Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Restoration of flow in the aorta: a novel therapeutic target in aortic valve intervention

Abstract

Aortic blood flow patterns are closely linked to the morphology and function of the left ventricle, aortic valve and aorta. These flow patterns demonstrate the exceptional adaptability of the cardiovascular system to maintain blood circulation under a broad range of haemodynamic workloads and can be altered in various pathophysiological states. For instance, normal ascending aortic systolic flow is predominantly laminar, whereas abnormal aortic systolic flow is associated with increased eccentricity, vorticity and flow reversal. These flow abnormalities result in reduced aortic conduit function and increased energy loss in the cardiovascular system. Emerging evidence details the association of these flow patterns with loss of aortic compliance, which leads to adverse left ventricular remodelling, poor tissue perfusion, and an increased risk of morbidity and death. In this Perspective article, we review the evidence for the link between aortic flow-related abnormalities and cardiovascular disease and how these changes in aortic flow patterns are emerging as a therapeutic target for aortic valve intervention in first-in-human studies.

Key points

  • Aortic flow is a complex and dynamic process that is influenced by several factors, including the aortic valve, the left ventricle and the aorta itself.

  • Aortic flow after aortic valve intervention is characterized by eccentric jets and abnormal vorticity.

  • Doppler echocardiography allows basic aortic flow visualization and quantification; complex flow assessment is restricted by the limitations of ultrasonography.

  • 2D and 4D flow cardiac MRI are non-invasive imaging modalities that can accurately quantify aortic flow and provide insights into aortic flow patterns.

  • Systolic flow displacement on cardiac MRI is a marker of flow eccentricity that is associated with further ascending aortic dilatation, whereas the systolic flow reversal ratio can be used to quantify aortic conduit function; increases in these biomarkers are associated with ageing and reduced exercise capacity.

  • Novel prosthetic aortic valves are being developed to restore normal aortic flow and increase prosthesis longevity, preserve the aortic root, and improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aortic compliance.
Fig. 2: Aortic flow during systole.
Fig. 3: Vortical and helical flows in the ascending aorta.
Fig. 4: Aortic flow distributions in patients with shortness of breath and/or aortic stenosis.
Fig. 5: Cardiovascular MRI aortic PWV assessment.

Similar content being viewed by others

References

  1. Vahanian, A. et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 43, 561–632 (2022).

    Article  PubMed  Google Scholar 

  2. von Knobelsdorff-Brenkenhoff, F. et al. Evaluation of aortic blood flow and wall shear stress in aortic stenosis and its association with left ventricular remodeling. Circ. Cardiovasc. Imaging 9, e004038 (2016).

    Article  Google Scholar 

  3. Ajmone Marsan, N. et al. Valvular heart disease: shifting the focus to the myocardium. Eur. Heart J. 44, 28–40 (2022).

    Article  PubMed Central  Google Scholar 

  4. Takehara, Y. Clinical application of 4D flow MR imaging for the abdominal aorta. Magn. Reson. Med. Sci. 21, 354–364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen, K. L. et al. Analysis of systolic backflow and secondary helical blood flow in the ascending aorta using vector flow imaging. Ultrasound Med. Biol. 42, 899–908 (2016).

    Article  PubMed  Google Scholar 

  6. Gimbrone, M. A., Topper, J. N., Nagel, T., Anderson, K. R. & Garcia-Cardeña, G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902, 230–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Malek, A. M., Alper, S. L. & Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282, 2035–2042 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bogren, H. G. et al. The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic study of aortic compliance and blood flow patterns. Am. Heart J. 118, 234–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Ozdemi R, M., Asoglu, R., Aladag, N. & Asoglu, E. Aortic flow propagation velocity and neutrophil-to-lymphocyte ratio in coronary slow flow. Bratisl. Lek. Listy 122, 513–518 (2021).

    PubMed  Google Scholar 

  10. Guala, A. et al. Wall shear stress predicts aortic dilation in patients with bicuspid aortic valve. JACC Cardiovasc. Imaging 15, 46–56 (2022).

    Article  PubMed  Google Scholar 

  11. Burris, N. S. et al. Systolic flow displacement correlates with future ascending aortic growth in patients with bicuspid aortic valves undergoing magnetic resonance surveillance. Invest. Radiol. 49, 635–639 (2014).

    Article  PubMed  Google Scholar 

  12. Minderhoud, S. C. S. et al. Wall shear stress angle is associated with aortic growth in bicuspid aortic valve patients. Eur. Heart J. Cardiovasc. Imaging 23, 1680–1689 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soulat, G. et al. Association of regional wall shear stress and progressive ascending aorta dilation in bicuspid aortic valve. JACC Cardiovasc. Imaging 15, 33–42 (2022).

    Article  PubMed  Google Scholar 

  14. Zhang, X., Wang, W., Yan, J. & Wang, Q. Surgical treatment results of secondary tunnel-like subaortic stenosis after congenital heart disease operations: a 7-year, single-center experience in 25 patients. J. Card. Surg. 35, 335–340 (2020).

    Article  PubMed  Google Scholar 

  15. Kiema, M. et al. Wall shear stress predicts media degeneration and biomechanical changes in thoracic aorta. Front. Physiol. 13, 934941 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tse, K. M. et al. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics. Eur. J. Cardiothorac. Surg. 43, 829–838 (2013).

    Article  PubMed  Google Scholar 

  17. Johnson, N. P. et al. Pressure gradient vs. flow relationships to characterize the physiology of a severely stenotic aortic valve before and after transcatheter valve implantation. Eur. Heart J. 39, 2646–2655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burris, N. S. & Hope, M. D. 4D flow MRI applications for aortic disease. Magn. Reson. Imaging Clin. N. Am. 23, 15–23 (2015).

    Article  PubMed  Google Scholar 

  19. Kilner, P. J., Yang, G. Z., Mohiaddin, R. H., Firmin, D. N. & Longmore, D. B. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88, 2235–2247 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Gautier, M. et al. Nomograms for aortic root diameters in children using two-dimensional echocardiography. Am. J. Cardiol. 105, 888–894 (2010).

    Article  PubMed  Google Scholar 

  21. Vasan, R. S., Larson, M. G. & Levy, D. Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 91, 734–740 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Son, J.-W. et al. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography. Int. J. Cardiovasc. Imaging 32, 45–52 (2016).

    Article  PubMed  Google Scholar 

  23. Taylor, R. Evolution of the continuity equation in the Doppler echocardiographic assessment of the severity of valvular aortic stenosis. J. Am. Soc. Echocardiogr. 3, 326–330 (1990).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  24. Meaume, S., Benetos, A., Henry, O. F., Rudnichi, A. & Safar, M. E. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler. Thromb. Vasc. Biol. 21, 2046–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Calabia, J. et al. Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method. Cardiovasc. Ultrasound 9, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rabben, S. I. et al. An ultrasound-based method for determining pulse wave velocity in superficial arteries. J. Biomech. 37, 1615–1622 (2004).

    Article  PubMed  Google Scholar 

  27. Szmigielski, C. et al. Pulse wave velocity correlates with aortic atherosclerosis assessed with transesophageal echocardiography. J. Hum. Hypertens. 30, 90–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Galal, H., Ammar, M., Ismail, M. & Elshazly, A. Echocardiographic assessment of aortic pulse wave velocity as a diagnostic and prognostic parameter for left ventricular diastolic dysfunction. Minerva Cardioangiol. 68, 313–318 (2020).

    Article  PubMed  Google Scholar 

  29. Daae, A. S., Wigen, M. S., Fadnes, S., Løvstakken, L. & Støylen, A. Intraventricular vector flow imaging with blood speckle tracking in adults: feasibility, normal physiology and mechanisms in healthy volunteers. Ultrasound Med. Biol. 47, 3501–3513 (2021).

    Article  PubMed  Google Scholar 

  30. Li, C. et al. Quantification of chronic aortic regurgitation by vector flow mapping: a novel echocardiographic method. Eur. J. Echocardiogr. 11, 119–124 (2010).

    Article  PubMed  Google Scholar 

  31. Cantinotti, M. et al. Characterization of aortic flow patterns by high-frame-rate blood speckle tracking echocardiography in children. J. Am. Heart Assoc. 12, e026335 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Juffermans, J. F. et al. Multicenter consistency assessment of valvular flow quantification with automated valve tracking in 4D flow CMR. JACC Cardiovasc. Imaging 14, 1354–1366 (2021).

    Article  PubMed  Google Scholar 

  33. Garg, P. et al. Assessment of mitral valve regurgitation by cardiovascular magnetic resonance imaging. Nat. Rev. Cardiol. 17, 298–312 (2020).

    Article  PubMed  Google Scholar 

  34. Vejpongsa, P., Xu, J., Quinones, M. A., Shah, D. J. & Zoghbi, W. A. Differences in cardiac remodeling in left-sided valvular regurgitation: implications for optimal definition of significant aortic regurgitation. JACC Cardiovasc. Imaging 15, 1730–1741 (2022).

    Article  PubMed  Google Scholar 

  35. Hashimoto, G. et al. Association of left ventricular remodeling assessment by cardiac magnetic resonance with outcomes in patients with chronic aortic regurgitation. JAMA Cardiol. 7, 924–933 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nayak, K. S. et al. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 17, 71 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morbiducci, U. et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10, 339–355 (2011).

    Article  PubMed  Google Scholar 

  38. Frydrychowicz, A. et al. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. Eur. Radiol. 22, 1122–1130 (2012).

    Article  PubMed  Google Scholar 

  39. Stonebridge, P. A. et al. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling. Int. Angiol. J. 23, 276–283 (2004).

    CAS  Google Scholar 

  40. Frazin, L. J. et al. Functional chiral asymmetry in descending thoracic aorta. Circulation 82, 1985–1994 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Ding, Z., Fan, Y., Deng, X., Zhan, F. & Kang, H. Effect of swirling flow on the uptakes of native and oxidized LDLs in a straight segment of the rabbit thoracic aorta. Exp. Biol. Med. 235, 506–513 (2010).

    Article  CAS  Google Scholar 

  42. Liu, X. et al. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297, H163–H170 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, X., Fan, Y. & Deng, X. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38, 917–926 (2010).

    Article  PubMed  Google Scholar 

  44. Shipkowitz, T., Rodgers, V. G., Frazin, L. J. & Chandran, K. B. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 33, 717–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Linge, F., Hye, M. A. & Paul, M. C. Pulsatile spiral blood flow through arterial stenosis. Comput. Methods Biomech. Biomed. Engin. 17, 1727–1737 (2014).

    Article  PubMed  Google Scholar 

  46. Oechtering, T. H. et al. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) reveals altered blood flow patterns in the ascending aorta of patients with valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 159, 798–810.e1 (2020).

    Article  PubMed  Google Scholar 

  47. Bürk, J. et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14, 84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lorenz, R. et al. 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn. Reson. Med. 71, 1542–1553 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Ebel, S. et al. Automated quantitative extraction and analysis of 4d flow patterns in the ascending aorta: an intraindividual comparison at 1.5 T and 3 T. Sci. Rep. 10, 2949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatoum, H., Moore, B. L. & Dasi, L. P. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 46, 2102–2111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yap, C.-H., Dasi, L. P. & Yoganathan, A. P. Dynamic hemodynamic energy loss in normal and stenosed aortic valves. J. Biomech. Eng. 132, 021005 (2010).

    Article  PubMed  Google Scholar 

  52. Martin, C., Sun, W., Primiano, C., McKay, R. & Elefteriades, J. Age-dependent ascending aortic mechanics assessed through multiphase CT. Ann. Biomed. Eng. 41, 2565–2574 (2013).

    Article  PubMed  Google Scholar 

  53. Bellhouse, B. J. & Bellhouse, F. H. Mechanism of closure of the aortic valve. Nature 217, 86–87 (1968).

    Article  CAS  PubMed  Google Scholar 

  54. Meuschke, M., Köhler, B., Preim, U., Preim, B. & Lawonn, K. Semi-automatic vortex flow classification in 4D PC-MRI data of the aorta. Comput. Graph. Forum 35, 351–360 (2016).

    Article  Google Scholar 

  55. Tyszka, J. M., Laidlaw, D. H., Asa, J. W. & Silverman, J. M. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J. Magn. Reson. Imaging 12, 321–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. von Spiczak, J. et al. Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS One 10, e0139025 (2015).

    Article  Google Scholar 

  57. Sigovan, M., Hope, M. D., Dyverfeldt, P. & Saloner, D. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J. Magn. Reson. Imaging 34, 1226–1230 (2011).

    Article  PubMed  Google Scholar 

  58. Ayaon-Albarran, A. et al. Systolic flow displacement using 3D magnetic resonance imaging in an experimental model of ascending aorta aneurysm: impact of rheological factors. Eur. J. Cardiothorac. 50, 685–692 (2016).

    Article  Google Scholar 

  59. Rodríguez-Palomares, J. F. et al. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 20, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lenz, A. et al. 4D flow cardiovascular magnetic resonance for monitoring of aortic valve repair in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 22, 29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Barker, A. J., Lanning, C. & Shandas, R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann. Biomed. Eng. 38, 788–800 (2010).

    Article  PubMed  Google Scholar 

  62. Ha, H. et al. Association between flow skewness and aortic dilatation in patients with aortic stenosis. Int. J. Cardiovasc. Imaging 33, 1969–1978 (2017).

    Article  PubMed  Google Scholar 

  63. Zhao, X. et al. Aortic flow is associated with aging and exercise capacity. Eur. Heart J. Open 3, oead079 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wentland, A. L., Grist, T. M. & Wieben, O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 4, 193–206 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Pereira, T., Correia, C. & Cardoso, J. Novel methods for pulse wave velocity measurement. J. Med. Biol. Eng. 35, 555–565 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Westenberg, J. J. M. et al. Improved aortic pulse wave velocity assessment from multislice two-directional in-plane velocity-encoded magnetic resonance imaging. J. Magn. Reson. Imaging 32, 1086–1094 (2010).

    Article  PubMed  Google Scholar 

  67. Jarvis, K. et al. Aortic pulse wave velocity evaluated by 4D flow MRI across the adult lifespan. J. Magn. Reson. Imaging 56, 464–473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kaolawanich, Y. & Boonyasirinant, T. Prognostic value of aortic stiffness using cardiovascular magnetic resonance in the elderly with known or suspected coronary artery disease. Arq. Bras. Cardiol. 118, 961–971 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaolawanich, Y. & Boonyasirinant, T. Incremental prognostic value of aortic stiffness in addition to myocardial ischemia by cardiac magnetic resonance imaging. BMC Cardiovasc. Disord. 20, 287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meiszterics, Z., Simor, T., van der Geest, R. J., Farkas, N. & Gaszner, B. Evaluation of pulse wave velocity for predicting major adverse cardiovascular events in post-infarcted patients; comparison of oscillometric and MRI methods. Rev. Cardiovasc. Med. 22, 1701–1710 (2021).

    Article  PubMed  Google Scholar 

  71. Kaolawanich, Y. & Boonyasirinant, T. Impact of aortic stiffness by velocity-encoded magnetic resonance imaging on late gadolinium enhancement to predict cardiovascular events. Int. J. Cardiol. Heart Vasc. 30, 100635 (2020).

    PubMed  PubMed Central  Google Scholar 

  72. Cave, D. G. W., Panayiotou, H. & Bissell, M. M. Hemodynamic profiles before and after surgery in bicuspid aortic valve disease — a systematic review of the literature. Front. Cardiovasc. Med. 8, 629227 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Keller, E. J. et al. Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact. Cardiovasc. Thorac. Surg. 23, 416–423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. David, T. E. et al. Results of aortic valve-sparing operations. J. Thorac. Cardiovasc. Surg. 122, 39–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Sarikaya, S. & Kirali, K. Long-term experience of the modified David V re-implantation technique for valve-sparing aortic root replacement. Cardiovasc. J. Afr. 34, 1–8 (2023).

    PubMed  Google Scholar 

  76. von Knobelsdorff-Brenkenhoff, F. et al. Blood flow characteristics in the ascending aorta after aortic valve replacement–a pilot study using 4D-flow MRI. Int. J. Cardiol. 170, 426–433 (2014).

    Article  Google Scholar 

  77. Akutsu, T. & Matsumoto, A. Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta. J. Artif. Organs 13, 207–217 (2010).

    Article  PubMed  Google Scholar 

  78. Midha, P. A. et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 136, 1598–1609 (2017).

    Article  PubMed  Google Scholar 

  79. Meduri, C. et al. TCT-471 first-in-human study results with the novel anteris DurAVRTM three-dimensional single-piece TAVR device. J. Am. Coll. Cardiol. 80, B190 (2022).

    Article  Google Scholar 

  80. Kodali, S. K. et al. Early safety and feasibility of a first-in-class biomimetic transcatheter aortic valve - DurAVR. EuroIntervention 19, e352–e362 (2023).

    Article  PubMed  Google Scholar 

  81. Suzuki, E. et al. Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 24, 2107–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.G., S.L.S. and J.C. researched data for the article. All the authors were involved in writing, reviewing, editing and discussing the content of the manuscript.

Corresponding author

Correspondence to Pankaj Garg.

Ethics declarations

Competing interests

P.G. has an advisory role with Medis Medical Imaging and Pie Medical, and is a consultant for Anteris Technologies and Edward Lifesciences. M.M. has received research support from Circle Cardiovascular Imaging and Siemens. J.S. is a consultant for Anteris, Boston Scientific, Edwards Lifesciences and Medtronic, has received research funding from Edwards Lifesciences and Medtronic, and has received speaking fees from New Valve Technology. S.L.S. is a consultant for Anteris, Edwards Lifesciences and Medtronic, has received research support from Edwards Lifesciences, Heartflow, Medtronic and Vivitro Labs, and is supported by a Scholar award from Michael Smith Health Research BC. C.M. is the Chief Medical Officer of Anteris Technologies, has received research support from Boston Scientific, and has received honoraria, consultation or proctoring fees from Abbott, Alleviant, Boston Scientific, Cardiovalve, V2V, VDyne and XDot. J.C. has received consulting fees from 4C Medical, Abbott Structural, Anteris, AriaCV, Boston Scientific, Edwards Lifesciences, Medtronic, VDyne, WL Gore and Xylocor, and has received research grant support from Abbott Northwestern Hospital Foundation.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, P., Markl, M., Sathananthan, J. et al. Restoration of flow in the aorta: a novel therapeutic target in aortic valve intervention. Nat Rev Cardiol 21, 264–273 (2024). https://doi.org/10.1038/s41569-023-00943-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00943-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing