Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and treatment of pulmonary arterial hypertension

Abstract

Substantial progress has been made in the management of pulmonary arterial hypertension (PAH) in the past 25 years, but the disease remains life-limiting. Established therapies for PAH are mostly limited to symptomatic relief by correcting the imbalance of vasoactive factors. The tyrosine kinase inhibitor imatinib, the first predominantly non-vasodilatory drug to be tested in patients with PAH, improved exercise capacity and pulmonary haemodynamics compared with placebo but at the expense of adverse events such as subdural haematoma. Given that administration by inhalation might reduce the risk of systemic adverse effects, inhaled formulations of tyrosine kinase inhibitors are currently in clinical development. Other novel therapeutic approaches for PAH include suppression of activin receptor type IIA signalling with sotatercept, which has shown substantial efficacy in clinical trials and was approved for use in the USA in 2024, but the long-term safety of the drug remains unclear. Future advances in the management of PAH will focus on right ventricular function and involve deep phenotyping and the development of a personalized medicine approach. In this Review, we summarize the mechanisms underlying PAH, provide an overview of available PAH therapies and their limitations, describe the development of newer, predominantly non-vasodilatory drugs that are currently being tested in phase II or III clinical trials, and discuss future directions for PAH research.

Key points

  • Established therapies for pulmonary arterial hypertension (PAH), which has a complex vascular pathobiology characterized by cell proliferation, extracellular matrix deposition and inflammation, have predominantly vasodilatory effects.

  • The tyrosine kinase inhibitors imatinib and seralutinib have predominantly anti-proliferative properties and have been reported to be efficacious in the treatment of PAH in clinical trials; administration by inhalation might address the safety concerns associated with orally administered imatinib.

  • Therapy with the activin receptor type IIA ligand trap sotatercept was effective in patients with PAH in clinical trials; an ongoing extension study might address questions regarding long-term cardiac and systemic vascular safety.

  • The effect of PAH therapy on load-independent right ventricular function, an important determinant of outcomes in these patients, requires further investigation.

  • Individual responses to different PAH treatments might vary; deep phenotyping might help to identify biomarkers associated with drug-specific responses and support the development of a personalized medicine approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathomechanisms of pulmonary arterial hypertension.
Fig. 2: Overview of key adverse effects of approved and advanced investigative therapies for pulmonary arterial hypertension.
Fig. 3: Key investigative treatment options with novel targets in pulmonary vascular disease.

Similar content being viewed by others

References

  1. Hemnes, A. R. et al. Clinical characteristics and transplant-free survival across the spectrum of pulmonary vascular disease. J. Am. Coll. Cardiol. 80, 697–718 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sommer, N. et al. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol. 178, 6–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Naeije, R., Richter, M. J. & Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 59, 2102334 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lahm, T. et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 198, e15–e43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Humbert, M. et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 43, 3618–3731 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Opitz, C. F. et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J. Am. Coll. Cardiol. 68, 368–378 (2016).

    Article  PubMed  Google Scholar 

  7. Hoeper, M. M. et al. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. Lancet Respir. Med. 10, 937–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. US Food and Drug Administration. Drugs@FDA: FDA-Approved Drugs. Biologic License Application (BLA): 761363 https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761363 (2024).

  9. Morrell, N. W. et al. Genetics and genomics of pulmonary arterial hypertension. Eur. Respir. J. 53, 1801899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Theilmann, A. L. et al. Endothelial BMPR2 loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling. Arterioscler. Thromb. Vasc. Biol. 40, 2605–2618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hiepen, C. et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 17, e3000557 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hopper, R. K. et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug. Circulation 133, 1783–1794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, X. et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res. 96, 1053–1063 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Trembath, R. C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Harrison, R. E. et al. Transforming growth factor-β receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111, 435–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Chaouat, A. et al. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59, 446–448 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Graf, S. et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat. Commun. 9, 1416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Archer, S. L. et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121, 2661–2671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, D. et al. Hypermethylation of BMPR2 promoter occurs in patients with heritable pulmonary arterial hypertension and inhibits BMPR2 expression. Am. J. Respir. Crit. Care Med. 196, 925–928 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Cook, E. K. et al. DNMT3A and TET2 mutations: linking genetics and epigenetics in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 199, A2397 (2019).

    Google Scholar 

  21. Potus, F. et al. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 141, 1986–2000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emon, I. M., Al-Qazazi, R., Rauh, M. J. & Archer, S. L. The role of clonal hematopoiesis of indeterminant potential and DNA (Cytosine-5)-methyltransferase dysregulation in pulmonary arterial hypertension and other cardiovascular diseases. Cells 12, 2528 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chelladurai, P. et al. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol. 178, 54–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, L. et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126, 455–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boucherat, O. et al. HDAC6: a novel histone deacetylase implicated in pulmonary arterial hypertension. Sci. Rep. 7, 4546 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paulin, R. et al. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab. 20, 827–839 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Meloche, J. et al. Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension. Circ. Res. 117, 525–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Bernardi, N., Bianconi, E., Vecchi, A. & Ameri, P. Noncoding RNAs in pulmonary arterial hypertension: current knowledge and translational perspectives. Heart Fail. Clin. 19, 137–152 (2023).

    Article  PubMed  Google Scholar 

  29. Le Ribeuz, H. et al. In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respir. Res. 21, 186 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: results from the 2019 National Survey on Drug Use and Health. https://www.samhsa.gov/data/ (Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2020).

  31. European Monitoring for Drugs and Drug Addiction & Europol. EU drug market: methamphetamine — in-depth analysis. https://www.emcdda.europa.eu/publications/eu-drug-markets/methamphetamine_en (2022).

  32. Chin, K. M., Channick, R. N. & Rubin, L. J. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 130, 1657–1663 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Rothman, R. B., Ayestas, M. A., Dersch, C. M. & Baumann, M. H. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 100, 869–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Rothman, R. B. et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39, 32–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Eddahibi, S. et al. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113, 1857–1864 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Bousvaros, G. A. Effects of norepinephrine on human pulmonary circulation. Br. Heart J. 24, 738–744 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rose, J. C. & Lazaro, E. J. Pulmonary vascular responses to serotonin and effects of certain serotonin antagonists. Circ. Res. 6, 283–288 (1958).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, R. et al. Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling. Int. J. Biochem. Cell Biol. 88, 100–112 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Montani, D. et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 125, 2128–2137 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Cribbs, S. K., Crothers, K. & Morris, A. Pathogenesis of HIV-related lung disease: immunity, infection, and inflammation. Physiol. Rev. 100, 603–632 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Ferrari, T. C. A., Albricker, A. C. L., Goncalves, I. M. & Freire, C. M. V. Schistosome-associated pulmonary arterial hypertension: a review emphasizing pathogenesis. Front. Cardiovasc. Med. 8, 724254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chalifoux, L. V. et al. Arteriopathy in macaques infected with simian immunodeficiency virus. Lab. Invest. 67, 338–349 (1992).

    CAS  PubMed  Google Scholar 

  43. Marecki, J. C. et al. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am. J. Respir. Crit. Care Med. 174, 437–445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kanmogne, G. D., Primeaux, C. & Grammas, P. Induction of apoptosis and endothelin-1 secretion in primary human lung endothelial cells by HIV-1 gp120 proteins. Biochem. Biophys. Res. Commun. 333, 1107–1115 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Mermis, J. et al. Hypoxia-inducible factor-1 α/platelet derived growth factor axis in HIV-associated pulmonary vascular remodeling. Respir. Res. 12, 103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuebler, W. M., Bonnet, S. & Tabuchi, A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm. Circ. 8, 2045893218757596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lin, C. Y., Ko, C. H., Hsu, C. Y. & Chen, H. A. Epidemiology and mortality of connective tissue disease-associated pulmonary arterial hypertension: a national cohort study in Taiwan. Semin. Arthritis Rheum. 50, 957–962 (2020).

    Article  PubMed  Google Scholar 

  48. Li, M., Tan, Y., Stenmark, K. R. & Tan, W. High pulsatility flow induces acute endothelial inflammation through overpolarizing cells to activate NF-κB. Cardiovasc. Eng. Technol. 4, 26–38 (2013).

    Article  PubMed  Google Scholar 

  49. Savai, R. et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 897–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, W. et al. Mechanical stretching of the pulmonary vein mediates pulmonary hypertension due to left heart disease by regulating SAC/MAPK pathway and the expression of IL-6 and TNF-α. J. Cardiothorac. Surg. 16, 127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu, S. F. et al. Pulmonary hypertension: linking inflammation and pulmonary arterial stiffening. Front. Immunol. 13, 959209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hester, J., Ventetuolo, C. & Lahm, T. Sex, gender, and sex hormones in pulmonary hypertension and right ventricular failure. Compr. Physiol. 10, 125–170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Austin, E. D. et al. Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur. Respir. J. 34, 1093–1099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baird, G. L. et al. Lower DHEA-S levels predict disease and worse outcomes in post-menopausal women with idiopathic, connective tissue disease- and congenital heart disease-associated pulmonary arterial hypertension. Eur. Respir. J. 51, 1800467 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ventetuolo, C. E. et al. Higher estradiol and lower dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. Am. J. Respir. Crit. Care Med. 193, 1168–1175 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, W. H. et al. Impact of pituitary-gonadal axis hormones on pulmonary arterial hypertension in men. Hypertension 72, 151–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Frump, A. L. et al. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J. Clin. Invest. 131, e129433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ventetuolo, C. E. et al. Oestradiol metabolism and androgen receptor genotypes are associated with right ventricular function. Eur. Respir. J. 47, 553–563 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Ventetuolo, C. E. et al. Sex hormones are associated with right ventricular structure and function: the MESA-right ventricle study. Am. J. Respir. Crit. Care Med. 183, 659–667 (2011).

    Article  PubMed  Google Scholar 

  60. Rhodes, C. J. et al. Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension. Circulation 135, 460–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller, J. L. Iron deficiency anemia: a common and curable disease. Cold Spring Harb. Perspect. Med. 3, a011866 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rhodes, C. J. et al. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. J. Am. Coll. Cardiol. 58, 300–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Ruiter, G. et al. Iron deficiency in systemic sclerosis patients with and without pulmonary hypertension. Rheumatology 53, 285–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Krasuski, R. A. et al. Association of anemia and long-term survival in patients with pulmonary hypertension. Int. J. Cardiol. 150, 291–295 (2011).

    Article  PubMed  Google Scholar 

  65. Liu, J. et al. Prognostic impact of red blood cell distribution width in pulmonary hypertension patients: a systematic review and meta-analysis. Medicine 99, e19089 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Allen, B. J. et al. Biomechanical and mechanobiological drivers of the transition from postcapillary pulmonary hypertension to combined pre-/postcapillary pulmonary hypertension. J. Am. Heart Assoc. 12, e028121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schafer, M. et al. Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension. Pulm. Circ. 6, 37–45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li, M., Stenmark, K. R., Shandas, R. & Tan, W. Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J. Vasc. Res. 46, 561–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Cheng, C. et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744–2753 (2006).

    Article  PubMed  Google Scholar 

  70. Bassiouny, H. S. et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98, 157–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Qi, Y. X. et al. PDGF-BB and TGF-β1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc. Natl Acad. Sci. USA 108, 1908–1913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, W. F., Nelson, C. M., Tan, J. L. & Chen, C. S. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ. Res. 101, e44–e52 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. von Offenberg Sweeney, N. et al. Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovasc. Res. 63, 625–634 (2004).

    Article  Google Scholar 

  74. Hatami, J., Tafazzoli-Shadpour, M., Haghighipour, N., Shokrgozar, M. A. & Janmaleki, M. Influence of cyclic stretch on mechanical properties of endothelial cells. Experimental Mechanics 53, 1291–1298 (2013).

    Article  CAS  Google Scholar 

  75. Omidvar, R., Tafazzoli-Shadpour, M., Mahmoodi-Nobar, F., Azadi, S. & Khani, M. M. Quantifying effects of cyclic stretch on cell-collagen substrate adhesiveness of vascular endothelial cells. Proc. Inst. Mech. Eng. H. 232, 531–541 (2018).

    Article  PubMed  Google Scholar 

  76. Huertas, A. et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: highlights from basic research to therapy. Eur. Respir. J. 51, 1700745 (2018).

    Article  PubMed  Google Scholar 

  77. Marsden, P. A., Danthuluri, N. R., Brenner, B. M., Ballermann, B. J. & Brock, T. A. Endothelin action on vascular smooth muscle involves inositol trisphosphate and calcium mobilization. Biochem. Biophys. Res. Commun. 158, 86–93 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Park, W. S., Ko, E. A., Han, J., Kim, N. & Earm, Y. E. Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J. Cardiovasc. Pharmacol. 45, 99–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Tai, K. et al. Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1. Eur. J. Pharmacol. 583, 135–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Archer, S. L. et al. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91, 7583–7587 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hampl, V., Huang, J. M., Weir, E. K. & Archer, S. L. Activation of the cGMP-dependent protein kinase mimics the stimulatory effect of nitric oxide and cGMP on calcium-gated potassium channels. Physiol. Res. 44, 39–44 (1995).

    CAS  PubMed  Google Scholar 

  82. Cohen, R. A. et al. Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ. Res. 84, 210–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, J., Crossland, R. F., Noorani, M. M. & Marrelli, S. P. Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am. J. Physiol. Heart Circ. Physiol. 297, H417–H424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olschewski, A. et al. Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ. Res. 98, 1072–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Le Hiress, M. et al. Proinflammatory signature of the dysfunctional endothelium in pulmonary hypertension. role of the macrophage migration inhibitory factor/CD74 complex. Am. J. Respir. Crit. Care Med. 192, 983–997 (2015).

    Article  PubMed  Google Scholar 

  86. Bowers, R. et al. Oxidative stress in severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 169, 764–769 (2004).

    Article  PubMed  Google Scholar 

  87. Altman, R. et al. Coagulation and fibrinolytic parameters in patients with pulmonary hypertension. Clin. Cardiol. 19, 549–554 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Boucherat, O. et al. The cancer theory of pulmonary arterial hypertension. Pulm. Circ. 7, 285–299 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Humbert, M. et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur. Respir. J. 53, 1801887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Voelkel, N. F. & Gomez-Arroyo, J. The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am. J. Respir. Cell Mol. Biol. 51, 474–484 (2014).

    Article  PubMed  Google Scholar 

  91. Perros, F. et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 178, 81–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Humbert, M. et al. Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur. Respir. J. 11, 554–559 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Humbert, M. et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 151, 1628–1631 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Parpaleix, A. et al. Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. Eur. Respir. J. 48, 470–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Ameshima, S. et al. Peroxisome proliferator-activated receptor gamma (PPARγ) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ. Res. 92, 1162–1169 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. van der Bruggen, C. E. et al. Bone morphogenetic protein receptor type 2 mutation in pulmonary arterial hypertension: a view on the right ventricle. Circulation 133, 1747–1760 (2016).

    Article  PubMed  Google Scholar 

  97. Vonk Noordegraaf, A. et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur. Respir. J. 53, 1801900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Potus, F. et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132, 932–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Sutendra, G. et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J. Mol. Med. 91, 1315–1327 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Umar, S. et al. Estrogen rescues preexisting severe pulmonary hypertension in rats. Am. J. Respir. Crit. Care Med. 184, 715–723 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Frump, A. L. et al. Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L873–L890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lahm, T. et al. 17β-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L375–L388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu, A. et al. Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 307, H273–H283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Agrawal, V., Lahm, T., Hansmann, G. & Hemnes, A. R. Molecular mechanisms of right ventricular dysfunction in pulmonary arterial hypertension: focus on the coronary vasculature, sex hormones, and glucose/lipid metabolism. Cardiovasc. Diagn. Ther. 10, 1522–1540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Prins, K. W. et al. Colchicine depolymerizes microtubules, increases junctophilin-2, and improves right ventricular function in experimental pulmonary arterial hypertension. J. Am. Heart Assoc. 6, e006195 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rain, S. et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128, 2016–2025 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Hsu, S. et al. Right ventricular myofilament functional differences in humans with systemic sclerosis-associated versus idiopathic pulmonary arterial hypertension. Circulation 137, 2360–2370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Prisco, S. Z., Thenappan, T. & Prins, K. W. Treatment targets for right ventricular dysfunction in pulmonary arterial hypertension. JACC Basic Transl. Sci. 5, 1244–1260 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sydykov, A. et al. Inflammatory mediators drive adverse right ventricular remodeling and dysfunction and serve as potential biomarkers. Front. Physiol. 9, 609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Prins, K. W. et al. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J. Heart Lung Transplant. 37, 376–384 (2018).

    Article  PubMed  Google Scholar 

  111. Yang, T. et al. Increased levels of plasma CXC-chemokine ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung 43, 322–327 (2014).

    Article  PubMed  Google Scholar 

  112. Al-Qazazi, R. et al. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 206, 608–624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bekedam, F. T., Goumans, M. J., Bogaard, H. J., de Man, F. S. & Llucia-Valldeperas, A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol. Ther. 244, 108389 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Oikawa, M. et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J. Am. Coll. Cardiol. 45, 1849–1855 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Piao, L. et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J. Mol. Med. 88, 47–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Brittain, E. L. et al. Fatty acid metabolic defects and right ventricular lipotoxicity in human pulmonary arterial hypertension. Circulation 133, 1936–1944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Talati, M. H. et al. Mechanisms of lipid accumulation in the bone morphogenetic protein receptor type 2 mutant right ventricle. Am. J. Respir. Crit. Care Med. 194, 719–728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Graham, B. B. et al. Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L435–L440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hemnes, A. R. et al. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 189, 325–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barst, R. J. et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N. Engl. J. Med. 334, 296–301 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Simonneau, G. et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 165, 800–804 (2002).

    Article  PubMed  Google Scholar 

  122. Olschewski, H. et al. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. McLaughlin, V. V. et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J. Am. Coll. Cardiol. 55, 1915–1922 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Jing, Z. C. et al. Efficacy and safety of oral treprostinil monotherapy for the treatment of pulmonary arterial hypertension: a randomized, controlled trial. Circulation 127, 624–633 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Laliberte, K., Arneson, C., Jeffs, R., Hunt, T. & Wade, M. Pharmacokinetics and steady-state bioequivalence of treprostinil sodium (Remodulin) administered by the intravenous and subcutaneous route to normal volunteers. J. Cardiovasc. Pharmacol. 44, 209–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Benza, R. L. et al. One-year experience with intravenous treprostinil for pulmonary arterial hypertension. J. Heart Lung Transplant. 32, 889–896 (2013).

    Article  PubMed  Google Scholar 

  127. Sitbon, O. et al. Selexipag for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 373, 2522–2533 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Galie, N. et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 117, 3010–3019 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Pulido, T. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N. Engl. J. Med. 369, 809–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Galie, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Galie, N. et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation 119, 2894–2903 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Ghofrani, H. A. et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369, 330–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Galie, N. et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N. Engl. J. Med. 373, 834–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Sitbon, O. et al. Initial dual oral combination therapy in pulmonary arterial hypertension. Eur. Respir. J. 47, 1727–1736 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Hoeper, M. M. et al. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): a multicentre, open-label, randomised controlled trial. Lancet Respir. Med. 9, 573–584 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Hoeper, M. M. et al. RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors. Eur. Respir. J. 50, 1602425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chin, K. M. et al. Three- versus two-drug therapy for patients with newly diagnosed pulmonary arterial hypertension. J. Am. Coll. Cardiol. 78, 1393–1403 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Wei, A. et al. Clinical adverse effects of endothelin receptor antagonists: insights from the meta-analysis of 4894 patients from 24 randomized double-blind placebo-controlled clinical trials. J. Am. Heart Assoc. 5, e003896 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sitbon, O. et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111, 3105–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Gerhardt, F. et al. Positive vasoreactivity testing in pulmonary arterial hypertension: therapeutic consequences, treatment patterns, and outcomes in the modern management era. Circulation 149, 1549–1564 (2024).

    Article  PubMed  Google Scholar 

  142. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Cohen, M. H. et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res. 8, 935–942 (2002).

    CAS  PubMed  Google Scholar 

  144. Yu, Y. et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am. J. Physiol. Cell Physiol. 284, C316–C330 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Schermuly, R. T. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ghofrani, H. A., Seeger, W. & Grimminger, F. Imatinib for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 353, 1412–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Patterson, K. C., Weissmann, A., Ahmadi, T. & Farber, H. W. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann. Intern. Med. 145, 152–153 (2006).

    Article  PubMed  Google Scholar 

  148. Souza, R., Sitbon, O., Parent, F., Simonneau, G. & Humbert, M. Long term imatinib treatment in pulmonary arterial hypertension. Thorax 61, 736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ghofrani, H. A. et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am. J. Respir. Crit. Care Med. 182, 1171–1177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hoeper, M. M. et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 127, 1128–1138 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Gillies, H. et al. AV-101, a novel inhaled dry-powder formulation of imatinib, in healthy adult participants: a phase 1 single and multiple ascending dose study. ERJ Open Res. 9, 00433-2022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05036135 (2024).

  153. Wilkins, M. R. et al. Positioning imatinib for pulmonary arterial hypertension: a phase I/II design comprising dose finding and single-arm efficacy. Pulm. Circ. 11, 20458940211052823 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Galkin, A. et al. Inhaled seralutinib exhibits potent efficacy in models of pulmonary arterial hypertension. Eur. Respir. J. 60, 2102356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Frantz, R. P. et al. Seralutinib in adults with pulmonary arterial hypertension (TORREY): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(24)00072-9 (2024).

    Article  PubMed  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05934526 (2024).

  157. Humbert, M. et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 384, 1204–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Humbert, M. et al. Sotatercept for the treatment of pulmonary arterial hypertension: PULSAR open-label extension. Eur. Respir. J. 61, 2201347 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yung, L. M. et al. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci. Transl. Med. 12, eaaz5660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hoeper, M. M. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 388, 1478–1490 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Dogra, D. et al. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat. Commun. 8, 1902 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04796337 (2023).

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04896008 (2023).

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04811092 (2024).

  165. Hodgson, J. et al. Characterization of GDF2 mutations and levels of BMP9 and BMP10 in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 201, 575–585 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Morrell, N. W. et al. MGX292, a novel variant of native bone morphogenetic protein 9 (BMP9) that lacks osteogenic activity, reverses vascular remodelling and pulmonary arterial hypertension in the sugen-hypoxia rat model. Am. J. Respir. Crit. Care Med. 207, A6729 (2023).

    Google Scholar 

  167. Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang, Q. et al. Dysregulation of BMP9/BMPR2/SMAD signalling pathway contributes to pulmonary fibrosis and pulmonary hypertension induced by bleomycin in rats. Br. J. Pharmacol. 178, 203–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Tu, L. et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension. Circ. Res. 124, 846–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Bouvard, C. et al. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10. Cardiovasc. Res. 118, 1805–1820 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Morrell, N. W., Upton, P. D., Li, W. & Yu, P. B. Letter by morrell et al regarding article, “selective bmp-9 inhibition partially protects against experimental pulmonary hypertension”. Circ. Res. 124, e81 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, L. et al. BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state. Circulation 143, 1394–1410 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Upton, P. D., Dunmore, B. J., Li, W. & Morrell, N. W. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev. Dyn. 252, 327–342 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Mair, K. M. et al. Sex-dependent influence of endogenous estrogen in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 190, 456–467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kawut, S. M. et al. Anastrozole in pulmonary arterial hypertension. a randomized, double-blind, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 195, 360–368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kawut, S. M. et al. Pulmonary hypertension and anastrozole (phantom): a randomized clinical trial. Am. J. Respir. Crit. Care Med. 207, A6727 (2023).

    Google Scholar 

  177. Chen, X. et al. Oestrogen inhibition reverses pulmonary arterial hypertension and associated metabolic defects. Eur. Respir. J. 50, 1602337 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03528902 (2023).

  179. Alzoubi, A. et al. Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 304, H1708–H1718 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Bonnet, S. et al. Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proc. Natl Acad. Sci. USA 100, 9488–9493 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hampl, V., Bibova, J., Povysilova, V. & Herget, J. Dehydroepiandrosterone sulphate reduces chronic hypoxic pulmonary hypertension in rats. Eur. Respir. J. 21, 862–865 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, Y. T. et al. Dehydroepiandrosterone attenuates pulmonary artery and right ventricular remodeling in a rat model of pulmonary hypertension due to left heart failure. Life Sci. 219, 82–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Dumas de La Roque, E. et al. Dehydroepiandrosterone (DHEA) improves pulmonary hypertension in chronic obstructive pulmonary disease (COPD): a pilot study. Ann. Endocrinol. 73, 20–25 (2012).

    Article  CAS  Google Scholar 

  184. Walsh, T. P. et al. Experimental design of the effects of dehydroepiandrosterone in pulmonary hypertension (EDIPHY) trial. Pulm. Circ. 11, 2045894021989554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03648385 (2023).

  186. Agard, C. et al. Protective role of the antidiabetic drug metformin against chronic experimental pulmonary hypertension. Br. J. Pharmacol. 158, 1285–1294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Goncharov, D. A. et al. Metformin therapy for pulmonary hypertension associated with heart failure with preserved ejection fraction versus pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 198, 681–684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dean, A., Nilsen, M., Loughlin, L., Salt, I. P. & MacLean, M. R. Metformin reverses development of pulmonary hypertension via aromatase inhibition. Hypertension 68, 446–454 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Liao, S., Li, D., Hui, Z., McLachlan, C. S. & Zhang, Y. Metformin added to bosentan therapy in patients with pulmonary arterial hypertension associated with congenital heart defects: a pilot study. ERJ Open Res. 4, 00060-2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03617458 (2023).

  191. Michelakis, E. D. et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105, 244–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. McMurtry, M. S. et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95, 830–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Guignabert, C. et al. Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22α-targeted overexpression of the serotonin transporter. FASEB J. 23, 4135–4147 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Sun, X. Q. et al. Reversal of right ventricular remodeling by dichloroacetate is related to inhibition of mitochondria-dependent apoptosis. Hypertens. Res. 39, 302–311 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Li, B., Yan, J., Shen, Y., Liu, Y. & Ma, Z. Dichloroacetate prevents but not reverses the formation of neointimal lesions in a rat model of severe pulmonary arterial hypertension. Mol. Med. Rep. 10, 2144–2152 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Michelakis, E. D. et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 9, eaao4583 (2017).

    Article  PubMed  Google Scholar 

  197. James, M. O. & Stacpoole, P. W. Pharmacogenetic considerations with dichloroacetate dosing. Pharmacogenomics 17, 743–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Archer, S. L., Fang, Y. H., Ryan, J. J. & Piao, L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm. Circ. 3, 144–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Fang, Y. H. et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J. Mol. Med. 90, 31–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Verdejo, H. E. et al. Effects of trimetazidine on right ventricular function and ventricular remodeling in patients with pulmonary artery hypertension: a randomised controlled trial. J. Clin. Med. 12, 1571 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Herve, P. et al. Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 99, 249–254 (1995).

    Article  CAS  PubMed  Google Scholar 

  202. Abenhaim, L. et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N. Engl. J. Med. 335, 609–616 (1996).

    Article  CAS  PubMed  Google Scholar 

  203. Lazarus, H. M. et al. A trial design to maximize knowledge of the effects of rodatristat ethyl in the treatment of pulmonary arterial hypertension (ELEVATE 2). Pulm. Circ. 12, e12088 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sumitomo Pharma Co. Ltd. Conference on Q1 FY2023 (April 1 to June 30, 2023) Financial Results. https://www.sumitomo-pharma.com/ir/library/presentation/ (2023).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04712669 (2023).

  206. Abdul-Salam, V. B. et al. Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation 122, 2058–2067 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Rhodes, C. J. et al. Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respir. Med. 5, 717–726 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rhodes, C. J. et al. Using the plasma proteome for risk stratifying patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 205, 1102–1111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wilkins, M. R. et al. α1-A680T variant in GUCY1A3 as a candidate conferring protection from pulmonary hypertension among Kyrgyz highlanders. Circ. Cardiovasc. Genet. 7, 920–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Bohnen, M. S. et al. Loss-of-function ABCC8 mutations in pulmonary arterial hypertension. Circ. Genom. Precis. Med. 11, e002087 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhu, N. et al. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med. 13, 80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rhodes, C. J. et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respir. Med. 7, 227–238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Smits, A. J. et al. A systematic review with meta-analysis of biomarkers for detection of pulmonary arterial hypertension. ERJ Open Res 8, 00009-2022(2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Rhodes, C. J. et al. Whole-blood RNA profiles associated with pulmonary arterial hypertension and clinical outcome. Am. J. Respir. Crit. Care Med. 202, 586–594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kariotis, S. et al. Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nat. Commun. 12, 7104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hemnes, A. R. et al. PVDOMICS: a multi-center study to improve understanding of pulmonary vascular disease through phenomics. Circ. Res. 121, 1136–1139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Majeed, R. W. et al. Pulmonary vascular research institute godeep: a meta-registry merging deep phenotyping datafrom international PH reference centers. Pulm. Circ. 12, e12123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Savale, L., Guignabert, C., Weatherald, J. & Humbert, M. Precision medicine and personalising therapy in pulmonary hypertension: seeing the light from the dawn of a new era. Eur. Respir. Rev. 27, 180004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Swaminathan, A. C. et al. Treatment-related biomarkers in pulmonary hypertension patients on oral therapies. Respir. Res. 21, 304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cooke, J. P. ADMA: its role in vascular disease. Vasc. Med. 10 (Suppl. 1), S11–S17 (2005).

    Article  PubMed  Google Scholar 

  221. Guignabert, C. et al. Serum and pulmonary expression profiles of the activin signaling system in pulmonary arterial hypertension. Circulation 147, 1809–1822 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Benza, R. L. et al. Endothelin-1 pathway polymorphisms and outcomes in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 192, 1345–1354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hemnes, A. R. et al. Peripheral blood signature of vasodilator-responsive pulmonary arterial hypertension. Circulation 131, 401–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Hoeper, M. M. et al. Intensive care, right ventricular support and lung transplantation in patients with pulmonary hypertension. Eur. Respir. J. 53, 1801906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rako, Z. A., Kremer, N., Yogeswaran, A., Richter, M. J. & Tello, K. Adaptive versus maladaptive right ventricular remodelling. ESC Heart Fail. 10, 762–775 (2023).

    Article  PubMed  Google Scholar 

  226. Nagendran, J. et al. Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ. Res. 112, 347–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03362047 (2023).

  228. Tello, K. et al. Inhaled iloprost improves right ventricular load-independent contractility in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 206, 111–114 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Vanderpool, R. R. et al. How prostacyclin therapy improves right ventricular function in pulmonary arterial hypertension. Eur. Respir. J. 50, 1700764 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Nagendran, J. et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116, 238–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Monzo, L. et al. Acute unloading effects of sildenafil enhance right ventricular-pulmonary artery coupling in heart failure. J. Card. Fail. 27, 224–232 (2021).

    Article  PubMed  Google Scholar 

  232. Petit, T. et al. Right ventricular and cyclic guanosine monophosphate signalling abnormalities in stages B and C of heart failure with preserved ejection fraction. ESC Heart Fail. 8, 4661–4673 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Greenberg, P. L. et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120, 2454–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hatzimichael, E., Timotheatou, D., Koumpis, E., Benetatos, L. & Makis, A. Luspatercept: a new tool for the treatment of anemia related to β-thalassemia, myelodysplastic syndromes and primary myelofibrosis. Diseases 10, 85 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Babbs, K., Materna, C., Fisher, F., Seehra, J. & Lachey, J. RKER-012, a novel activin receptor type IIB (ActRIIB) ligand trap, reduced cardiopulmonary pathology in a rodent model of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 203, A4526 (2021).

    Google Scholar 

  236. Natarajan, H. et al. Administration of KER-012, a modified activin receptor IIB ligand trap, led to changes in biomarkers of cardiovascular health in a ph1 study conducted in healthy post-menopausal women. Am. J. Respir. Crit. Care Med. 207, A1187 (2023).

    Google Scholar 

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05975905 (2024).

  238. Tapson, V. F. et al. Oral treprostinil for the treatment of pulmonary arterial hypertension in patients on background endothelin receptor antagonist and/or phosphodiesterase type 5 inhibitor therapy (the FREEDOM-C study): a randomized controlled trial. Chest 142, 1383–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  239. Galie, N. et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 39, 1496–1502 (2002).

    Article  CAS  PubMed  Google Scholar 

  240. Barst, R. J. et al. Beraprost therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 41, 2119–2125 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.-A.G. has received research funds from the German Research Foundation (DFG; CRC 1213 projects B08 and A09), the Cardiopulmonary Institute (CPI), the Institute for Lung Health (ILH) and the German Center for Lung Research (DZL). L.Z. has received research funds from the British Heart Foundation (PG/19/17/34275, RE/18/4/34215), DFG (CRC 1213 project B08), the CPI, the ILH and the DZL. F.G. has received research funds from public sources from the DFG (CRC 1213 project A08), the CPI, the ILH and the DZL.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this manuscript.

Corresponding author

Correspondence to Hossein-Ardeschir Ghofrani.

Ethics declarations

Competing interests

H.-A.G. has received fees for lectures and/or consultations from Aerovate, Altavant/Enzyvant, Bayer AG, Gossamer Bio, Janssen/Actelion, MorphogenIX, MSD/Acceleron, Pfizer, and United Therapeutics and fees for participation in a data safety monitoring board from Insmed. His spouse was an employee of Altavant/Enzyvant from January 2023 until August 2023; her work for the company was intentionally separated from H.-A.G.’s active interactions in conjunction with the clinical development programme. M.G.-M. has received research grants paid to her institution from Aerovate, Altavant, Acceleron (a subsidiary of Merck), and Bayer and consultation fees from Aerami, Acceleron (a subsidiary of Merck), Bayer, Janssen Biotech, Keros Therapeutics, and United Therapeutics Corporation. She holds leadership roles on the Board of Directors for the International Society of Heart and Lung Transplantation and the Scientific Advisory Board of United Therapeutics. Her spouse is a Senior Director in Clinical Development at Intellia Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghofrani, HA., Gomberg-Maitland, M., Zhao, L. et al. Mechanisms and treatment of pulmonary arterial hypertension. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01064-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01064-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing