Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbon oxygenate transformations by actinide compounds and catalysts

Abstract

Carbon oxygenates represent an increasingly important class of feedstock in the development of a sustainable chemical economy. Their catalytic transformation into value-added chemicals is a crucial target, because it would reduce our ties to fossil fuels and non-renewable resources. In this Review, we discuss the unique reactivity offered by actinide metal complexes with respect to s-, p- and d-block metals resulting from the chemical properties particular to these metals. This reactivity is governed by large ionic radii, high coordination numbers, kinetic lability, the involvement of f orbitals in bonding, and single-electron redox processes or σ-bond metathesis, which are distinct from the oxidative addition and reductive elimination pathways commonly seen for catalysts derived from d-block metals. We conclude with a discussion of the current progress in the use of these complexes towards catalytic transformations of oxygenated hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features of the reactivity of the actinide elements.
Figure 2: Reactions of carbon monoxide with actinide complexes.
Figure 3: Actinide complexes exhibit diverse reactivity towards CO2.
Figure 4: Actinide complexes catalyse ring-opening polymerization of epoxides and lactides.
Figure 5: Catalytic or stoichiometric reactions of actinide complexes with alcohols, aldehydes and ketones.

Similar content being viewed by others

References

  1. Bozell, J. J. & Patel, M. K. Feedstocks for the Future Vol. 921 (American Chemical Society, 2006).

    Book  Google Scholar 

  2. Thomas, J. M. & Thomas, W. J. in Principles and Practice of Heterogeneous Catalysis 2nd edn 546–568 (Wiley-VCH, 2014).

    Google Scholar 

  3. Macho, V., Kralik, M. & Komora, L. Progress in commercial and potential industrial processes based on carbon monoxide. Pet. Coal 39, 6–12 (1997).

    CAS  Google Scholar 

  4. Zheng, C., Apeloig, Y. & Hoffmann, R. Bonding and coupling of C1 fragments on metal surfaces. J. Am. Chem. Soc. 110, 749–774 (1988).

    Article  CAS  Google Scholar 

  5. Olah, G. A., Goeppert, A. & Surya Prakash, G. K. Beyond Oil and Gas: The Methanol Economy 2nd edn (Wiley-VCH, 2009).

    Book  Google Scholar 

  6. Rodemerck, U. et al. Catalyst development for CO2 hydrogenation to fuels. ChemCatChem 5, 1948–1955 (2013).

    Article  CAS  Google Scholar 

  7. Finn, C., Schnittger, S., Yellowlees, L. J. & Love, J. B. Molecular approaches to the electrochemical reduction of carbon dioxide. Chem. Commun. 48, 1392–1399 (2012).

    Article  CAS  Google Scholar 

  8. Platel, R. H., Hodgson, L. M. & Williams, C. K. Biocompatible initiators for lactide polymerization. Polym. Rev. 48, 11–63 (2008).

    Article  CAS  Google Scholar 

  9. Labet, M. & Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38, 3484–3504 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Olsén, P., Odelius, K. & Albertsson, A.-C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 17, 699–709 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Childers, M. I., Longo, J. M., Van Zee, N. J., LaPointe, A. M. & Coates, G. W. Stereoselective epoxide polymerization and copolymerization. Chem. Rev. 114, 8129–8152 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, E. & Liddle, S. T. Uranium-mediated oxidative addition and reductive elimination. Dalton Trans. 44, 12924–12941 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Karmel, I., Batrice, R. & Eisen, M. Catalytic organic transformations mediated by actinide complexes. Inorganics 3, 392–428 (2015).

    Article  CAS  Google Scholar 

  14. Nugent, L. J., Baybarz, R. D., Burnett, J. L. & Ryan, J. L. Electron-transfer and fd absorption bands of some lanthanide and actinide complexes and the standard (iii–iv) oxidation potentials for each member of the lanthanide and actinide series. J. Inorg. Nucl. Chem. 33, 2503–2530 (1971).

    Article  CAS  Google Scholar 

  15. Nugent, L. J., Baybarz, R. D., Burnett, J. L. & Ryan, J. L. Electron-transfer and fd absorption bands of some lanthanide and actinide complexes and the standard (ii–iii) oxidation potential for each member of the lanthanide and actinide series. J. Phys. Chem. 77, 1528–1539 (1973).

    Article  CAS  Google Scholar 

  16. Sonnenberger, D. C. & Gaudiello, J. G. Cyclic voltammetric study of organoactinide compounds of uranium(iv) and neptunium(iv). Ligand effects on the M(iv)/M(iii) couple. Inorg. Chem. 27, 2747–2748 (1988).

    Article  CAS  Google Scholar 

  17. Schelter, E. J. et al. Systematic studies of early actinide complexes: uranium(iv) fluoroketimides. Inorg. Chem. 46, 7477–7488 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Morris, D. E., Da Re, R. E., Jantunen, K. C., Castro-Rodriguez, I. & Kiplinger, J. L. Trends in electronic structure and redox energetics for early-actinide pentamethylcyclopentadienyl complexes. Organometallics 23, 5142–5153 (2004).

    Article  CAS  Google Scholar 

  19. Arnold, P. L. Uranium-mediated activation of small molecules. Chem. Commun. 47, 9005–9010 (2011).

    Article  CAS  Google Scholar 

  20. Bruno, J. W., Marks, T. J. & Morss, L. R. Organo-f-element thermochemistry. Metal–ligand bond dissociation enthalpies in (pentamethylcyclopentadienyl)thorium hydrocarbyls, metallacycles, hydrides, and dialkylamides. J. Am. Chem. Soc. 105, 6824–6832 (1983).

    Article  CAS  Google Scholar 

  21. Bruno, J. W., Stecher, H. A., Morss, L. R., Sonnenberger, D. C. & Marks, T. J. Organo-f-element thermochemistry. Thorium versus uranium and ancillary ligand effects on metal–ligand bond disruption enthalpies in bis(pentamethylcyclopentadienyl)actinide bis(hydrocarbyls) and bis(pentamethylcyclopentadienyl) alkoxy actinide hydrides and hydrocarbyls. J. Am. Chem. Soc. 108, 7275–7280 (1986).

    Article  CAS  Google Scholar 

  22. Bradley, D. C., Saad, M. A. & Wardlaw, W. The preparation of thorium alkoxides. J. Chem. Soc. 1091–1094 (1954).

  23. Bradley, D. C., Chatterjee, A. K. & Wardlaw, W. 439. Structural chemistry of the alkoxides. Part VI. Primary alkoxides of quadrivalent cerium and thorium. J. Chem. Soc. 2260–2264 (1956).

  24. Morss, L. R., Edelstein, N. M. & Fuger, J. (eds) The Chemistry of the Actinide and Transactinide Elements 4th edn 856 (Springer, 2011).

    Book  Google Scholar 

  25. Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2015. Coord. Chem. Rev. 318, 29–130 (2016).

    Article  CAS  Google Scholar 

  26. Jones, M. B. & Gaunt, A. J. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem. Rev. 113, 1137–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    Article  CAS  Google Scholar 

  28. Gaunt, A. J. & Neu, M. P. Recent developments in nonaqueous plutonium coordination chemistry. C. R. Chim. 13, 821–831 (2010).

    Article  CAS  Google Scholar 

  29. Barnea, E. & Eisen, M. S. Organoactinides in catalysis. Coord. Chem. Rev. 250, 855–899 (2006).

    Article  CAS  Google Scholar 

  30. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysts. Nature 455, 341–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Arnold, P. L. et al. Subtle interactions and electron transfer between UIII, NpIII, or PuIII and uranyl mediated by the oxo group. Angew. Chem. Int. Ed. 55, 12797–12801 (2016).

    Article  CAS  Google Scholar 

  32. Gaunt, A. J., Enriquez, A. E., Reilly, S. D., Scott, B. L. & Neu, M. P. Structural characterization of Pu[N(SiMe3)2]3, a synthetically useful nonaqueous plutonium(iii) precursor. Inorg. Chem. 47, 26–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Reilly, S. D., Brown, J. L., Scott, B. L. & Gaunt, A. J. Synthesis and characterization of NpCl4(DME)2 and PuCl4(DME)2 neutral transuranic An(iv) starting materials. Dalton Trans. 43, 1498–1501 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, J. L. et al. A linear trans-bis(imido) neptunium(v) actinyl analog: NpV(NDipp)2(tBu2bipy)2Cl (Dipp = 2,6-iPr2C6H3). J. Am. Chem. Soc. 137, 9583–9586 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, J. L. et al. Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold. Chem. Commun. 52, 5428–5431 (2016).

    Article  CAS  Google Scholar 

  36. Macor, J. A. et al. Coordination chemistry of 2,2′-biphenylenedithiophosphinate and diphenyldithiophosphinate with U, Np, and Pu. Dalton Trans. 44, 18923–18936 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Dutkiewicz, M. S. et al. Organometallic neptunium(iii) complexes. Nat. Chem. 8, 797–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Maron, L., Eisenstein, O. & Andersen, R. A. The bond between CO and Cp′3U in Cp′3U(CO) involves back-bonding from the Cp′3U ligand-based orbitals of π-symmetry, where Cp′represents a substituted cyclopentadienyl ligand. Organometallics 28, 3629–3635 (2009).

    Article  CAS  Google Scholar 

  39. Brennan, J. G., Andersen, R. A. & Robbins, J. L. Preparation of the first molecular carbon monoxide complex of uranium, (Me3SiC5H4)3UCO. J. Am. Chem. Soc. 108, 335–336 (1986). The first demonstration that CO can bind to an actinide in a similar manner to its binding to transition-metal cations.

    Article  CAS  Google Scholar 

  40. Parry, J., Carmona, E., Coles, S. & Hursthouse, M. Synthesis and single-crystal X-ray diffraction study on the first isolable carbonyl complex of an actinide, (C5Me4H)3U(CO). J. Am. Chem. Soc. 117, 2649–2650 (1995).

    Article  CAS  Google Scholar 

  41. Evans, W. J., Kozimor, S. A., Nyce, G. W. & Ziller, J. W. Comparative reactivity of sterically crowded nf3 (C5Me5)3Nd and (C5Me5)3U complexes with CO: formation of a nonclassical carbonium ion versus an f element metal carbonyl complex. J. Am. Chem. Soc. 125, 13831–13835 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Castro-Rodriguez, I. & Meyer, K. Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(iii) complex. J. Am. Chem. Soc. 127, 11242–11243 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Büchner, W. & Weiss, E. Zur Kenntnis der sogenannten «Alkalicarbonyle» iv [1]. Über die Reaktion von geschmolzenem Kalium mit Kohlenmonoxid. Helv. Chim. Acta 47, 1415–1423 (in German) (1964).

    Article  Google Scholar 

  44. Arnold, P. L., Turner, Z. R., Bellabarba, R. M. & Tooze, R. P. Carbon monoxide coupling and functionalisation at a simple uranium coordination complex. Chem. Sci. 2, 77–79 (2011). A reductive coupling of CO to form a C 2 product that demonstrated that further C–H and C–C bond forming (homologation) chemistry is possible.

    Article  CAS  Google Scholar 

  45. Mansell, S. M., Kaltsoyannis, N. & Arnold, P. L. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. J. Am. Chem. Soc. 133, 9036–9051 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Aitken, G. et al. Reductive coupling of carbon monoxide by U(iii) complexes — a computational study. Dalton Trans. 40, 11080–11088 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. McKay, D., Frey, A. S. P., Green, J. C., Cloke, F. G. N. & Maron, L. Computational insight into the reductive oligomerisation of CO at uranium(iii) mixed-sandwich complexes. Chem. Commun. 48, 4118–4120 (2012).

    Article  CAS  Google Scholar 

  48. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotrimerization of carbon monoxide to the deltate dianion by an organometallic uranium complex. Science 311, 829–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Frey, A. S. et al. Mechanistic studies on the reductive cyclooligomerisation of CO by U(iii) mixed sandwich complexes; the molecular structure of [(U(η-C8H6{(SiiPr3)2-1,4}2)(η-Cp*)]2(μ-η11-C2O2). J. Am. Chem. Soc. 130, 13816–13817 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Tsoureas, N., Summerscales, O. T., Cloke, F. G. N. & Roe, S. M. Steric effects in the reductive coupling of CO by mixed-sandwich uranium(iii) complexes. Organometallics 32, 1353–1362 (2013).

    Article  CAS  Google Scholar 

  51. Gardner, B. M. et al. Homologation and functionalization of carbon monoxide by a recyclable uranium complex. Proc. Natl Acad. Sci. USA 109, 9265–9270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arnold, P. L. & Mansell, S. M. cis-borylated enediolate supported by uranium tris(aryloxide)s. CSD communication 1487672 http://dx.doi.org/10.5517/ccdc.csd.cc1ly1fo (2016).

  53. Buss, J. A. & Agapie, T. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site. Nature 529, 72–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe, T., Ishida, Y., Matsuo, T. & Kawaguchi, H. Reductive coupling of six carbon monoxides by a ditantalum hydride complex. J. Am. Chem. Soc. 131, 3474–3475 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Frey, A. S. P., Cloke, F. G. N., Coles, M. P. & Hitchcock, P. B. UIII-induced reductive co-coupling of NO and CO to form UIV cyanate and oxo derivates. Chem. Eur. J. 16, 9446–9448 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Frey, A. S. P., Cloke, F. G. N., Coles, M. P., Maron, L. & Davin, T. Facile conversion of CO/H2 into methoxide at a uranium(iii) center. Angew. Chem. Int. Ed. 50, 6881–6883 (2011).

    Article  CAS  Google Scholar 

  57. Maata, E. A. & Marks, T. J. Carbon monoxide activation by organoactinides. Catalytic hydrogenation of inserted carbon monoxide. J. Am. Chem. Soc. 103, 3576–3578 (1981).

    Article  Google Scholar 

  58. Moloy, K. G., Marks, T. J. & Day, V. W. Carbon monoxide activation by organoactinides. η2-acyl-carbon monoxide coupling and the formation of metal-bound ketenes. J. Am. Chem. Soc. 105, 5696–5698 (1983).

    Article  CAS  Google Scholar 

  59. Sonnenberger, D. C., Mintz, E. A. & Marks, T. J. Organoactinide carbonylation and carboxylation chemistry. Structural electronic, bond energy, and photochemical effects on migratory insertion in the tris(cyclopentadienyl)thorium hydrocarbyl series. J. Am. Chem. Soc. 106, 3484–3491 (1984).

    Article  CAS  Google Scholar 

  60. Fagan, P. J., Moloy, K. G. & Marks, T. J. Carbon monoxide activation by organoactinides. Migratory carbon monoxide insertion into metal–hydrogen bonds to produce mononuclear formyls. J. Am. Chem. Soc. 103, 6959–6962 (1981).

    Article  CAS  Google Scholar 

  61. Manriquez, J. M. Fagan, P. J., Marks, T. J., Day, C. S. & Day, V. W. Bis(pentamethylcyclopentadienyl)actinide alkyls: facile activation of carbon monoxide, carbon–carbon double bond formation, and the production of unusual oxygen-bonded migratory insertion products. J. Am. Chem. Soc. 100, 7112–7114 (1978). Not only the first example of CO insertion into an An–C bond but also the demonstration of a wider and complicated range of CO and hydrocarbyl reactions that form various Fischer–Tropsch-like products and have since been extensively built upon.

    Article  CAS  Google Scholar 

  62. Marks, T. J. Actinide organometallic chemistry. Science 217, 989–997 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Kloppenburg, L. & Petersen, J. L. Facile conversion of an appended silylamido to a silyloxy ligand via isocyanate elimination. Synthesis of {[(C5Me4)SiMe2O]Zr(η2-O2CMe)(μ-O2CMe)}2 via the carboxylation of [(C5Me4)SiMe2(NtBu)]ZrMe2 . Organometallics 15, 7–9 (1996).

    Article  CAS  Google Scholar 

  64. Weydert, M., Brennan, J. G., Andersen, R. A. & Bergman, R. G. Reactions of a uranium(iv) tertiary alkyl bond: facile ligand-assisted reduction and insertion of ethylene and carbon monoxide. Organometallics 14, 3942–3951 (1995).

    Article  CAS  Google Scholar 

  65. Fagan, P. J. et al. Carbon monoxide activation by f-element organometallics. An unusually distorted, carbenelike dihaptoacyl and CO tetramerization. J. Am. Chem. Soc. 102, 5393–5396 (1980).

    Article  CAS  Google Scholar 

  66. Katahira, D. A., Moloy, K. G. & Marks, T. J. Carbon monoxide activation by organoactinides. Formyl pathways in CO homologation and hydrogenation. Organometallics 1, 1723–1726 (1982).

    Article  CAS  Google Scholar 

  67. Moloy, K. G., Fagan, P. J., Manriquez, J. M. & Marks, T. J. A synthetic and mechanistic study of oxycarbene-like coupling reaction patterns of actinide η2-acyl complexes with carbon monoxide and isocyanides. J. Am. Chem. Soc. 108, 56–67 (1986).

    Article  CAS  Google Scholar 

  68. Dormond, A., Aaliti, A., Elbouadili, A. & Moise, C. Réactivité des liaisons σ uranium–carbone: réactions du méthyltris(hexaméthyldisilylamido)uranium. J. Organomet. Chem. 329, 187–199 (in French) (1987).

    Article  CAS  Google Scholar 

  69. Arnold, P. L. et al. Carbon monoxide and carbon dioxide insertion chemistry of f-block N-heterocyclic carbene complexes. Dalton Trans. 42, 1333–1337 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Benaud, O., Berthet, J. C., Thuery, P. & Ephritikhine, M. The bis metallacyclic anion [U(N{SiMe3}2)(CH2SiMe2N{SiMe3})2]−. Inorg. Chem. 49, 8117–8130 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Evans, W. J., Siladke, N. A. & Ziller, J. W. Synthesis and reactivity of a silylalkyl double tuck-in uranium metallocene [(η51-C5Me4SiMe2CH2)2U] and its conversion to bis(tethered) metallocenes. Chem. Eur. J. 16, 796–800 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Fagan, P. J. et al. Insertion of carbon monoxide into metal–nitrogen bonds. Synthesis, chemistry, structures, and structural dynamics of bis(pentamethylcyclopentadienyl) organoactinide dialkylamides and η2-carbamoyls. J. Am. Chem. Soc. 103, 2206–2220 (1981).

    Article  CAS  Google Scholar 

  73. Castro-Rodriguez, I., Nakai, H., Zakharov, L. N., Rheingold, A. L. & Meyer, K. A linear, O-coordinated η1-CO2 bound to uranium. Science 305, 1757–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Castro-Rodriguez, I. & Meyer, K. Small molecule activation at uranium coordination complexes: control of reactivity via molecular architecture. Chem. Commun. 1353–1368 (2006).

  75. Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. Reduction of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 5, 5883 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Horn, B., Limberg, C., Herwig, C. & Braun, B. Nickel(i)-mediated transformations of carbon dioxide in closed synthetic cycles: reductive cleavage and coupling of CO2 generating NiICO, NiIICO3 and NiIIC2O4NiII entities. Chem. Commun. 49, 10923–10925 (2013).

    Article  CAS  Google Scholar 

  77. Angamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327, 313–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Thomas, A. M., Lin, B.-L., Wasinger, E. C. & Stack, T. D. P. Ligand noninnocence of thiolate/disulfide in dinuclear copper complexes: solvent-dependent redox isomerization and proton-coupled electron transfer. J. Am. Chem. Soc. 135, 18912–18919 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Evans, W. J., Seibel, C. A. & Ziller, J. W. Organosamarium-mediated transformations of CO2 and COS: monoinsertion and disproportionation reactions and the reductive coupling of CO2 to [O2CCO2]2−. Inorg. Chem. 37, 770–776 (1998).

    Article  CAS  Google Scholar 

  80. Schmidt, A.-C. et al. Activation of SO2 and CO2 by trivalent uranium leading to sulfite/dithionite and carbonate/oxalate complexes. Chem. Eur. J. 20, 13501–13506 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Tsoureas, N., Castro, L., Kilpatrick, A. F. R., Cloke, F. G. N. & Maron, L. Controlling selectivity in the reductive activation of CO2 by mixed sandwich uranium(iii) complexes. Chem. Sci. 5, 3777–3788 (2014). An important observation that ligand tuning for steric rather than electronic effects may be key to generating the first simple homogeneous catalysts for CO 2 coupling to the desirable C 2 product oxalate.

    Article  CAS  Google Scholar 

  82. Berthet, J. C. et al. Synthesis and crystal-structure of the oxo-bridged bimetallic organouranium complex [(Me3SiC5H4)3U]2[μ-O]. J. Organomet. Chem. 408, 335–341 (1991).

    Article  CAS  Google Scholar 

  83. Summerscales, O. T., Frey, A. S. P., Cloke, F. G. N. & Hitchcock, P. B. Reductive disproportionation of carbon dioxide to carbonate and squarate products using a mixed-sandwich U(III) complex. Chem. Commun. 2, 198–200 (2008).

    Article  Google Scholar 

  84. Mougel, V. et al. Siloxides as supporting ligands in uranium(III)-mediated small-molecule activation. Angew. Chem. Int. Ed. 51, 12280–12284 (2012).

    Article  CAS  Google Scholar 

  85. Lam, O. P., Bart, S. C., Kameo, H., Heinemann, F. W. & Meyer, K. Insights into the mechanism of carbonate formation through reductive cleavage of carbon dioxide with low-valent uranium centers. Chem. Commun. 46, 3137–3139 (2010).

    Article  CAS  Google Scholar 

  86. Schmidt, A.-C., Nizovtsev, A. V., Scheurer, A., Heinemann, F. W. & Meyer, K. Uranium-mediated reductive conversion of CO2 to CO and carbonate in a single-vessel, closed synthetic cycle. Chem. Commun. 48, 8634–8636 (2012).

    Article  CAS  Google Scholar 

  87. Cooper, O. et al. Multimetallic cooperativity in uranium-mediated CO2 activation. J. Am. Chem. Soc. 136, 6716–6723 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Lam, O. P., Franke, S. M., Heinemann, F. W. & Meyer, K. Reactivity of U–E–U (E=S, Se) toward CO2, CS2, and COS: new mixed-carbonate complexes of the types U–CO2E–U (E=S, Se), U–CS2E–U (E=O, Se), and U–COSSe–U. J. Am. Chem. Soc. 134, 16877–16881 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Moloy, K. G. & Marks, T. J. The insertion of carbon dioxide into actinide alkyl and hydride bonds. Inorg. Chim. Acta 110, 127–131 (1985).

    Article  CAS  Google Scholar 

  90. Evans, W. J., Walensky, J. R. & Ziller, J. W. Insertion reactivity of CO2, PhNCO, Me3CC≡N, and Me3CN≡C with the uranium–alkynyl bonds in (C5Me5)2U(C≡CPh)2 . Organometallics 29, 945–950 (2010).

    Article  CAS  Google Scholar 

  91. Webster, C. L., Ziller, J. W. & Evans, W. J. Synthesis and CO2 insertion reactivity of allyluranium metallocene complexes. Organometallics 31, 7191–7197 (2012).

    Article  CAS  Google Scholar 

  92. Higgins, J. A., Cloke, F. G. N. & Roe, S. M. Synthesis and CO2 insertion chemistry of uranium(iv) mixed-sandwich alkyl and hydride complexes. Organometallics 32, 5244–5252 (2013).

    Article  CAS  Google Scholar 

  93. Button, Z. E., Higgins, J. A., Suvova, M., Cloke, F. G. N. & Roe, S. M. Mixed sandwich thorium complexes incorporating bis(tri-isopropylsilyl)cyclooctatetraenyl and pentamethylcyclopentadienyl ligands: synthesis, structure and reactivity. Dalton Trans. 44, 2588–2596 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Matson, E. M., Forrest, W. P., Fanwick, P. E. & Bart, S. C. Functionalization of carbon dioxide and carbon disulfide using a stable uranium(III) alkyl complex. J. Am. Chem. Soc. 133, 4948–4954 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Mora, E. et al. Diamine bis(phenolate) as supporting ligands in organoactinide(iv) chemistry. Synthesis, structural characterization, and reactivity of stable dialkyl derivatives. Organometallics 32, 1409–1422 (2013).

    Article  CAS  Google Scholar 

  96. Korobkov, I. & Gambarotta, S. Cis double addition of CO2 to a coordinated arene of a thorium complex. Organometallics 23, 5379–5381 (2004).

    Article  CAS  Google Scholar 

  97. Formanuik, A. et al. Concomitant carboxylate and oxalate formation from the activation of CO2 by a thorium(III) complex. Chem. Eur. J.http://dx.doi.org/10.1002/chem.201604622 (2016).

  98. Bagnall, K. W. & Yanir, E. Thorium and uranium carbamates from M(NR2)4 . J. Inorg. Nucl. Chem. 36, 777–779 (1974).

    Article  CAS  Google Scholar 

  99. Schmidt, A.-C., Heinemann, F. W., Maron, L. & Meyer, K. A series of uranium (IV, V, VI) tritylimido complexes, their molecular and electronic structures and reactivity with CO2 . Inorg. Chem. 53, 13142–13153 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Higgins Frey, J. A., Cloke, F. G. N. & Roe, S. M. Synthesis and reactivity of a mixed-sandwich uranium(IV) primary amido complex. Organometallics 34, 2102–2105 (2015).

    Article  CAS  Google Scholar 

  101. Kahan, R. J., Cloke, F. G. N., Roe, S. M. & Nief, F. Activation of carbon dioxide by new mixed sandwich uranium(III) complexes incorporating cyclooctatetraenyl and pyrrolide, phospholide, or arsolide ligands. New J. Chem. 39, 7602–7607 (2015).

    Article  CAS  Google Scholar 

  102. Bart, S. C. et al. Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes. J. Am. Chem. Soc. 130, 12536–12546 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Schmidt, A.-C., Heinemann, F. W., Lukens, W. W. & Meyer, K. Molecular and electronic structure of dinuclear uranium bis-μ-oxo complexes with diamond core structural motifs. J. Am. Chem. Soc. 136, 11980–11993 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Falcone, M., Chatelain, L. & Mazzanti, M. Nucleophilic reactivity of a nitride-bridged diuranium(IV) complex: CO2 and CS2 functionalization. Angew. Chem. Int. Ed. 55, 4074–4078 (2016).

    Article  CAS  Google Scholar 

  105. Camp, C. et al. CO2 conversion to isocyanate via multiple N–Si bond cleavage at a bulky uranium(III) complex. Chem. Commun. 51, 15454–15457 (2015).

    Article  CAS  Google Scholar 

  106. Ding, W. & Wang, D. Does NHC directly participate in the CO2 insertion into the UIII-N bond? A density functional theory study. Organometallics 33, 7007–7010 (2014).

    Article  CAS  Google Scholar 

  107. Matson, E. M., Fanwick, P. E. & Bart, S. C. Formation of trivalent U–C, U–N, and U–S bonds and their reactivity toward carbon dioxide and acetone. Organometallics 30, 5753–5762 (2011).

    Article  CAS  Google Scholar 

  108. Zuend, S. J., Lam, O. P., Heinemann, F. W. & Meyer, K. Carbon dioxide insertion into uranium-activated dicarbonyl complexes. Angew. Chem. Int. Ed. 50, 10626–10630 (2011).

    Article  CAS  Google Scholar 

  109. Coates, G. W. & Moore, D. R. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Ed. 43, 6618–6639 (2004).

    Article  CAS  Google Scholar 

  110. Kember, M. R., Buchard, A. & Williams, C. K. Catalysts for CO2/epoxide copolymerisation. Chem. Commun. 47, 141–163 (2011).

    Article  CAS  Google Scholar 

  111. Trott, G., Saini, P. K. & Williams, C. K. Catalysts for CO2/epoxide ring-opening copolymerization. Philos. Trans. R. Soc. A 374, 20150085 (2016).

    Article  CAS  Google Scholar 

  112. Baker, R. J. & Walshe, A. New reactivity of the uranyl ion: ring opening polymerisation of epoxides. Chem. Commun. 48, 985–987 (2012).

    Article  CAS  Google Scholar 

  113. Fang, J., Walshe, A., Maron, L. & Baker, R. J. Ring-opening polymerization of epoxides catalyzed by uranyl complexes: an experimental and theoretical study of the reaction mechanism. Inorg. Chem. 51, 9132–9140 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Arnold, P. L. et al. C 3-symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide. Angew. Chem. Int. Ed. 47, 6033–6036 (2008).

    Article  CAS  Google Scholar 

  115. Buffet, J.-C., Kapelski, A. & Okuda, J. Stereoselective polymerization of meso-lactide: syndiotactic polylactide by heteroselective initiators based on trivalent metals. Macromolecules 43, 10201–10203 (2010).

    Article  CAS  Google Scholar 

  116. Otero, A. et al. Ring-opening polymerization of cyclic esters by an enantiopure heteroscorpionate rare earth initiator. Angew. Chem. Int. Ed. 48, 2176–2179 (2009).

    Article  CAS  Google Scholar 

  117. Mou, Z. et al. Efficient and heteroselective heteroscorpionate rare-earth-metal zwitterionic initiators for ROP of rac-lactide: role of σ-ligand. Macromolecules 47, 2233–2241 (2014).

    Article  CAS  Google Scholar 

  118. Ren, W., Zhao, N., Chen, L. & Zi, G. Synthesis, structure, and catalytic activity of benzyl thorium metallocenes. Inorg. Chem. Commun. 30, 26–28 (2013).

    Article  CAS  Google Scholar 

  119. Ren, W., Zhao, N., Chen, L., Song, H. & Zi, G. Synthesis, structure, and catalytic activity of an organothorium hydride complex. Inorg. Chem. Commun. 14, 1838–1841 (2011).

    Article  CAS  Google Scholar 

  120. Barnea, E., Moradove, D., Berthet, J.-C., Ephritikhine, M. & Eisen, M. S. Surprising activity of organoactinide complexes in the polymerization of cyclic mono- and diesters. Organometallics 25, 320–322 (2006).

    Article  CAS  Google Scholar 

  121. Hayes, C. E., Sarazin, Y., Katz, M. J., Carpentier, J.-F. & Leznoff, D. B. Diamido-ether actinide complexes as initiators for lactide ring-opening polymerization. Organometallics 32, 1183–1192 (2013).

    Article  CAS  Google Scholar 

  122. Villiers, C., Thué ry, P. & Ephritikhine, M. A comparison of analogous 4f- and 5f-element compounds: syntheses, X-ray crystal structures and catalytic activity of the homoleptic amidinate complexes [M{MeC(NCy)2}3] (M=La, Nd or U). Eur. J. Inorg. Chem. 2004, 4624–4632 (2004).

    Article  CAS  Google Scholar 

  123. Das, R. K. et al. Group 4 lanthanide and actinide organometallic inclusion complexes. Organometallics 34, 742–752 (2015).

    Article  CAS  Google Scholar 

  124. Rabinovich, E., Aharonovich, S., Botoshansky, M. & Eisen, M. S. Thorium 2-pyridylamidinates: synthesis, structure and catalytic activity towards the cyclo-oligomerization of ε-caprolactone. Dalton Trans. 39, 6667–6676 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Karmel, I. S. R., Elkin, T., Fridman, N. & Eisen, M. S. Dimethylsilyl bis(amidinate)actinide complexes: synthesis and reactivity towards oxygen containing substrates. Dalton Trans. 43, 11376–11387 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Karmel, I. S. R., Fridman, N. & Eisen, M. S. Actinide amidinate complexes with a dimethylamine side arm: synthesis, structural characterization, and reactivity. Organometallics 34, 636–643 (2015).

    Article  CAS  Google Scholar 

  127. Karmel, I. S. R., Botoshansky, M., Tamm, M. & Eisen, M. S. Uranium(IV) imidazolin-2-iminato complexes: a new class of actinide complexes. Inorg. Chem. 53, 694–696 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Karmel, I. S. R., Fridman, N., Tamm, M. & Eisen, M. S. Mixed imidazolin-2-iminato–Cp* thorium(IV) complexes: synthesis and reactivity toward oxygen-containing substrates. Organometallics 34, 2933–2942 (2015).

    Article  CAS  Google Scholar 

  129. Karmel, I. S. R., Khononov, M., Tamm, M. & Eisen, M. S. Uranium-mediated ring-opening polymerization of ε-caprolactone: a comparative study. Catal. Sci. Technol. 5, 5110–5119 (2015).

    Article  CAS  Google Scholar 

  130. Walshe, A., Fang, J., Maron, L. & Baker, R. J. New mechanism for the ring-opening polymerization of lactones? Uranyl aryloxide-induced intermolecular catalysis. Inorg. Chem. 52, 9077–9086 (2013). A new reaction mechanism for the polymerization of lactones identified through the study of a uranyl aryloxide catalyst.

    Article  CAS  PubMed  Google Scholar 

  131. Barnea, E., Andrea, T., Kapon, M. & Eisen, M. S. Formation of inclusion organoactinide complexes with boron-containing macrocycles. J. Am. Chem. Soc. 126, 5066–5067 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Andrea, T., Barnea, E. & Eisen, M. S. Organoactinides promote the Tishchenko reaction: the myth of inactive actinide–alkoxo complexes. J. Am. Chem. Soc. 130, 2454–2455 (2008). The first example of catalytic coupling of aldehydes by actinide complexes that also proceeds through an unexpected An–O bond activation, indicating that actinide alkoxide complexes can be efficient catalysts.

    Article  CAS  PubMed  Google Scholar 

  133. Karmel, I. S. R., Fridman, N., Tamm, M. & Eisen, M. S. Mono(imidazolin-2-iminato) actinide complexes: synthesis and application in the catalytic dimerization of aldehydes. J. Am. Chem. Soc. 136, 17180–17192 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Sharma, M. et al. Organoactinides promote the dimerization of aldehydes: scope, kinetics, thermodynamics, and calculation studies. J. Am. Chem. Soc. 133, 1341–1356 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Wobser, S. D. & Marks, T. J. Organothorium-catalyzed hydroalkoxylation/cyclization of alkynyl alcohols. Scope, mechanism, and ancillary ligand effects. Organometallics 32, 2517–2528 (2013). The rate-limiting step of this actinide-mediated hydroalkoxylation and cyclization involves the first example of C≡C bond insertion into the strong An–O bond.

    Article  CAS  Google Scholar 

  136. Weiss, C. J., Wobser, S. D. & Marks, T. J. Organoactinide-mediated hydrothiolation of terminal alkynes with aliphatic, aromatic, and benzylic thiols. J. Am. Chem. Soc. 131, 2062–2063 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Weiss, C. J., Wobser, S. D. & Marks, T. J. Lanthanide- and actinide-mediated terminal alkyne hydrothiolation for the catalytic synthesis of Markovnikov vinyl sulfides. Organometallics 29, 6308–6320 (2010).

    Article  CAS  Google Scholar 

  138. Cramer, R. E., Jeong, J. H. & Gilje, J. W. Uranium–carbon multiple-bond chemistry. 9. The insertion of phenyl isocyanate into the uranium–carbon bond of Cp3U:CHP(Ph)(R)(Me) to form Cp3U[(NPh)(O)CCHP(Ph)(R)(Me)]. Organometallics 6, 2010–2012 (1987).

    Article  CAS  Google Scholar 

  139. Cooper, O. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. Reactivity of the uranium(iv) carbene complex [U(BIPMTMS)(Cl)(μ-Cl)2Li(THF)2] (BIPMTMS={C(PPh2NSiMe3)2}) towards carbonyl and heteroallene substrates: metallo-Wittig, adduct formation, C–F bond activation, and [2 + 2]-cycloaddition reactions. Dalton Trans. 43, 14275–14283 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Karmel, I. S. R., Tamm, M. & Eisen, M. S. Actinide-mediated catalytic addition of E–H Bonds (E=N, P, S) to carbodiimides, Iisocyanates, and isothiocyanates. Angew. Chem. Int. Ed. 54, 12422–12425 (2015). Demonstration that the actinide mediated addition of E–H bonds to heterocumulenes is both catalytic and also tolerant of functional groups and heteroatoms.

    Article  CAS  Google Scholar 

  141. Batrice, R. J. & Eisen, M. S. Catalytic insertion of E–H bonds (E=C, N, P, S) into heterocumulenes by amido–actinide complexes. Chem. Sci. 7, 939–944 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Batrice, R. J., Kefalidis, C. E., Maron, L. & Eisen, M. S. Actinide-catalyzed intermolecular addition of alcohols to carbodiimides. J. Am. Chem. Soc. 138, 2114–2117 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Cooper, O. J. et al. The nature of the U=C double bond: pushing the stability of high-oxidation-state uranium carbenes to the limit. Chem. Eur. J. 19, 7071–7083 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Lam, O. P., Anthon, C., Heinemann, F. W., O'Connor, J. M. & Meyer, K. Structural and spectroscopic characterization of a charge-separated uranium benzophenone ketyl radical complex. J. Am. Chem. Soc. 130, 6567–6576 (2008). By using a complex ligand architecture that is sterically demanding, a rare benzophenone ketyl radical metal complex can be isolated.

    Article  CAS  PubMed  Google Scholar 

  145. Sternal, R. S., Sabat, M. & Marks, T. J. Metal–metal bonds involving actinides. Functionalization of activated carbon–hydrogen bonds and unusual oligomerization chemistry mediated by a thorium–ruthenium complex. J. Am. Chem. Soc. 109, 7920–7921 (1987).

    Article  CAS  Google Scholar 

  146. Campello, M. P. C. et al. Hydrocarbyl derivatives of [UCl2{HB(pz)3}2]: synthesis, characterization and reactivity studies towards protic substrates and ketones. J. Organomet. Chem. 538, 223–239 (1997).

    Article  CAS  Google Scholar 

  147. Fagan, P. J., Manriquez, J. M., Maatta, E. A., Seyam, A. M. & Marks, T. J. Synthesis and properties of bis(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive f-element organometallic compounds. J. Am. Chem. Soc. 103, 6650–6667 (1981).

    Article  CAS  Google Scholar 

  148. Pedrick, E. A. et al. Synthesis and reactivity of a U(IV) dibenzyne complex. Organometallics 35, 494–502 (2016).

    Article  CAS  Google Scholar 

  149. Kraft, S. J., Fanwick, P. E. & Bart, S. C. Exploring the insertion chemistry of tetrabenzyluranium using carbonyls and organoazides. Organometallics 32, 3279–3285 (2013).

    Article  CAS  Google Scholar 

  150. Silva, M., Domingos, A., Pires de Matos, A., Marques, N. & Trofimenko, S. Hydrotris(mesitylpyrazol-1-yl)borate uranium(IV) compounds: synthesis, structure, and ligand isomerization. Dalton Trans. 4628–4634 (2000).

  151. Matson, E. M., Forrest, W. P., Fanwick, P. E. & Bart, S. C. Synthesis and reactivity of trivalent Tp*U(CH2Ph)2(THF): insertion versus oxidation at low-valent uranium–carbon bonds. Organometallics 32, 1484–1492 (2013).

    Article  CAS  Google Scholar 

  152. Kiernicki, J. J. et al. Multielectron C–O bond activation mediated by a family of reduced uranium complexes. Inorg. Chem. 53, 3730–3741 (2014). An interesting demonstration of metal–ligand cooperativity as uranium complexes bearing redox-active ligands promote the pinacol coupling; here, the ligand provides the reducing equivalents necessary rather than the uranium centre.

    Article  CAS  PubMed  Google Scholar 

  153. Mohammad, A., Cladis, D. P., Forrest, W. P., Fanwick, P. E. & Bart, S. C. Reductive heterocoupling mediated by Cp*2U(2,2′-bpy). Chem. Commun. 48, 1671–1673 (2012).

    Article  CAS  Google Scholar 

  154. Crozier, A. R., Tö rnroos, K. W., Maichle-Mössmer, C. & Anwander, R. Trivalent cerium and praseodymium aromatic ketone adducts. Eur. J. Inorg. Chem. 2013, 409–414 (2013).

    Article  CAS  Google Scholar 

  155. Heeres, H. J., Maters, M., Teuben, J. H., Helgesson, G. & Jagner, S. Organolanthanide-induced carbon–carbon bond formation. Preparation and properties of monomeric lanthanide aldolates and enolates. Organometallics 11, 350–356 (1992).

    Article  CAS  Google Scholar 

  156. Kim, J. E., Zabula, A. V., Carroll, P. J. & Schelter, E. J. 1,2-Addition or enolization? Variable reactivity of a cerium acetylide complex toward carbonyl compounds. Organometallics 35, 2086–2091 (2016).

    Article  CAS  Google Scholar 

  157. Sen, A., Stecher, H. A. & Rheingold, A. L. Synthesis, structure, and reactivity of homoleptic cerium(IV) and cerium(III) alkoxides. Inorg. Chem. 31, 473–479 (1992).

    Article  CAS  Google Scholar 

  158. Hou, Z., Miyano, T., Yamazaki, H. & Wakatsuki, Y. Well-defined metal ketyl complex: Sm(ketyl)(OAr)2(THF)2 and its reversible coupling to a disamarium(III) pinacolate. J. Am. Chem. Soc. 117, 4421–4422 (1995).

    Article  CAS  Google Scholar 

  159. Hou, Z. et al. One-electron reduction of aromatic ketones by low-valent lanthanides. Isolation, structural characterization, and reactivity of lanthanide ketyl complexes. J. Am. Chem. Soc. 120, 754–766 (1998).

    Article  CAS  Google Scholar 

  160. Hou, Z., Koizumi, T.-a., Nishiura, M. & Wakatsuki, Y. Lanthanide(II) complexes bearing linked cyclopentadienyl–anilido ligands: synthesis, structures, and one-electron-transfer and ethylene polymerization reactions. Organometallics 20, 3323–3328 (2001).

    Article  CAS  Google Scholar 

  161. Qin, J., Xu, B., Zhang, Y., Yuan, D. & Yao, Y. Cooperative rare earth metal–zinc based heterometallic catalysts for copolymerization of CO2 and cyclohexene oxide. Green Chem. 18, 4270–4275(2016).

    Article  CAS  Google Scholar 

  162. Dong, Y., Wang, X., Zhao, X. & Wang, F. Facile synthesis of poly(ether carbonate)s via copolymerization of CO2 and propylene oxide under combinatorial catalyst of rare earth ternary complex and double metal cyanide complex. J. Polym. Sci. A 50, 362–370 (2012).

    Article  CAS  Google Scholar 

  163. Cui, D., Nishiura, M., Tardif, O. & Hou, Z. Rare-earth-metal mixed hydride/aryloxide complexes bearing mono(cyclopentadienyl) ligands. Synthesis, CO2 fixation, and catalysis on copolymerization of CO2 with cyclohexene oxide. Organometallics 27, 2428–2435 (2008).

    Article  CAS  Google Scholar 

  164. Vitanova, D. V., Hampel, F. & Hultzsch, K. C. Rare earth metal complexes based on β-diketiminato and novel linked bis(β-diketiminato) ligands: synthesis, structural characterization and catalytic application in epoxide/CO2-copolymerization. J. Organomet. Chem. 690, 5182–5197 (2005).

    Article  CAS  Google Scholar 

  165. Quan, Z., Wang, X., Zhao, X. & Wang, F. Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer 44, 5605–5610 (2003).

    Article  CAS  Google Scholar 

  166. Zhao, B., Lu, C. R. & Shen, Q. Ring-opening polymerization of trimethylene carbonate and its copolymerization with ε-caprolactone by lanthanide(II) aryloxide complexes. J. Appl. Polym. Sci. 106, 1383–1389 (2007).

    Article  CAS  Google Scholar 

  167. Mas, C., Ramis, X., Salla, J. M., Mantecon, A. & Serra, A. Cationic copolymerization of diglycidyl ether of bisphenol A with phthalide or 3,3′-diphthalide catalyzed by lanthanide triflates. J. Polym. Sci. A 44, 1711–1721 (2006).

    Article  CAS  Google Scholar 

  168. Li, C., Wang, Y., Zhou, L., Sun, H. & Shen, Q. Homoleptic lanthanide amidinate complexes: a single-component initiator for ring-opening polymerization of trimethylene carbonate and copolymerization with ε-caprolactone. J. Appl. Polym. Sci. 102, 22–28 (2006).

    Article  CAS  Google Scholar 

  169. Zhou, L., Sun, H., Chen, J., Yao, Y. & Shen, Q. Homoleptic lanthanide guanidinate complexes: the effective initiators for the polymerization of trimethylene carbonate and its copolymerization with ε-caprolactone. J. Polym. Sci. A 43, 1778–1786 (2005).

    Article  CAS  Google Scholar 

  170. Fan, L., Xiong, Y.-B., Xu, H. & Shen, Z.-Q. l-Lactide homopolymerization and l-lactide-ε-caprolactone block copolymerization by lanthanide tris(2,4,6-trimethylphenolate)s. Eur. Polym. J. 41, 1647–1653 (2005).

    Article  CAS  Google Scholar 

  171. Cervellera, R., Ramis, X., Salla, J. M., Serra, A. & Mantecon, A. New thermosets obtained by copolymerization of DGEBA with 1,5,7,11-tetraoxaspiro[5,5]undecane catalyzed by lanthanide triflates. Polymer 46, 6878–6887 (2005).

    Article  CAS  Google Scholar 

  172. Yasuda, H. & Desurmont, G. Block copolymerizations of higher 1-olefins with traditional polar monomers using metallocene-type single component lanthanide initiators. Polym. Int. 53, 1017–1024 (2004).

    Article  CAS  Google Scholar 

  173. Gromada, J., Chenal, T., Mortreux, A., Leising, F. & Carpentier, J.-F. Homogeneous and heterogeneous alkyl-alkoxo-lanthanide type catalysts for polymerization and block-copolymerization of ethylene and methyl methacrylate. J. Mol. Catal. A 182183, 525–531 (2002).

    Article  Google Scholar 

  174. Desurmont, G., Tokimitsu, T. & Yasuda, H. First controlled block copolymerizations of higher 1-olefins with polar monomers using metallocene type single component lanthanide initiators. Macromolecules 33, 7679–7681 (2000).

    Article  CAS  Google Scholar 

  175. Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Henrici-Olivé, G. & Olivé, S. The Fischer–Tropsch synthesis: molecular weight distribution of primary products and reaction mechanism. Angew. Chem. Int. Ed. Engl. 15, 136–141 (1976).

    Article  Google Scholar 

  178. Yang, P., Warnke, I., Martin, R. L. & Hay, P. J. Theoretical studies of the sp2 versus sp3 C–H bond activation chemistry of 2-picoline by (C5Me5)2An(CH3)2 complexes (An=Th, U). Organometallics 27, 1384–1392 (2008).

    Article  CAS  Google Scholar 

  179. Lohr, T. L., Li, Z. & Marks, T. J. Thermodynamic strategies for C–O bond formation and cleavage via tandem catalysis. Acc. Chem. Res. 49, 824–834 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Andrez, J. et al. Synthesis and reactivity of a terminal uranium(iv) sulfide supported by siloxide ligands. Chem. Sci. 7, 5846–5856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smiles, D. E., Wu, G. & Hayton, T. W. Reversible chalcogen-atom transfer to a terminal uranium sulfide. Inorg. Chem. 53, 12683–12685 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Zhu, Q. et al. Sulfur as a selective ‘soft’ oxidant for catalytic methane conversion probed by experiment and theory. Nat. Chem. 5, 104–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Hutchings, G. J., Heneghan, C. S., Hudson, I. D. & Taylor, S. H. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384, 341–343 (1996).

    Article  CAS  Google Scholar 

  184. Collette, H. et al. The potential use of uranium oxides and uranium–bismuth mixed oxides in catalysis. Faraday Trans. 83, 1263–1271 (1987).

    Article  CAS  Google Scholar 

  185. Ismagilov, Z. R. et al. Characterization of new catalysts based on uranium oxides. Kinet. Catal. 48, 511–520 (2007).

    Article  CAS  Google Scholar 

  186. Davachi, S. M. & Kaffashi, B. Polylactic acid in medicine. Polym. Plast. Technol. Eng. 54, 944–967 (2015).

    Article  CAS  Google Scholar 

  187. Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beil. Org. Chem. 9, 2265–2319 (2013).

    Article  CAS  Google Scholar 

  188. Weiss, C. J. & Marks, T. J. Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans. 39, 6576–6588 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Nolan, S. P., Stern, D. & Marks, T. J. Organo-f-element thermochemistry. Absolute metal–ligand bond disruption enthalpies in bis(pentamethylcyclopentadienyl)samarium hydrocarbyl, hydride, dialkylamide, alkoxide, halide, thiolate, and phosphide complexes. Implications for organolanthanide bonding and reactivity. J. Am. Chem. Soc. 111, 7844–7853 (1989).

    Article  CAS  Google Scholar 

  190. Dias, A. R. & Martinho Simõ es, J. A. Thermochemistry of M(η5-C5H5)2Ln complexes (M=Ti, Mo, W). Polyhedron 7, 1531–1544 (1988).

    Article  CAS  Google Scholar 

  191. Schock, L. E. & Marks, T. J. Organometallic thermochemistry. Metal hydrocarbyl, hydride, halide, carbonyl, amide, and alkoxide bond enthalpy relationships and their implications in pentamethylcyclopentadienyl and cyclopentadienyl complexes of zirconium and hafnium. J. Am. Chem. Soc. 110, 7701–7715 (1988).

    Article  CAS  Google Scholar 

  192. Simoes, J. A. M. & Beauchamp, J. L. Transition metal–hydrogen and metal–carbon bond strengths: the keys to catalysis. Chem. Rev. 90, 629–688 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC), UK (grant numbers EP/M010554/1, EP/K014714/1 and EP/J018139/1), the European Cooperation in Science and Technology (COST) Network CM1205, and Z.R.T. thanks SCG Chemicals for funding. Z.R.T also thanks Trinity College, Oxford for a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Polly L. Arnold or Zoë R. Turner.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

σ-Bond metathesis

A reaction that replaces one σ-bonded ligand in M–X with another in a substrate E–X′ to form M–X′ via a four-centre transition state and without any change in formal oxidation state of the metal.

Oxidative addition

A common and widely exploited reaction in homogeneous d-block catalytic chemistry that involves the addition of the E–X bond of a substrate to a metal centre (L)nM using the two electrons from the E–X bond and two metal valence electrons, resulting in the formation of (L)nM(E)(X) and an increase in formal oxidation state of the metal by two.

Reductive elimination

Formally the reverse of oxidative addition, in which a molecule or fragment is released from a metal complex (L)nM(E)(X), returning two electrons to the metal and forming a new E–X bond. Often the key to substrate release and, therefore, turnover in redox-based homogeneous catalysis.

Cp*

(C5Me5). A cyclic aromatic monoanionic ligand that binds strongly with a moderate degree of covalency through the five-ring carbon atoms to an actinide centre. The hapto (η) prefix indicates that all ring C atoms bind to the metal. A pair provide an excellent supporting, ancillary ligand set for various organo-actinide chemistry studies at X in [(η-Cp*)2AnX2]-type complexes. The related cyclic, aromatic η-C8R8 dianions, binding through eight ring carbon atoms, are also commonly used.

Migratory insertion

The coupling of two M-bound ligands, one anionic (X; generally an alkyl, hydride, amide or alkoxide in this Review) and one neutral (L; generally CO or an ether, ketone or aldehyde in this Review, for which the initial binding may not necessarily have been an observable event) that generates a new M-bound X ligand that includes the group L.

Turnover frequency

Related to the turnover number, this is the number of substrate molecules converted per active catalyst site in a given unit time.

Turnover number

The number of substrate molecules converted per active catalyst site. Overall turnover number can be related to catalyst stability or longevity.

Markovnikov addition

Addition of HX across a C–C multiple bond with H addition at the least substituted carbon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, P., Turner, Z. Carbon oxygenate transformations by actinide compounds and catalysts. Nat Rev Chem 1, 0002 (2017). https://doi.org/10.1038/s41570-016-0002

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-016-0002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing