  118. Hardee, K. L. & Bard, A. J. Semiconductor electrodes: v. The application of chemically vapor deposited iron oxide films photosensitized electrolysis. J. Electrochem. Soc. 123, 1024–1026 (1976).

    Article  CAS  Google Scholar 

  119. Zhong, D. K., Sun, J., Inumaru, H. & Gamelin, D. R. Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086–6087 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Zhong, D. K. & Gamelin, D. R. Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 Composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202–4207 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Zhong, D. K., Cornuz, M., Sivula, K., Grätzel, M. & Gamelin, D. R. Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759–1764 (2011).

    Article  CAS  Google Scholar 

  122. Seabold, J. A. & Choi, K.-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011).

    Article  CAS  Google Scholar 

  123. Pijpers, J. J. H., Winkler, M. T., Surendranath, Y., Buonassisi, T. & Nocera, D. G. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc. Natl Acad. Sci. USA 108, 10056–10061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abdi, F. F. & van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398–9404 (2012).

    Article  CAS  Google Scholar 

  125. Abdi, F. F., Firet, N. & van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 5, 490–496 (2013).

    Article  CAS  Google Scholar 

  126. Pilli, S. K. et al. Light induced water oxidation on cobalt-phosphate (Co–Pi) catalyst modified semi-transparent, porous SiO2–BiVO4 electrodes. Phys. Chem. Chem. Phys. 14, 7032–7039 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Khnayzer, R. S. et al. Structure and activity of photochemically deposited “CoPi” oxygen evolving catalyst on titania. ACS Catal. 2, 2150–2160 (2012).

    Article  CAS  Google Scholar 

  128. Li, Y. et al. Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co–Pi. J. Phys. Chem. C 119, 20283–20292 (2015).

    Article  CAS  Google Scholar 

  129. Kim, J. H. et al. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano 9, 11820–11829 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Choi, S. K., Choi, W. & Park, H. Solar water oxidation using nickel–borate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys. 15, 6499–6507 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Pilli, S. K., Summers, K. & Chidambaram, D. Ni–Ci oxygen evolution catalyst integrated BiVO4 photoanodes for solar induced water oxidation. RSC Adv. 5, 47080–47089 (2015).

    Article  CAS  Google Scholar 

  132. Jin, T., Diao, P., Xu, D. & Wu, Q. High-aspect-ratio WO3 nanoneedles modified with nickel–borate for efficient photoelectrochemical water oxidation. Electrochim. Acta 114, 271–277 (2013).

    Article  CAS  Google Scholar 

  133. Kleiman-Shwarsctein, A., Hu, Y.-S., Stucky, G. D. & McFarland, E. W. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem. Commun. 11, 1150–1153 (2009).

    Article  CAS  Google Scholar 

  134. Zeng, Q. et al. A novel in situ preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J. Mater. Chem. A 3, 4345–4353 (2015).

    Article  CAS  Google Scholar 

  135. Tilley, S. D., Cornuz, M., Sivula, K. & Grätzel, M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010).

    Article  CAS  Google Scholar 

  136. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Rocheleau, R. E., Miller, E. L. & Misra, A. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998). Possibly the first monolithic photoelectrochemical solar-to-hydrogen device, one that still ranks as among the most efficient.

  139. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem iii–v light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015). A recent example of a highly efficient photoelectrochemical solar-to-hydrogen device, showing how effectively device design has been optimized since Rocheleau's report.

    Article  CAS  Google Scholar 

  140. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011). The first effective photoelectrochemical solar-to-hydrogen device that operated at near-neutral pH.

    Article  CAS  PubMed  Google Scholar 

  141. Esiner, S. et al. Photoelectrochemical water splitting in an organic artificial leaf. J. Mater. Chem. A 3, 23936–23945 (2015).

    Article  CAS  Google Scholar 

  142. Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264–3278 (2014).

    Article  CAS  Google Scholar 

  143. Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 78, 661–669 (2005).

    Article  CAS  Google Scholar 

  144. Berger, A., Segalman, R. A. & Newman, J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy Environ. Sci. 7, 1468–1476 (2014).

    Article  CAS  Google Scholar 

  145. Symes, M. D. & Cronin, L. Decoupling hydrogen and oxygen evolution during water splitting using a proton-coupled-electron buffer. Nat. Chem. 5, 403–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Rausch, B., Symes, M. D. & Cronin, L. A. Bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. J. Am. Chem. Soc. 135, 13656–13659 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Rausch, B., Symes, M. D., Chisholm, G. & Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Bloor, L. G. et al. Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer. J. Am. Chem. Soc. 138, 6707–6710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.D.S. thanks the University of Glasgow for a Lord Kelvin Adam Smith Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Symes.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Tafel slopes

Tafel slopes are the gradient of the linear portion of a graph of overpotential versus the logarithm of the current density for a given electrocatalyst performing a particular reaction. Hence, the value of each slope gives an idea as to how the electrocatalytic performance of a material changes over a given potential range. These slopes are often quoted in millivolts per decade, where a decade in this sense relates to a decade of current density on the log scale. Catalysts with lower slopes require smaller increments of overpotential to give increased current densities, making them more effective.

Faradaic yield

In electrochemistry, this is the ratio between the amount of product actually detected and quantified, and the amount of that product that could theoretically have been formed based on the charge passed in the experiment.

Exchange current densities

Exchange current densities reflect the intrinsic rate of electron transfer between an analyte in solution and the electrode, and can thus be viewed as a measure of the effectiveness of a catalyst for a particular electrochemical reaction under a particular set of conditions (the greater the magnitude of the exchange current density, the greater the activity of the catalyst).

Photosystem II

Photosystem II is a key protein complex involved in photosynthesis. It uses sunlight to oxidize water, producing high energy electrons for subsequent chemical reactions.

Reversible hydrogen electrode

(RHE). The RHE is based on the following electrochemical half-reaction: 2e + 2H+ → H2. Therefore, it is a subtype of the standard hydrogen electrode. However, the measured potential of the RHE does not change with pH, which means it can be used to make a ready comparison between the theoretical position of onset of the HER (always 0 V versus RHE) and the position of a redox event of interest, regardless of the pH of the solution.

Solar-to-hydrogen conversion efficiency

The energy that would be released upon complete oxidation of the hydrogen produced by, for example, an artificial photosynthesis system in a given time, divided by the energy required by the artificial photosynthesis system to produce that amount of hydrogen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roger, I., Shipman, M. & Symes, M. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-016-0003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing