Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hallmarks of cardiovascular ageing

Abstract

Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.

Key points

  • Age is one of the strongest determinants of cardiovascular health.

  • The cardiovascular system operates under constant mechanical and metabolic stress, which progressively increases the risk of dysfunction at the molecular, cellular and whole-organ levels with increasing age.

  • Disabled macroautophagy, loss of proteostasis, genomic instability, epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation emerge as common molecular hallmarks of cardiovascular ageing.

  • The hallmarks of cardiovascular ageing are strongly intertwined, and accentuation or attenuation of individual hallmarks affects most, if not all, the others.

  • Targeting the hallmarks of cardiovascular ageing holds promise for the treatment of major cardiovascular disorders and to reduce residual cardiovascular risk beyond the management of conventional risk factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of ageing on the cellular composition of the cardiovascular system.
Fig. 2: Hallmarks of cardiovascular ageing.
Fig. 3: Age-dependent decline in cardiac spermidine levels in humans.

Similar content being viewed by others

References

  1. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Ji, H. et al. Sex differences in myocardial and vascular aging. Circ. Res. 130, 566–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ungvari, Z. et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 15, 555–565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ungvari, Z., Tarantini, S., Sorond, F., Merkely, B. & Csiszar, A. Mechanisms of vascular aging, a geroscience perspective: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 931–941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a ‘set up’ for vascular disease. Circulation 107, 139–146 (2003).

    Article  PubMed  Google Scholar 

  8. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 107, 346–354 (2003).

    Article  PubMed  Google Scholar 

  9. North, B. J. & Sinclair, D. A. The intersection between aging and cardiovascular disease. Circ. Res. 110, 1097–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  13. Lieb, W., Enserro, D. M., Larson, M. G. & Vasan, R. S. Residual cardiovascular risk in individuals on lipid-lowering treatment: quantifying absolute and relative risk in the community. Open Heart 5, e000722 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lieb, W., Enserro, D. M., Sullivan, L. M. & Vasan, R. S. Residual cardiovascular risk in individuals on blood pressure-lowering treatment. J. Am. Heart Assoc. 4, e002155 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vanuzzo, D. The epidemiological concept of residual risk. Intern. Emerg. Med. 6, 45–51 (2011).

    Article  PubMed  Google Scholar 

  16. Moturi, S., Ghosh-Choudhary, S. K. & Finkel, T. Cardiovascular disease and the biology of aging. J. Mol. Cell Cardiol. 167, 109–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Zhernakova, D. V. et al. Age-dependent sex differences in cardiometabolic risk factors. Nat. Cardiovasc. Res. 1, 844–854 (2022).

    Article  Google Scholar 

  18. Hägg, S. & Jylhävä, J. Sex differences in biological aging with a focus on human studies. eLife 10, e63425 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abdellatif, M. et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation 145, 1853–1866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, eabc8479 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  23. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdellatif, M. & Kroemer, G. Co-ordinated mitochondrial degradation by autophagy and heterophagy in cardiac homeostasis. Cardiovasc. Res. 117, e1–e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  PubMed  Google Scholar 

  26. Abdellatif, M., Sedej, S., Carmona-Gutierrez, D., Madeo, F. & Kroemer, G. Autophagy in cardiovascular aging. Circ. Res. 123, 803–824 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Abdellatif, M., Ljubojevic-Holzer, S., Madeo, F. & Sedej, S. Autophagy in cardiovascular health and disease. Prog. Mol. Biol. Transl. Sci. 172, 87–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Picca, A. et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol. 15, 543–554 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bravo-San Pedro, J. M., Kroemer, G. & Galluzzi, L. Autophagy and mitophagy in cardiovascular disease. Circ. Res. 120, 1812–1824 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Kanamori, H. et al. Impact of autophagy on prognosis of patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 79, 789–801 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Jefferies, J. L. & Saffitz, J. E. Autophagy and reverse remodeling: a new biomarker in heart failure? J. Am. Coll. Cardiol. 79, 802–804 (2022).

    Article  PubMed  Google Scholar 

  32. Pietrocola, F. et al. Aspirin recapitulates features of caloric restriction. Cell Rep. 22, 2395–2407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Farah, B. L. et al. β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver. PLoS One 9, e98155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kania, E. et al. Verapamil treatment induces cytoprotective autophagy by modulating cellular metabolism. FEBS J. 284, 1370–1387 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Rubinsztein, D. C., Mariño, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Kaushik, S. et al. Autophagy and the hallmarks of aging. Ageing Res. Rev. 72, 101468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klionsky, D. J. et al. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LaRocca, T. J. et al. Translational evidence that impaired autophagy contributes to arterial ageing. J. Physiol. 590, 3305–3316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Linton, P.-J., Gurney, M., Sengstock, D., Mentzer, R. M. & Gottlieb, R. A. This old heart: cardiac aging and autophagy. J. Mol. Cell Cardiol. 83, 44–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cho, J. M. et al. Late-in-life treadmill training rejuvenates autophagy, protein aggregate clearance, and function in mouse hearts. Aging Cell 20, e13467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, B. et al. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget 7, 2175–2188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chang, K. et al. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 16, 1807–1822 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, L. et al. Restoring pharmacologic preconditioning in the aging heart: role of mitophagy/autophagy. J. Gerontol. A Biol. Sci. Med. Sci. 72, 489–498 (2017).

    CAS  PubMed  Google Scholar 

  46. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Kane, A. E. & Sinclair, D. A. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ. Res. 123, 868–885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harraz, O. F. & Jensen, L. J. Vascular calcium signalling and ageing. J. Physiol. 599, 5361–5377 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Shaikh, S. et al. Regulation of cardiomyocyte autophagy by calcium. Am. J. Physiol. Endocrinol. Metab. 310, E587–E596 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Behringer, E. J. & Segal, S. S. Impact of aging on calcium signaling and membrane potential in endothelium of resistance arteries: a role for mitochondria. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1627–1637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, J. et al. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging 12, 650–671 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pucciarelli, S. et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 15, 590–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).

    Article  PubMed  Google Scholar 

  54. LaRocca, T. J., Gioscia-Ryan, R. A., Hearon, C. M. & Seals, D. R. The autophagy enhancer spermidine reverses arterial aging. Mech. Ageing Dev. 134, 314–320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taneike, M. et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6, 600–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Ljubojević-Holzer, S. et al. Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling. Cardiovasc. Res. 118, 1492–1505 (2022).

    Article  PubMed  Google Scholar 

  58. Michiels, C. F., Fransen, P., De Munck, D. G., De Meyer, G. R. Y. & Martinet, W. Defective autophagy in vascular smooth muscle cells alters contractility and Ca2+ homeostasis in mice. Am. J. Physiol. Heart Circ. Physiol. 308, H557–H567 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Grootaert, M. O. et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11, 2014–2032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Torisu, T. et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat. Med. 19, 1281–1287 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsieh, P. N. et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat. Commun. 8, 914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fernández, Á. F. et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558, 136–140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alfaras, I. et al. Pharmacological strategies to retard cardiovascular aging. Circ. Res. 118, 1626–1642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Voglhuber, J., Ljubojevic-Holzer, S., Abdellatif, M. & Sedej, S. Targeting cardiovascular risk factors through dietary adaptations and caloric restriction mimetics. Front. Nutr. 8, 758058 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weiss, E. P. & Fontana, L. Caloric restriction: powerful protection for the aging heart and vasculature. Am. J. Physiol. Heart Circ. Physiol. 301, H1205–H1219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Quarles, E. et al. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell 19, e13086 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Lesniewski, L. A. et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell 16, 17–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Kaplon, R. E. et al. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging 8, 1167–1183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Flynn, J. M. et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12, 851–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. López-Otín, C. & Kroemer, G. Hallmarks of health. Cell 184, 1929–1939 (2021).

    Article  PubMed  Google Scholar 

  72. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Gouveia, M., Xia, K., Colón, W., Vieira, S. I. & Ribeiro, F. Protein aggregation, cardiovascular diseases, and exercise training: where do we stand? Ageing Res. Rev. 40, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Henning, R. H. & Brundel, B. J. J. M. Proteostasis in cardiac health and disease. Nat. Rev. Cardiol. 14, 637–653 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. González-López, E. et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 36, 2585–2594 (2015).

    Article  PubMed  Google Scholar 

  78. Rainer, P. P. et al. Desmin phosphorylation triggers preamyloid oligomers formation and myocyte dysfunction in acquired heart failure. Circ. Res. 122, e75–e83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hofmann, C., Katus, H. A. & Doroudgar, S. Protein misfolding in cardiac disease. Circulation 139, 2085–2088 (2019).

    Article  PubMed  Google Scholar 

  80. McLendon, P. M. & Robbins, J. Proteotoxicity and cardiac dysfunction. Circ. Res. 116, 1863–1882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martin, T. G. et al. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat. Commun. 12, 2942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bulteau, A.-L., Szweda, L. I. & Friguet, B. Age-dependent declines in proteasome activity in the heart. Arch. Biochem. Biophys. 397, 298–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Colotti, C. et al. Effects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expression. Biogerontology 6, 397–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Dai, D. et al. Altered proteome turnover and remodeling by short‐term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13, 529–539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ayyadevara, S. et al. Age- and hypertension-associated protein aggregates in mouse heart have similar proteomic profiles. Hypertension 67, 1006–1013 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Madrigal-Matute, J. et al. Protective role of chaperone-mediated autophagy against atherosclerosis. Proc. Natl Acad. Sci. USA 119, e2121133119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  88. Marfella, R. et al. Effects of ubiquitin-proteasome system deregulation on the vascular senescence and atherosclerosis process in elderly patients. J. Gerontol. A Biol. Sci. Med. Sci. 63, 200–203 (2008).

    Article  PubMed  Google Scholar 

  89. Chin, J. H., Okazaki, M., Hu, Z. W., Miller, J. W. & Hoffman, B. B. Activation of heat shock protein (hsp)70 and proto-oncogene expression by alpha1 adrenergic agonist in rat aorta with age. J. Clin. Invest. 97, 2316–2323 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Degenhardt, K. et al. Medin aggregation causes cerebrovascular dysfunction in aging wild-type mice. Proc. Natl Acad. Sci. USA 117, 23925–23931 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mucchiano, G., Cornwell, G. G. & Westermark, P. Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am. J. Pathol. 140, 871–877 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wagner, J. et al. Medin co-aggregates with vascular amyloid-β in Alzheimer’s disease. Nature 612, 123–131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Migrino, R. Q. et al. Cerebrovascular medin is associated with Alzheimer’s disease and vascular dementia. Alzheimers Dement. 12, e12072 (2020).

    Google Scholar 

  94. Rajasekaran, N. S. et al. Human αB-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130, 427–439 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tannous, P. et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc. Natl Acad. Sci. USA 105, 9745–9750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, X. et al. Transcription factor EB activation rescues advanced αB-crystallin mutation-induced cardiomyopathy by normalizing desmin localization. J. Am. Heart Assoc. 8, e010866 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vicart, P. et al. A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 20, 92–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113, 357–369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frock, R. L. et al. Cardiomyocyte-specific expression of lamin a improves cardiac function in Lmna−/− mice. PLoS One 7, e42918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Galata, Z. et al. Amelioration of desmin network defects by αB-crystallin overexpression confers cardioprotection in a mouse model of dilated cardiomyopathy caused by LMNA gene mutation. J. Mol. Cell Cardiol. 125, 73–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Gupta, M. K. et al. Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocytes. Circ. Res. 115, 721–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pattison, J. S. et al. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 117, 2743–2751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Blice-Baum, A. C. et al. Modest overexpression of FOXO maintains cardiac proteostasis and ameliorates age-associated functional decline. Aging Cell 16, 93–103 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sanbe, A. et al. Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLoS One 4, e5351 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ooie, T. et al. Single oral dose of geranylgeranylacetone induces heat-shock protein 72 and renders protection against ischemia/reperfusion injury in rat heart. Circulation 104, 1837–1843 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Elliott, P. et al. Long-term survival with tafamidis in patients with transthyretin amyloid cardiomyopathy. Circ. Heart Fail. 15, e008193 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Fontana, L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat. Rev. Cardiol. 15, 566–577 (2018).

    Article  PubMed  Google Scholar 

  109. Yang, L. et al. Long-term calorie restriction enhances cellular quality-control processes in human skeletal muscle. Cell Rep. 14, 422–428 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Ono, T. et al. Age-associated increase of spontaneous mutant frequency and molecular nature of mutation in newborn and old lacZ-transgenic mouse. Mutat. Res. 447, 165–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. De Majo, F. et al. Genomic instability in the naturally and prematurely aged myocardium. Proc. Natl Acad. Sci. USA 118, e2022974118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dollé, M. E., Snyder, W. K., Gossen, J. A., Lohman, P. H. & Vijg, J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc. Natl Acad. Sci. USA 97, 8403–8408 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Busuttil, R. A., Dollé, M., Campisi, J. & Vijga, J. Genomic instability, aging, and cellular senescence. Ann. N. Y. Acad. Sci. 1019, 245–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl Acad. Sci. USA 98, 10308–10313 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Terai, M. et al. Association of telomere shortening in myocardium with heart weight gain and cause of death. Sci. Rep. 3, 2401 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Takubo, K. et al. Telomere lengths are characteristic in each human individual. Exp. Gerontol. 37, 523–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Muñoz-Lorente, M. A., Cano-Martin, A. C. & Blasco, M. A. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat. Commun. 10, 4723 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sharifi‐Sanjani, M. et al. Cardiomyocyte‐specific telomere shortening is a distinct signature of heart failure in humans. J. Am. Heart Assoc. 6, e005086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chang, A. C. Y. et al. Telomere shortening is a hallmark of genetic cardiomyopathies. Proc. Natl Acad. Sci. USA 115, 9276–9281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bloom, S. I. et al. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions. Geroscience 44, 2741–2755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Martinet, W., Knaapen, M. W. M., De Meyer, G. R. Y., Herman, A. G. & Kockx, M. M. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106, 927–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Gray, K. et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ. Res. 116, 816–826 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Yabluchanskiy, A. et al. Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation-induced impairment of neurovascular coupling responses protecting cognitive function in mice. Geroscience 42, 409–428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Remes, T. M. et al. Radiation-induced accelerated aging of the brain vasculature in young adult survivors of childhood brain tumors. Neurooncol. Pract. 7, 415–427 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Andreassi, M. G. et al. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc. Interv. 8, 616–627 (2015).

    Article  PubMed  Google Scholar 

  128. Durik, M. et al. Nucleotide excision DNA repair is associated with age-related vascular dysfunction. Circulation 126, 468–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ataei Ataabadi, E. et al. Vascular ageing features caused by selective DNA damage in smooth muscle cell. Oxid. Med. Cell Longev. 2021, 2308317 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bautista-Niño, P. K. et al. Local endothelial DNA repair deficiency causes aging-resembling endothelial-specific dysfunction. Clin. Sci. 134, 727–746 (2020).

    Article  Google Scholar 

  131. Matsumoto, T. et al. Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke 38, 1050–1056 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  133. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dorsheimer, L. et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 4, 25–33 (2019).

    Article  PubMed  Google Scholar 

  140. Shi, C. et al. Clonal haematopoiesis of indeterminate potential: associations with heart failure incidence, clinical parameters and biomarkers. Eur. J. Heart Fail. 25, 4–13 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Devesa, A. et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur. Heart J. 43, 1809–1828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis, and innate immunity. Circ. Res. 126, 1242–1259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sano, S. et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 123, 335–341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zekavat, S. M. et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat. Cardiovasc. Res. 2, 144–158 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Abplanalp, W. T. et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ. Res. 128, 216–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Bick, A. G. et al. Genetic Interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Kabir, I. et al. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nat. Aging 3, 64–81 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Potus, F. et al. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 141, 1986–2000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shi, Y. et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal. Transduct. Target. Ther. 7, 200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Greco, C. M. & Condorelli, G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat. Rev. Cardiol. 12, 488–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stoeger, T. et al. Aging is associated with a systemic length-associated transcriptome imbalance. Nat. Aging 2, 1191–1206 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Jusic, A. et al. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res. Rev. 77, 101610 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Du, W. W. et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J. 38, 1402–1412 (2017).

    CAS  PubMed  Google Scholar 

  158. Zhang, X., Azhar, G. & Wei, J. Y. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 7, e34688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Boon, R. A. et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Ito, T., Yagi, S. & Yamakuchi, M. MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 398, 735–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Badi, I. et al. MicroRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1304–1311 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Badi, I. et al. miR-34a promotes vascular smooth muscle cell calcification by downregulating SIRT1 (Sirtuin 1) and Axl (AXL receptor tyrosine kinase). Arterioscler. Thromb. Vasc. Biol. 38, 2079–2090 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Huang, Z.-P. et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ. Res. 112, 1234–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gupta, S. K. et al. Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J. Am. Coll. Cardiol. 68, 1557–1571 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00566-8 (2023).

    Article  PubMed  Google Scholar 

  166. Ponting, C. P. & Haerty, W. Genome-wide analysis of human long noncoding RNAs: a provocative review. Annu. Rev. Genomics Hum. Genet. 23, 153–172 (2022).

    Article  PubMed  Google Scholar 

  167. Trembinski, D. J. et al. Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat. Commun. 11, 2039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lu, T.-M. et al. Downregulation of Sirt1 as aging change in advanced heart failure. J. Biomed. Sci. 21, 57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Donato, A. J. et al. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J. Physiol. 589, 4545–4554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Alcendor, R. R. et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512–1521 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Guo, Y. et al. Endothelial SIRT1 prevents age-induced impairment of vasodilator responses by enhancing the expression and activity of soluble guanylyl cyclase in smooth muscle cells. Cardiovasc. Res. 115, 678–690 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Xu, S. et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging 8, 1064–1082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li, W. et al. SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 in chronic kidney disease. J. Clin. Invest. 132, e150051 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sundaresan, N. R. et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18, 1643–1650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, W., Song, M., Qu, J. & Liu, G.-H. Epigenetic modifications in cardiovascular aging and diseases. Circ. Res. 123, 773–786 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Jeong, M. Y. et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci. Transl. Med. 10, eaao0144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Travers, J. G. et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation 143, 1874–1890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wallner, M. et al. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci. Transl. Med. 12, eaay7205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bagchi, R. A. & Weeks, K. L. Histone deacetylases in cardiovascular and metabolic diseases. J. Mol. Cell Cardiol. 130, 151–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Demos-Davies, K. M. et al. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am. J. Physiol. Heart Circ. Physiol. 307, H252–H258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Boucherat, O. et al. HDAC6: a novel histone deacetylase implicated in pulmonary arterial hypertension. Sci. Rep. 7, 4546 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lin, Y.-H. et al. HDAC6 modulates myofibril stiffness and diastolic function of the heart. J. Clin. Invest. 132, e148333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Malhotra, R. et al. HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat. Genet. 51, 1580–1587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nguyen, A. T. et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263–274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Stein, A. B. et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J. Clin. Invest. 121, 2641–2650 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Delgado-Olguín, P. et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat. Genet. 44, 343–347 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Papait, R. et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation 136, 1233–1246 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Farina, F. M. et al. The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway. Eur. Heart J. 43, 4562–4576 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Thienpont, B. et al. The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J. Clin. Invest. 127, 335–348 (2017).

    Article  PubMed  Google Scholar 

  191. Lind, L., Ingelsson, E., Sundström, J., Siegbahn, A. & Lampa, E. Methylation-based estimated biological age and cardiovascular disease. Eur. J. Clin. Invest. 48, 12872 (2018).

    Article  Google Scholar 

  192. Lo, Y.-H. & Lin, W.-Y. Cardiovascular health and four epigenetic clocks. Clin. Epigenetics 14, 73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zheng, Y. et al. Association of cardiovascular health through young adulthood with genome-wide DNA methylation patterns in midlife: the CARDIA study. Circulation 146, 94–109 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Movassagh, M. et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Haas, J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5, 413–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Pepin, M. E. et al. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am. J. Physiol. Heart Circ. Physiol. 317, H674–H684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pavanello, S. et al. The biological age of the heart is consistently younger than chronological age. Sci. Rep. 10, 10752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wu, T.-T. et al. Myocardial tissue-specific Dnmt1 knockout in rats protects against pathological injury induced by adriamycin. Lab. Invest. 100, 974–985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nührenberg, T. G. et al. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS One 10, e0131019 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Vujic, A. et al. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J. Mol. Cell Cardiol. 82, 174–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Tyrrell, D. J. & Goldstein, D. R. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 18, 58–68 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Heyn, H. et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl Acad. Sci. USA 109, 10522–10527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zaina, S. et al. DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 7, 692–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Dunn, J. et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J. Clin. Invest. 124, 3187–3199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wallace, D. C. A mitochondrial bioenergetic etiology of disease. J. Clin. Invest. 123, 1405–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Galluzzi, L., Kepp, O., Trojel-Hansen, C. & Kroemer, G. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Marchi, S., Guilbaud, E., Tait, S. W. G., Yamazaki, T. & Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 23, 159–173 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Lopez-Crisosto, C. et al. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat. Rev. Cardiol. 14, 342–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Lesnefsky, E. J., Chen, Q. & Hoppel, C. L. Mitochondrial metabolism in aging heart. Circ. Res. 118, 1593–1611 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dai, D.-F., Rabinovitch, P. S. & Ungvari, Z. Mitochondria and cardiovascular aging. Circ. Res. 110, 1109–1124 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Tian, R. et al. Unlocking the secrets of mitochondria in the cardiovascular system: path to a cure in heart failure — a report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation 140, 1205–1216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Bonora, M. et al. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat. Rev. Cardiol. 16, 33–55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fannin, S. W., Lesnefsky, E. J., Slabe, T. J., Hassan, M. O. & Hoppel, C. L. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch. Biochem. Biophys. 372, 399–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  217. Tatarková, Z. et al. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol. Res. 60, 281–289 (2011).

    Article  PubMed  Google Scholar 

  218. Lesnefsky, E. J. et al. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J. Mol. Cell Cardiol. 33, 37–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. Messerer, J. et al. Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice. J. Anat. 242, 91–101 (2023).

    Article  CAS  PubMed  Google Scholar 

  220. Kates, A. M. et al. Impact of aging on substrate metabolism by the human heart. J. Am. Coll. Cardiol. 41, 293–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. McMillin, J. B., Taffet, G. E., Taegtmeyer, H., Hudson, E. K. & Tate, C. A. Mitochondrial metabolism and substrate competition in the aging Fischer rat heart. Cardiovasc. Res. 27, 2222–2228 (1993).

    Article  CAS  PubMed  Google Scholar 

  222. Ungvari, Z. et al. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am. J. Physiol. Heart Circ. Physiol. 294, H2121–H2128 (2008).

    Article  CAS  PubMed  Google Scholar 

  223. Foote, K. et al. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell 17, e12773 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Park, S.-Y. et al. Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. Acta Physiol. 222, e12893 (2018).

    Article  Google Scholar 

  225. Gioscia-Ryan, R. A. et al. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J. Physiol. 592, 2549–2561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ungvari, Z. et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 301, H363–H372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ungvari, Z. et al. Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-κB activation in the nonhuman primate Macaca mulatta. J. Gerontol. A Biol. Sci. Med. Sci. 66, 866–875 (2011).

    Article  PubMed  Google Scholar 

  228. Tarantini, S. et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 73, 853–863 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Fulop, G. A. et al. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 40, 513–521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ungvari, Z. et al. Increased mitochondrial H2O2 production promotes endothelial NF-κB activation in aged rat arteries. Am. J. Physiol. Heart Circ. Physiol. 293, H37–H47 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Yu, H. et al. Role of the cGAS-STING pathway in aging-related endothelial dysfunction. Aging Dis. 13, 1901 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Rech, L. & Rainer, P. P. The innate immune cGAS-STING-pathway in cardiovascular diseases — a mini review. Front. Cardiovasc. Med. 8, 715903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Pierce, G. L., Lesniewski, L. A., Lawson, B. R., Beske, S. D. & Seals, D. R. Nuclear factor-κB activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 119, 1284–1292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tyrrell, D. J. et al. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ. Res. 126, 298–314 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Abdellatif, M., Sedej, S. & Kroemer, G. NAD+ metabolism in cardiac health, aging, and disease. Circulation 144, 1795–1817 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Abdellatif, M., Bugger, H., Kroemer, G. & Sedej, S. NAD+ and vascular dysfunction: from mechanisms to therapeutic opportunities. J. Lipid Atheroscler. 11, 111–132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zimmermann, A., Madreiter-Sokolowski, C., Stryeck, S. & Abdellatif, M. Targeting the mitochondria-proteostasis axis to delay aging. Front. Cell Dev. Biol. 9, 656201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Hoshino, A. et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308 (2013).

    Article  PubMed  Google Scholar 

  239. Kubli, D. A., Quinsay, M. N. & Gustafsson, A. B. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun. Integr. Biol. 6, e24511 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Diao, R. Y. & Gustafsson, Å. B. Mitochondrial quality surveillance: mitophagy in cardiovascular health and disease. Am. J. Physiol. Cell Physiol. 322, C218–C230 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Billia, F. et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc. Natl Acad. Sci. USA 108, 9572–9577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhu, X. et al. Fine-tuning of PGC1α expression regulates cardiac function and longevity. Circ. Res. 125, 707–719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Song, M., Franco, A., Fleischer, J. A., Zhang, L. & Dorn, G. W. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab. 26, 872–883.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang, Q. et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy 13, 404–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Peoples, J. N., Saraf, A., Ghazal, N., Pham, T. T. & Kwong, J. Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  246. Dai, D.-F. et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9, 536–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  248. Yu, E. et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 128, 702–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  249. Shabalina, I. G. et al. Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1. Aging 9, 315–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Fernandez-Caggiano, M. et al. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat. Metab. 2, 1223–1231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhang, Y. et al. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat. Metab. 2, 1248–1264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    Article  PubMed  Google Scholar 

  253. Wilson, C., Lee, M. D., Buckley, C., Zhang, X. & McCarron, J. G. Mitochondrial ATP production is required for endothelial cell control of vascular tone. Function 4, zqac063 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Xiong, J. et al. A metabolic basis for endothelial-to-mesenchymal transition. Mol. Cell 69, 689–698.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Tarantini, S. et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17, e12731 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Rossman, M. J. et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71, 1056–1063 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  258. Yu, E. P. K. et al. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler. Thromb. Vasc. Biol. 37, 2322–2332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kataura, T. et al. Autophagy promotes cell survival by maintaining NAD levels. Dev. Cell 57, 2584–2598.e11 (2022).

    Article  PubMed  Google Scholar 

  260. Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med. 13, eabd7064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Tarantini, S. et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24, 101192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Das, A. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173, 74–89.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kiss, T. et al. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience 42, 527–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Tarantini, S. et al. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. Geroscience 41, 533–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G. & Nattel, S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat. Rev. Cardiol. 19, 250–264 (2022).

    Article  PubMed  Google Scholar 

  267. Gude, N. A., Broughton, K. M., Firouzi, F. & Sussman, M. A. Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nat. Rev. Cardiol. 15, 523–542 (2018).

    Article  PubMed  Google Scholar 

  268. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  269. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  Google Scholar 

  270. Admasu, T. D., Rae, M. & Stolzing, A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res. Rev. 70, 101412 (2021).

    Article  CAS  PubMed  Google Scholar 

  271. González-Gualda, E., Baker, A. G., Fruk, L. & Muñoz-Espín, D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 288, 56–80 (2021).

    Article  PubMed  Google Scholar 

  272. Kohli, J. et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat. Protoc. 16, 2471–2498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Owens, W. A., Walaszczyk, A., Spyridopoulos, I., Dookun, E. & Richardson, G. D. Senescence and senolytics in cardiovascular disease: promise and potential pitfalls. Mech. Ageing Dev. 198, 111540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Honda, S. et al. Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci. Rep. 11, 14608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Wang, J. et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 132, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Dookun, E. et al. Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell 19, e13249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gevaert, A. B. et al. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model. Circ. Heart Fail. 10, e003806 (2017).

    Article  CAS  PubMed  Google Scholar 

  280. Moiseeva, V. et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 613, 169–178 (2023).

    Article  CAS  PubMed  Google Scholar 

  281. Bloom, S. I., Islam, M. T., Lesniewski, L. A. & Donato, A. J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20, 38–51 (2023).

    Article  PubMed  Google Scholar 

  282. Grosse, L. et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  283. Kiss, T. et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 42, 429–444 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Chala, N. et al. Mechanical fingerprint of senescence in endothelial cells. Nano Lett. 21, 4911–4920 (2021).

    Article  CAS  PubMed  Google Scholar 

  285. Bhayadia, R., Schmidt, B. M. W., Melk, A. & Hömme, M. Senescence-induced oxidative stress causes endothelial dysfunction. J. Gerontol. A Biol. Sci. Med. Sci. 71, 161–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  286. Yamazaki, Y. et al. Vascular cell senescence contributes to blood-brain barrier breakdown. Stroke 47, 1068–1077 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Meyer, K., Hodwin, B., Ramanujam, D., Engelhardt, S. & Sarikas, A. Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J. Am. Coll. Cardiol. 67, 2018–2028 (2016).

    Article  CAS  PubMed  Google Scholar 

  290. Garrido, A. M. et al. Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc. Res. 118, 1713–1727 (2022).

    Article  CAS  PubMed  Google Scholar 

  291. Gasek, N. S., Kuchel, G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Tarantini, S. et al. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience 43, 2427–2440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Morgan, R. G. et al. Induced Trf2 deletion leads to aging vascular phenotype in mice associated with arterial telomere uncapping, senescence signaling, and oxidative stress. J. Mol. Cell Cardiol. 127, 74–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  296. Leri, A. et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 22, 131–139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Rossman, M. J. et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am. J. Physiol. Heart Circ. Physiol. 313, H890–H895 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Ziff, O. J. & Kotecha, D. Digoxin: the good and the bad. Trends Cardiovasc. Med. 26, 585–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  299. Triana-Martínez, F. et al. Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun. 10, 4731 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Ma, T. K. W., Kam, K. K. H., Yan, B. P. & Lam, Y.-Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br. J. Pharmacol. 160, 1273–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Ruggenenti, P. et al. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: a randomized controlled trial. Diabetes 66, 75–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  302. Jia, G., Aroor, A. R., Hill, M. A. & Sowers, J. R. Role of renin-angiotensin-aldosterone system activation in promoting cardiovascular fibrosis and stiffness. Hypertension 72, 537–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  303. Conti, S., Cassis, P. & Benigni, A. Aging and the renin-angiotensin system. Hypertension 60, 878–883 (2012).

    Article  CAS  PubMed  Google Scholar 

  304. Yoon, H. E. et al. Age-associated changes in the vascular renin-angiotensin system in mice. Oxid. Med. Cell Longev. 2016, 6731093 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Dai, D.-F. et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119, 2789–2797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Dinh, Q. N. et al. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging 9, 1595–1606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Forrester, S. J. et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol. Rev. 98, 1627–1738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Billet, S. et al. Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice. J. Clin. Invest. 117, 1914–1925 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Habibi, J. et al. Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression. Am. J. Physiol. Heart Circ. Physiol. 300, H1484–H1491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Xiao, H. D. et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am. J. Pathol. 165, 1019–1032 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Basso, N. et al. Protective effect of long-term angiotensin II inhibition. Am. J. Physiol. Heart Circ. Physiol. 293, H1351–H1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  313. Inserra, F., Romano, L., Ercole, L., de Cavanagh, E. M. & Ferder, L. Cardiovascular changes by long-term inhibition of the renin-angiotensin system in aging. Hypertension 25, 437–442 (1995).

    Article  CAS  PubMed  Google Scholar 

  314. Keller, K., Kane, A., Heinze-Milne, S., Grandy, S. A. & Howlett, S. E. Chronic treatment with the ACE inhibitor enalapril attenuates the development of frailty and differentially modifies pro- and anti-inflammatory cytokines in aging male and female C57BL/6 mice. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1149–1157 (2019).

    Article  CAS  PubMed  Google Scholar 

  315. McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Paz Ocaranza, M. et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 17, 116–129 (2020).

    Article  PubMed  Google Scholar 

  317. Lymperopoulos, A., Rengo, G. & Koch, W. J. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ. Res. 113, 739–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  318. Elia, A. et al. Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. J. Geriatr. Cardiol. 18, 549–559 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Ferrara, N. et al. β-Adrenergic receptor responsiveness in aging heart and clinical implications. Front. Physiol. 4, 396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Stratton, J. R. et al. Differences in cardiovascular responses to isoproterenol in relation to age and exercise training in healthy men. Circulation 86, 504–512 (1992).

    Article  CAS  PubMed  Google Scholar 

  321. Xiao, R. P., Spurgeon, H. A., O’Connor, F. & Lakatta, E. G. Age-associated changes in β-adrenergic modulation on rat cardiac excitation-contraction coupling. J. Clin. Invest. 94, 2051–2059 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Milano, C. A. et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264, 582–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  324. Du, X. Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing β2-adrenergic receptors in the heart. Cardiovasc. Res. 48, 448–454 (2000).

    Article  CAS  PubMed  Google Scholar 

  325. Bisognano, J. D. et al. Myocardial-directed overexpression of the human β1-adrenergic receptor in transgenic mice. J. Mol. Cell Cardiol. 32, 817–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  326. Liggett, S. B. et al. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714 (2000).

    Article  CAS  PubMed  Google Scholar 

  327. No authors listed. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

    Article  Google Scholar 

  328. No authors listed. The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

    Article  Google Scholar 

  329. Ziff, O. J. et al. Beta-blocker efficacy across different cardiovascular indications: an umbrella review and meta-analytic assessment. BMC Med. 18, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Sipahi, I. et al. β-Blockers and progression of coronary atherosclerosis: pooled analysis of 4 intravascular ultrasonography trials. Ann. Intern. Med. 147, 10–18 (2007).

    Article  PubMed  Google Scholar 

  331. Leosco, D. et al. Exercise training and β-blocker treatment ameliorate age-dependent impairment of β-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am. J. Physiol. Heart Circ. Physiol. 293, H1596–H1603 (2007).

    Article  CAS  PubMed  Google Scholar 

  332. Spindler, S. R. et al. β1-Adrenergic receptor blockade extends the life span of Drosophila and long-lived mice. Age 35, 2099–2109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Yan, L. et al. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130, 247–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  334. del Villar, S. G., Westhoff, M., Voelker, T. L., Dickson, E. J. & Dixon, R. E. Restoration of β-adrenergic responsivity in the aging heart. Preprint at bioRxiv https://doi.org/10.1101/2022.08.23.504979 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  335. Vögele, A. et al. Effectiveness and safety of beta blockers in the management of hypertension in older adults: a systematic review to help reduce inappropriate prescribing. BMC Geriatr. 17, 224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Chan You, S. et al. Comprehensive comparative effectiveness and safety of first-line β-blocker monotherapy in hypertensive patients: a large-scale multicenter observational study. Hypertension 77, 1528–1538 (2021).

    Article  CAS  PubMed  Google Scholar 

  337. Junnila, R. K., List, E. O., Berryman, D. E., Murrey, J. W. & Kopchick, J. J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 9, 366–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Milman, S., Huffman, D. M. & Barzilai, N. The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab. 23, 980–989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. McMullen, J. R. et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway. J. Biol. Chem. 279, 4782–4793 (2004).

    Article  CAS  PubMed  Google Scholar 

  340. Delaughter, M. C., Taffet, G. E., Fiorotto, M. L., Entman, M. L. & Schwartz, R. J. Local insulin-like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J. 13, 1923–1929 (1999).

    Article  CAS  PubMed  Google Scholar 

  341. Ock, S. et al. Deletion of IGF-1 receptors in cardiomyocytes attenuates cardiac aging in male mice. Endocrinology 157, 336–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  342. Mao, K. et al. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat. Commun. 9, 2394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Inuzuka, Y. et al. Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation 120, 1695–1703 (2009).

    Article  CAS  PubMed  Google Scholar 

  344. Hedges, C. P. et al. Dietary supplementation of clinically utilized PI3K p110α inhibitor extends the lifespan of male and female mice. Nat. Aging 3, 162–172 (2023).

    Article  CAS  PubMed  Google Scholar 

  345. D’Assante, R. et al. Myocardial expression of somatotropic axis, adrenergic signalling, and calcium handling genes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Esc. Heart Fail. 8, 1681–1686 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Vasan, R. S. et al. Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann. Intern. Med. 139, 642–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  347. Andreassen, M. et al. IGF1 as predictor of all cause mortality and cardiovascular disease in an elderly population. Eur. J. Endocrinol. 160, 25–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  348. Rahmani, J. et al. Association between IGF-1 levels ranges and all-cause mortality: a meta-analysis. Aging Cell 21, e13540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Zhang, W. B., Ye, K., Barzilai, N. & Milman, S. The antagonistic pleiotropy of insulin-like growth factor 1. Aging Cell 20, e13443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Fontana, L. et al. Identification of a metabolic signature for multidimensional impairment and mortality risk in hospitalized older patients. Aging Cell 12, 459–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  351. Toth, L. et al. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. Geroscience 44, 2771–2783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Erlandsson, M. C. et al. Low serum IGF1 is associated with hypertension and predicts early cardiovascular events in women with rheumatoid arthritis. BMC Med. 17, 141 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  353. Csiszar, A. et al. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am. J. Physiol. Heart Circ. Physiol. 295, H1882–H1894 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Reddy, A. K. et al. Young little mice express a premature cardiovascular aging phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 69, 152–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  355. Abbas, A. et al. The insulin-like growth factor-1 receptor is a negative regulator of nitric oxide bioavailability and insulin sensitivity in the endothelium. Diabetes 60, 2169–2178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Higashi, Y. et al. Endothelial deficiency of insulin-like growth factor-1 receptor reduces endothelial barrier function and promotes atherosclerosis in Apoe-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 319, H730–H743 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  357. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  358. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Engelen, S. E., Robinson, A. J. B., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  361. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Joshi, N. V. et al. Systemic atherosclerotic inflammation following acute myocardial infarction: myocardial infarction begets myocardial infarction. J. Am. Heart Assoc. 4, e001956 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  363. Esfahani, N. S. et al. Aging influences the cardiac macrophage phenotype and function during steady state and during inflammation. Aging Cell 20, e13438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Barcena de Arellano, M. L. et al. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging 11, 1918–1933 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Ramos, G. C. et al. Myocardial aging as a T-cell-mediated phenomenon. Proc. Natl Acad. Sci. USA 114, E2420–E2429 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Delgobo, M. et al. Terminally differentiated CD4+ T cells promote myocardial inflammaging. Front. Immunol. 12, 584538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Dolejsi, T. et al. Adult T-cells impair neonatal cardiac regeneration. Eur. Heart J. 43, 2698–2709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  Google Scholar 

  370. Maier, H. J. et al. Cardiomyocyte-specific IκB kinase (IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 109, 11794–11799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Kubota, T. et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ. Res. 81, 627–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  372. Marín-Aguilar, F. et al. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 19, e13050 (2020).

    Article  PubMed  Google Scholar 

  373. Hasegawa, Y. et al. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation 125, 1122–1133 (2012).

    Article  CAS  PubMed  Google Scholar 

  374. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  375. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  376. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  377. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  378. Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

    Article  PubMed  Google Scholar 

  379. Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  380. Abdellatif, M. & Kroemer, G. Heart failure with preserved ejection fraction: an age-related condition. J. Mol. Cell Cardiol. 167, 83–84 (2022).

    Article  CAS  PubMed  Google Scholar 

  381. Withaar, C., Li, S., Meems, L. M. G., Silljé, H. H. W. & de Boer, R. A. Aging and HFpEF: are we running out of time? J. Mol. Cell Cardiol. 168, 33–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  382. Kalogeropoulos, A. et al. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J. Am. Coll. Cardiol. 55, 2129–2137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article  PubMed  Google Scholar 

  384. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  385. Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M. J. & Seufert, J. Cardiovascular protection by SGLT2 inhibitors – Do anti-inflammatory mechanisms play a role? Mol. Metab. 64, 101549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).

    Article  CAS  PubMed  Google Scholar 

  387. Zannad, F. et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur. Heart J. 43, 4991–5002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Hoong, C. W. S. & Chua, M. W. J. SGLT2 Inhibitors as calorie restriction mimetics: insights on longevity pathways and age-related diseases. Endocrinology 162, bqab079 (2021).

    Article  PubMed  Google Scholar 

  389. Packer, M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-022-00824-4 (2023).

    Article  PubMed  Google Scholar 

  390. Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  391. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Sladitschek-Martens, H. L. et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 607, 790–798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Kreienkamp, R. et al. A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Rep. 22, 2006–2015 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Olive, M. et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30, 2301–2309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Pham, P. T. et al. STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases. Eur. Heart J. 42, 4336–4348 (2021).

    Article  CAS  PubMed  Google Scholar 

  396. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Cao, D. J. et al. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation 137, 2613–2634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Li, Q. et al. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol. Med. 12, e11002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Rech, L. et al. Small molecule STING inhibition improves myocardial infarction remodeling. Life Sci. 291, 120263 (2022).

    Article  CAS  PubMed  Google Scholar 

  400. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  401. Castoldi, F. et al. Autophagy-mediated metabolic effects of aspirin. Cell Death Discov. 6, 129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. McNeil, J. J. et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N. Engl. J. Med. 379, 1509–1518 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Gaziano, J. M. et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet 392, 1036–1046 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. ASCEND Study Collaborative Group et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N. Engl. J. Med. 379, 1529–1539 (2018).

    Article  Google Scholar 

  405. Castellano, J. M. et al. Polypill strategy in secondary cardiovascular prevention. N. Engl. J. Med. 387, 967–977 (2022).

    Article  CAS  PubMed  Google Scholar 

  406. Svensson, E. C. et al. TET2-Driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  407. Ridker, P. M. et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391, 319–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  408. Rajendran, P. et al. Autophagy and senescence: a new insight in selected human diseases. J. Cell Physiol. 234, 21485–21492 (2019).

    Article  CAS  PubMed  Google Scholar 

  409. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  412. Tong, M. et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ. Res. 124, 1360–1371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Sánchez-Ceinos, J. et al. Impaired mRNA splicing and proteostasis in preadipocytes in obesity-related metabolic disease. eLife 10, e65996 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  414. Park, Y. J., Han, S. M., Huh, J. Y. & Kim, J. B. Emerging roles of epigenetic regulation in obesity and metabolic disease. J. Biol. Chem. 297, 101296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Abel, E. D. Obesity stresses cardiac mitochondria even when you are young. J. Am. Coll. Cardiol. 57, 586–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  416. Chaib, S., Tchkonia, T. & Kirkland, J. L. Obesity, senescence, and senolytics. Handb. Exp. Pharmacol. 274, 165–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  417. Montégut, L., Lopez-Otin, C., Magnan, C. & Kroemer, G. Old paradoxes and new opportunities for appetite control in obesity. Trends Endocrinol. Metab. 32, 264–294 (2021).

    Article  PubMed  Google Scholar 

  418. Sharma, A. M. & Engeli, S. Obesity and the renin–angiotensin–aldosterone system. Expert Rev. Endocrinol. Metab. 1, 255–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  419. Khafagy, R. & Dash, S. Obesity and cardiovascular disease: the emerging role of inflammation. Front. Cardiovasc. Med. 8, 768119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Ryder, J. R. et al. Accelerated early vascular aging among adolescents with obesity and/or type 2 diabetes mellitus. J. Am. Heart Assoc. 9, e014891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Niemann, B. et al. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J. Am. Coll. Cardiol. 57, 577–585 (2011).

    Article  CAS  PubMed  Google Scholar 

  422. de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    Article  PubMed  Google Scholar 

  423. Meydani, S. N. et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging 8, 1416–1431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Spadaro, O. et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671–677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Stekovic, S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 31, 878–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  426. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  427. Bangalore, S., Kumar, S., Wetterslev, J. & Messerli, F. H. Angiotensin receptor blockers and risk of myocardial infarction: meta-analyses and trial sequential analyses of 147 020 patients from randomised trials. Br. Med. J. 342, d2234 (2011).

    Article  Google Scholar 

  428. Granger, C. B. et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 362, 772–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  429. Cohn, J. N., Tognoni, G.; Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  430. Pfeffer, M. A. et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362, 759–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  431. McMurray, J. J. V. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  Google Scholar 

  432. Flather, M. D. et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 355, 1575–1581 (2000).

    Article  CAS  PubMed  Google Scholar 

  433. Dagenais, G. R., Pogue, J., Fox, K., Simoons, M. L. & Yusuf, S. Angiotensin-converting-enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: a combined analysis of three trials. Lancet 368, 581–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  434. van Vark, L. C. et al. Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158,998 patients. Eur. Heart J. 33, 2088–2097 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  435. SOLVD Investigators et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).

    Article  Google Scholar 

  436. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 316, 1429–1435 (1987).

    Article  Google Scholar 

  437. Packer, M. et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 106, 2194–2199 (2002).

    Article  PubMed  Google Scholar 

  438. Flather, M. D. et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur. Heart J. 26, 215–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  439. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  440. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  441. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  442. Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  443. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable constructive feedback and apologize to the authors of several high-quality articles on cardiovascular ageing that could not be discussed and cited owing to space limitations. The authors are also grateful to Leen Assil Companioni (CBmed, Graz, Austria) for designing the figures before submission, Sylvère Durand (Institute Gustave Roussy, Villejuif, France) for spermidine measurements as well as Nathaly Anto Michel (Medical University of Graz, Graz, Austria) and Andrew L. Koenig (Washington University School of Medicine, St. Louis, MO, USA) for extracting and providing the single-cell data reported in Fig. 1. M.A. acknowledges support from the European Commission (H2020-MSCA-IF), the Austrian Society of Cardiology (Präsidentenstipendium-ÖKG), the Medical University of Graz (Start Fund), BioTechMed-Graz (Young Researcher Group) and the Austrian Science Fund (FWF; P34926). P.P.R. and S.S. acknowledge support from the Medical University of Graz (Flagship project VASC-HEALTH) and BioTechMed-Graz (Flagship project INTERACD+). G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; European Research Council Advanced Investigator Grand ‘ICD-Cancer’, Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council (ICD-Cancer), European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and G.K. conceptualized the article. The authors contributed substantially to all other aspects of the article.

Corresponding authors

Correspondence to Mahmoud Abdellatif or Guido Kroemer.

Ethics declarations

Competing interests

M.A. and S.S. are involved in patent applications related to the cardiometabolic effects of caloric restriction mimetics. G.K. holds research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, Osasuna Therapeutics, PharmaMar, Samsara Therapeutics, Sanofi, Tollys and Vascage. G.K. is a consultant for Reithera and is on the Board of Directors of the Bristol Myers Squibb Foundation, France. G.K. is also a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. G.K.’s wife, Laurence Zitvogel, has held research contracts with 9 Meters Biopharma, Daiichi Sankyo and Pilege, was on the Board of Directors of Transgene, is a co-founder of everImmune, and holds patents covering the treatment of cancer and therapeutic manipulation of the microbiota. G.K.’s brother, Romano Kroemer, was an employee of Sanofi and consulted for Boehringer-Ingelheim. P.P.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Luigi Fontana and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophagy

An evolutionarily conserved homeostatic process through which old, dysfunctional or potentially hazardous cytoplasmic components undergo lysosomal degradation; three types of autophagy exist in mammalian cells: microautophagy, macroautophagy and chaperone-mediated autophagy.

Clonal haematopoiesis of indeterminate potential

(CHIP). A process by which stem cells in the blood or bone marrow randomly accrues somatic mutations during ageing, leading to exaggerated representation of a single clone.

Inflammageing

The phenomenon of low-grade, subclinical sterile inflammation commonly observed with ageing, leading to increased circulating and tissue cytokine levels.

Inflammasome

A supramolecular complex, the formation of which is triggered by a range of exogenous and endogenous pro-inflammatory factors, culminating in the activation of caspase 1, which proteolytically activates the pro-inflammatory cytokines IL-1β and IL-18.

Non-coding RNAs

(ncRNAs). RNA molecules that are not translated into proteins but regulate the expression levels of target genes; there are several subfamilies of ncRNAs, including microRNAs (<200 nucleotides), long non-coding RNAs (>200 nucleotides) and covalently closed circular RNAs.

Proteostasis

A network of cellular processes that maintain the health and integrity of the proteome, including protein biogenesis, folding, trafficking and degradation.

Senescence

Permanent arrest of the cell cycle with irreversible loss of replicative capacity, leading to the loss of specific cellular functions, and the acquisition of a secretory and metabolically active phenotype with pro-inflammatory features.

Senolytic therapy

Elimination of senescent cells by molecules that specifically induce cell death in senescent cells to improve organismal health.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, M., Rainer, P.P., Sedej, S. et al. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 20, 754–777 (2023). https://doi.org/10.1038/s41569-023-00881-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00881-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing