Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atherosclerotic plaque stabilization and regression: a review of clinical evidence

This article has been updated

Abstract

Atherosclerotic plaque results from a complex interplay between lipid deposition, inflammatory changes, cell migration and arterial wall injury. Over the past two decades, clinical trials utilizing invasive arterial imaging modalities, such as intravascular ultrasonography, have shown that reducing levels of atherogenic lipoproteins, mainly serum LDL-cholesterol (LDL-C), to very low levels can safely reduce overall atherosclerotic plaque burden and favourably modify plaque composition. Classically, this outcome has been achieved with intensive statin therapy. Since 2016, newer and potent lipid-lowering strategies, such as proprotein convertase subtilisin–kexin type 9 inhibition, have shown incremental effects on plaque regression and risk of clinical events. Despite maximal reduction in plasma LDL-C levels, considerable residual cardiovascular risk remains in some patients. Therefore, there is a need to study therapeutic approaches that address residual risk beyond LDL-C reduction to promote plaque stabilization or regression. Contemporary imaging modalities, such as coronary computed tomography angiography, enable non-invasive assessment of the overall atherosclerotic plaque burden as well as of certain local plaque characteristics. This technology could allow further study of plaque stabilization and regression using novel therapeutic approaches. Non-invasive plaque assessment might also offer the potential to guide personalized management strategies if validated for this purpose.

Key points

  • Intravascular ultrasonography is the traditionally favoured imaging technique to evaluate plaque burden and morphology in clinical trials; newer and promising invasive techniques include optical coherence tomography and near-infrared spectroscopy.

  • Non-invasive plaque assessment is feasible with coronary computed tomography angiography, including the evaluation of plaque distribution and burden across all epicardial coronary arteries and the identification of high-risk plaque features.

  • The strongest evidence for plaque regression and stabilization comes from clinical trials of intensive reductions of plasma LDL-cholesterol (LDL-C) with statin therapy and the use of intravascular ultrasonography to track coronary atherosclerosis over time.

  • Emerging evidence has shown that plasma LDL-C reduction with proprotein convertase subtilisin–kexin type 9 inhibitors leads to additional plaque regression.

  • Evidence to support non-LDL-C and non-lipid targeting to promote additional plaque regression is inconsistent and less robust than for LDL-C reduction.

  • Future trials should leverage non-invasive plaque assessment through coronary computed tomography angiography and focus on achieving residual risk reduction through effects on plaque regression and stabilization by modifying other targets such as plasma lipoprotein(a) levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of an atherosclerotic (fibrofatty) plaque.
Fig. 2: Plaque assessment with intravascular ultrasonography.
Fig. 3: Plaque composition assessment with optical coherence tomography.

Similar content being viewed by others

Change history

  • 12 January 2024

    In the version of the article initially published, the name of a peer reviewer, Matthew Budoff, was mispelled in the reviewer acknowledgements, and has now been amended in the HTML and PDF versions of the article.

References

  1. Libby, B. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 16, 56 (2019).

    Article  Google Scholar 

  2. Stary, H. C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler. Thromb. Vasc. Biol. 15, 1512–1531 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Moreno, P. R. The high-risk thin-cap fibroatheroma: a new kid on the block. Circ. Cardiovasc. Interv. 2, 500–502 (2009).

    Article  PubMed  Google Scholar 

  4. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Stone, P. H., Libby, P. & Boden, W. E. Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis. A narrative review. JAMA Cardiol. 8, 192–201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dawson, L. P., Lum, M., Nerleker, N., Nicholls, S. J. & Layland, J. Coronary atherosclerotic plaque regression: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 66–82 (2022).

    Article  PubMed  Google Scholar 

  7. Schuurman, A. et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J. Am. Coll. Cardiol. 72, 2003–2011 (2018).

    Article  PubMed  Google Scholar 

  8. Zing, L. et al. Clinical significance of lipid-rich plaque detected by optical coherence tomography: a 4-year follow-up study. J. Am. Coll. Cardiol. 69, 2502–2513 (2017).

    Article  Google Scholar 

  9. Budoff, M. J. et al. When does a calcium score equate to secondary prevention? Insights from the multicational CONFIRM registry. JACC Cardiovasc. Imaging 16, 1181–1189 (2023).

    Article  PubMed  Google Scholar 

  10. D’Ascenzo, F. et al. Atherosclerotic coronary plaque regression and the risk of adverse cardiovascular events: a meta-regression of randomized clinical trials. Atherosclerosis 226, 178–185 (2013).

    Article  PubMed  Google Scholar 

  11. Nissen, S. E. & Yock, P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103, 604–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Garcia-Garcia, H. M., Costa, M. A. & Serruys, P. W. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur. Heart J. 31, 2456–2469 (2010).

    Article  PubMed  Google Scholar 

  13. Treusdell, A. G. et al. Intravascular imaging during percutaneous coronary intervention: JACC state-of-the-art review. J. Am. Coll. Cardiol. 81, 590–605 (2023).

    Article  Google Scholar 

  14. Nair, A. et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106, 2200–2206 (2002).

    Article  PubMed  Google Scholar 

  15. Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Araki, M. et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat. Rev. Cardiol. 19, 684–703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yonetsu, T. et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur. Heart J. 32, 1251–1259 (2011).

    Article  PubMed  Google Scholar 

  18. Gerbaud, E. et al. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound. Eur. Heart J. Cardiovasc. Imaging 21, 640–652 (2020).

    Article  PubMed  Google Scholar 

  19. Jaguszewski, M., Klingenberg, R. & Landmesser, U. Intracoronary near-infrared spectroscopy (NIRS) imaging for detection of lipid content of coronary plaques: current experience and future perspectives. Curr. Cardiovasc. Imaging Rep. 6, 426–430 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Madder, R., Smith, J. L. & Dixon, S. R. Composition of target lesions by near-infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ. Cardiovasc. Interv. 5, 55–61 (2012).

    Article  PubMed  Google Scholar 

  21. Sandfort, V., Lima, J. A. C. & Bluemke, D. A. Noninvasive imaging of atherosclerotic plaque progression: status of coronary computed tomography angiography. Circ. Cardiovasc. Imaging 8, e003316 (2015).

    Article  PubMed  Google Scholar 

  22. Voros, S. et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc. Imaging 4, 537–548 (2011).

    Article  PubMed  Google Scholar 

  23. Saremi, F. & Achenbach, S. Coronary plaque characterization using CT. Am. J. Roentgenol. 204, W249–W260 (2015).

    Article  Google Scholar 

  24. Einstein, A. J., Henzlova, M. J. & Rajagopalan, S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298, 317–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. He, Y. et al. Accuracy of MRI to identify the coronary artery plaque: a comparative study with intravascular ultrasound. J. Magn. Reason. Imaging 35, 72–78 (2012).

    Article  CAS  Google Scholar 

  26. Evans, N. R., Tarkin, J. M., Chowdhury, M. M., Warburton, E. A. & Rudd, J. H. F. PET imaging of atherosclerotic disease: advancing plaque assessment from anatomy to physiology. Curr. Atheroscler. Rep. 18, 30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 13, e1082–e1143 (2019).

    Google Scholar 

  29. Ornish, D. et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 336, 129–133 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Ornish, D. et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 280, 2001–2007 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Watts, G. F. et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 339, 563–569 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Henzel, J. et al. High-risk coronary plaque regression after intensive lifestyle intervention in nonobstructive coronary disease: a randomized study. JACC Cardiovasc. Imaging 14, 1192–1202 (2021).

    Article  PubMed  Google Scholar 

  33. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Park, S. et al. Effect of statin treatment on modifying plaque composition: a double-blind, randomized study. J. Am. Coll. Cardiol. 67, 1772–1783 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hiro, T. et al. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J. Am. Coll. Cardiol. 54, 293–302 (2009).

    Article  PubMed  Google Scholar 

  38. Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Takayma, T. et al. Effect of rosuvastatin on coronary atheroma in stable coronary artery disease: multicenter coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS). Circ. J. 73, 2110–2117 (2009).

    Article  Google Scholar 

  40. Raber, L. et al. Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur. Heart J. 21, 490–500 (2015).

    Article  Google Scholar 

  41. Raber, L. et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc. Imaging 12, 1518–1528 (2019).

    Article  PubMed  Google Scholar 

  42. Nishiguchi, T. et al. Effect of early pitavastatin therapy on coronary fibrous-cap thickness assessed by optimal coherence tomography in patients with acute coronary syndrome: the ESCORT study. JACC Cardiovasc. Imaging 11, 829–838 (2018).

    Article  PubMed  Google Scholar 

  43. Komukai, K. et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J. Am. Coll. Cardiol. 64, 2207–2217 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Kini, A. S. et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J. Am. Coll. Cardiol. 62, 21–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, S. et al. Effects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc. Imaging 11, 1475–1484 (2018).

    Article  PubMed  Google Scholar 

  46. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Kovarnik, T. et al. Virtual histology evaluation of atherosclerosis regression during atorvastatin and ezetimibe administration: HEAVEN study. Circ. J. 76, 176–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Nakajima, N. et al. Effect of combination of ezetimibe and a statin on coronary plaque regression in patients with acute coronary syndrome: ZEUS trial (eZEtimibe Ultrasound Study). IJC Metab. Endocr. 2, 8–13 (2014).

    Article  Google Scholar 

  49. Tsujita, K. et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized PRECISE-IVUS trial. J. Am. Coll. Cardiol. 66, 495–507 (2015).

    Article  PubMed  Google Scholar 

  50. Ueda, Y. et al. Effect of ezetimibe on stabilization and regression of intracoronary plaque — the ZIPANGU study. Circ. J. 11, 1611–1619 (2017).

    Article  Google Scholar 

  51. Hougaard, M. et al. Influence of ezetimibe in addition to high-dose atorvastatin therapy on plaque composition in patients with ST-segment elevation myocardial infarction assessed by serial: Intravascular ultrasound with iMap: the OCTIVUS trial. Cardiovasc. Revasc. Med. 18, 110–117 (2017).

    Article  PubMed  Google Scholar 

  52. Hibi, K. et al. Effects of ezetimibe-statin combination therapy on coronary atherosclerosis in acute coronary syndrome. Circ. J. 82, 757–766 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Lloyd-Jones, D. M. et al. 2022 ACC expert consensus decision pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 80, 1366–1418 (2022).

    Article  PubMed  Google Scholar 

  54. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 18, 1713–1722 (2017).

    Article  Google Scholar 

  55. O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).

    Article  PubMed  Google Scholar 

  56. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Blom, D. J. et al. Efficacy and safety of alirocumab in adults with homozygous familial hypercholesterolemia: the ODYSSEY HoFH trial. J. Am. Coll. Cardiol. 76, 131–132 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Nicholls, S. J. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Nicholls, S. J. et al. Effect of evolocumab on coronary plaque composition. J. Am. Coll. Cardiol. 72, 2012–2021 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Raber, L. et al. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial. JAMA 327, 1771–1781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biccire, F. G. et al. Concomitant coronary atheroma regression and stabilization in response to lipid-lowering therapy. J. Am. Coll. Cardiol. 82, 1737–1747 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Nicholls, S. J. et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc. Imaging 15, 1308–1321 (2022).

    Article  PubMed  Google Scholar 

  63. Ako, J. et al. Effect of alirocumab on coronary atheroma volume in Japanese patients with acute coronary syndrome — the ODYSSEY J-IVUS trial. Circ. J. 25, 2025–2033 (2019).

    Article  Google Scholar 

  64. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Nissen, S. E. et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 388, 1353–1364 (2023).

    Article  PubMed  Google Scholar 

  66. Raal, F. J. et al. Familial hypercholesterolemia treatments: guidelines and new therapies. Atherosclerosis 277, 483–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, A. et al. Systematic review of low-density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J. Am. Heart Assoc. 5, e003294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lau, F. D. & Guigliano, R. P. Lipoprotein(a) and its significance in cardiovascular disease: a review. JAMA Cardiol. 7, 760–769 (2022).

    Article  Google Scholar 

  69. Matsuzaki, M. et al. Intravascular ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia: the Low Density Lipoprotein-Apheresis Coronary Morphology and Reserve Trial (LACMART). J. Am. Coll. Cardiol. 40, 220–227 (2002).

    Article  PubMed  Google Scholar 

  70. Banerjee, S. et al. Plaque regression and endothelial progenitor cell mobilization with intensive lipid elimination regimen (PREMIER). Circ. Cardiovasc. Interv. 13, e008933 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Wong, N. D. et al. Residual atherosclerotic cardiovascular disease risk in statin-treated adults: the Multi-Ethnic Study of Atherosclerosis. J. Clin. Lipidol. 11, 1223–1233 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Matsuura, Y., Kanter, J. E. & Bornfeldt, K. E. Highlighting residual atherosclerotic cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 39, e1–e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gurdasani, D. et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease: the EPIC-Norfolk prospective population study. Arterioscler. Thromb. Vasc. Biol. 32, 3058–3065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, J. M. S. et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 19, 1787–1794 (2009).

    Article  Google Scholar 

  75. The AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  Google Scholar 

  76. The HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).

    Article  Google Scholar 

  77. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Forrest, M. J. et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br. J. Pharmacol. 154, 1465–1473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vergeer, M. et al. Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation 118, 2515–2522 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Lincoff, A. M. et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med. 376, 1933–1942 (2017).

    Article  PubMed  Google Scholar 

  83. Bowman, L. et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).

    Article  PubMed  Google Scholar 

  84. Ballantyne, C. M. et al. Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: a randomized phase 2 trial. J. Clin. Lipidol. 17, 491–503 (2023).

    Article  PubMed  Google Scholar 

  85. Angelantonio, E. D. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    Article  PubMed  Google Scholar 

  86. Tardif, J. et al. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur. Heart J. 35, 3277–3286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nicholls, S. J. et al. Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 Atherosclerosis Regression Acute Coronary Syndrome Trial: a randomized clinical trial. JAMA Cardiol. 3, 815–822 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nicholls, S. J. et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 3, 806–814 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Tardif, J. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007).

    Article  PubMed  Google Scholar 

  91. Virani, S. S. et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 78, 960–993 (2021).

    Article  PubMed  Google Scholar 

  92. Pradhan, A. S. et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N. Engl. J. Med. 387, 1923–1934 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Budoff, M. J. et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur. Heart J. 41, 3925–3932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ridker, P. M. et al. Effects of randomized treatment with icosapent ethyl and a mineral oil comparator on interleukin-1β, interleukin-6, C-reactive protein, oxidized low-density lipoprotein cholesterol, homocysteine, lipoprotein(a), and lipoprotein-associated phospholipase A1: A REDUCE-IT biomarker substudy. Circulation 146, 372–379 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Lakshmanan, S. et al. Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography. Cardiovasc. Res. 116, 479–482 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Watanabe, T. et al. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J. Cardiol. 70, 537–544 (2017).

    Article  PubMed  Google Scholar 

  97. Reyes-Soffer, G. et al. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e48–e60 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Kaiser, Y. et al. Association of lipoprotein(a) with atherosclerotic plaque progression. J. Am. Coll. Cardiol. 79, 223–233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kronenberg, F. et al. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 374, 107–120 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04023552 (2023).

  101. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05581303 (2023).

  102. Kovarnik, T. et al. Plaque volume and plaque risk profile in diabetic vs. non-diabetic patients undergoing lipid-lowering therapy: a study based on 3D intravascular ultrasound and virtual histology. Cardiovasc. Diabetol. 16, 156 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fukushima, Y. et al. Relationship between advanced glycation end products and plaque progression in patients with acute coronary syndrome: the JAPAN-ACS sub-study. Cardiovasc. Diabetol. 12, 5 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nissen, S. E. et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299, 1561–1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Nicholls, S. J. et al. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Effect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study. J. Am. Coll. Cardiol. 57, 153–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Gerstein, H. C. et al. Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation 121, 1176–1187 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Sardu, C. et al. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc. Diabetol. 22, 80 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nissen, S. E. et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure — the CAMELOT study: a randomized controlled trial. JAMA 292, 2217–2225 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Hirohata, A. et al. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J. Am. Coll. Cardiol. 55, 976–982 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Rodriguez-Granillo, G. A. et al. Long-term effect of perindopril on coronary atherosclerosis progression (from the perindopril’s prospective effect on coronary atherosclerosis by angiography and intravascular ultrasound evaluation [PERSPECTIVE] study). Am. J. Cardiol. 100, 159–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Nicholls, S. J. et al. Effect of aliskiren on progression of coronary disease in patients with prehypertension: the AQUARIUS randomized clinical trial. JAMA 310, 1135–1144 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Tardif, J. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Vaidya, K. et al. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC Cardiovasc. Imaging 11, 305–315 (2018).

    Article  PubMed  Google Scholar 

  115. Budoff, M. J. et al. Testosterone treatment and coronary plaque volume in older men with low testosterone. JAMA 317, 708–716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nissen, S. E. et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299, 1547–1560 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Nicholls, S. J. et al. Effect of the BET protein inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, ASSURE trial. Am. J. Cardiovasc. Drugs 16, 55–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Ko, Y. et al. Effects of combination therapy with cilostazol and probucol versus monotherapy with cilostazol on coronary plaque, lipid and biomarkers: SECURE study, a double-blind randomized controlled clinical trial. J. Atheroscler. Thromb. 21, 816–830 (2014).

    Article  PubMed  Google Scholar 

  119. Tardif, J. et al. Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial. Atherosclerosis 197, 480–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Eikelboom, J. W. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377, 1319–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, J. et al. Randomized trial of rivaroxaban versus warfarin in the evaluation of progression of coronary atherosclerosis. Am. Heart J. 206, 127–130 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Steven E. Nissen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks William Boden, Matthew Budoff, Hector Garcia-Garcia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarraju, A., Nissen, S.E. Atherosclerotic plaque stabilization and regression: a review of clinical evidence. Nat Rev Cardiol 21, 487–497 (2024). https://doi.org/10.1038/s41569-023-00979-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00979-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing