Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The contribution of the exposome to the burden of cardiovascular disease

Abstract

Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.

Key points

  • Leading health risk factors, such as hypertension, smoking, overnutrition, diabetes mellitus, air pollution, high BMI and dyslipidaemia, increase the global burden of chronic non-communicable diseases, particularly cardiovascular diseases.

  • Environmental exposures account for up to two-thirds of all chronic non-communicable diseases, and chemical pollution alone is responsible for 16% of global deaths, thereby having greater influence than genetic predisposition; multiple co-exposures cause additive increases in the risk of cardiometabolic disease.

  • The exposome concept was established to investigate the effect of all exposures on endogenous biochemical and functional changes and the association with adverse health outcomes.

  • Harmful exposures can increase health risks and mortality synergistically with age, genetic predisposition and pre-existing chronic diseases.

  • It is challenging to assess exposures and their effects on the internal environment using omics approaches and functional assays, and exposome studies that assess associations between exposure, omics data and health outcomes are rare.

  • Substantial challenges for ongoing and future exposome studies are related to costs, handling of big data and multi-exposure assessment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global number of deaths and DALYs in 2019 attributable to health risk factors according to cause and sex.
Fig. 2: Colocalization of environmental exposures in Denmark.
Fig. 3: The exposome concept.
Fig. 4: Global deaths and DALYs for different pollutants and age groups.
Fig. 5: Assessment of environmental exposures and lifestyle factors.
Fig. 6: Blood biomarkers of the exposome.

Similar content being viewed by others

References

  1. WHO/The Global Health Observatory. Global health estimates: leading causes of death 2000–2019. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (2023).

  2. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease study 2010. Lancet 380, 2095–2128 (2012).

    PubMed  Google Scholar 

  3. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Murray, C. J. et al. GBD 2010: design, definitions, and metrics. Lancet 380, 2063–2066 (2012).

    PubMed  Google Scholar 

  5. Sing, C. F., Stengard, J. H. & Kardia, S. L. Genes, environment, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23, 1190–1196 (2003).

    CAS  PubMed  Google Scholar 

  6. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Google Scholar 

  7. WHO/The Global Health Observatory. Noncommunicable diseases: mortality. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality (2023).

  8. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    CAS  PubMed  Google Scholar 

  9. Rappaport, S. M. Genetic factors are not the major causes of chronic diseases. PLoS One 11, e0154387 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Munzel, T. et al. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur. Heart J. 42, 2422–2438 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. Olden, K. & Wilson, S. Environmental health and genomics: visions and implications. Nat. Rev. Genet. 1, 149–153 (2000).

    CAS  PubMed  Google Scholar 

  12. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    PubMed  Google Scholar 

  13. Ramirez-Rubio, O. et al. Urban health: an example of a “health in all policies” approach in the context of SDGs implementation. Glob. Health 15, 87 (2019).

    Google Scholar 

  14. Patel, C. J., Bhattacharya, J. & Butte, A. J. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One 5, e10746 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Zheng, Y. et al. Design and methodology challenges of environment-wide association studies: a systematic review. Environ. Res. 183, 109275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sainani, K. Taking on the exposome — bringing bioinformatics tools to the environmental side of the health equation. https://humanexposomeproject.com/wp-content/uploads/2017/01/Taking-on-the-Exposome.pdf (2016).

  17. Lelieveld, J. et al. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc. Res. 116, 1910–1917 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. WHO. An estimated 12.6 million deaths each year are attributable to unhealthy environments. https://www.who.int/news/item/15-03-2016-an-estimated-12-6-million-deaths-each-year-are-attributable-to-unhealthy-environments (2016).

  19. WHO. Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. https://www.who.int/publications/i/item/9789241565196 (2018).

  20. Lelieveld, J. et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 40, 1590–1596 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. European Environment Agency. Health impacts of air pollution in Europe, 2021. https://www.eea.europa.eu/publications/air-quality-in-europe-2021/health-impacts-of-air-pollution (2021).

  23. Stafoggia, M. et al. Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project. Lancet Planet. Health 6, e9–e18 (2022).

    PubMed  Google Scholar 

  24. Rich, D. Q. et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 307, 2068–2078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yorifuji, T., Kashima, S. & Doi, H. Fine-particulate air pollution from diesel emission control and mortality rates in Tokyo: a quasi-experimental study. Epidemiology 27, 769–778 (2016).

    PubMed  Google Scholar 

  26. Correia, A. W. et al. Effect of air pollution control on life expectancy in the United States: an analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology 24, 23–31 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Pope, C. A. III, Ezzati, M. & Dockery, D. W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 360, 376–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1603–1658 (2016).

    Google Scholar 

  29. Boogaard, H. et al. Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environ. Int. 164, 107262 (2022).

    CAS  PubMed  Google Scholar 

  30. Nieuwenhuijsen, M. J., Khreis, H., Triguero-Mas, M., Gascon, M. & Dadvand, P. Fifty shades of green: pathway to healthy urban living. Epidemiology 28, 63–71 (2017).

    PubMed  Google Scholar 

  31. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).

    PubMed  Google Scholar 

  32. Munzel, T., Hahad, O., Daiber, A. & Landrigan, P. J. Soil and water pollution and human health: what should cardiologists worry about? Cardiovasc. Res. 119, 440–449 (2023).

    PubMed  Google Scholar 

  33. Kumar, A. et al. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 17, 2179 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Alissa, E. M. & Ferns, G. A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 870125 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627–642 (2015).

    CAS  PubMed  Google Scholar 

  36. Kempen, E. V., Casas, M., Pershagen, G. & Foraster, M. WHO environmental noise guidelines for the European region: a systematic review on environmental noise and cardiovascular and metabolic effects: a summary. Int. J. Environ. Res. Public Health 15, 379 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Roswall, N. et al. Long-term exposure to transportation noise and risk of incident stroke: a pooled study of nine scandinavian cohorts. Environ. Health Perspect. 129, 107002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munzel, T., Sørensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 18, 619–636 (2021).

    PubMed  Google Scholar 

  39. European Environment Agency. Environmental noise in Europe — 2020. https://www.eea.europa.eu/publications/environmental-noise-in-europe (2020).

  40. Khomenko, S. et al. Impact of road traffic noise on annoyance and preventable mortality in European cities: a health impact assessment. Environ. Int. 162, 107160 (2022).

    PubMed  Google Scholar 

  41. Thacher, J. D. et al. Exposure to transportation noise and risk for cardiovascular disease in a nationwide cohort study from Denmark. Environ. Res. 211, 113106 (2022).

    CAS  PubMed  Google Scholar 

  42. Vienneau, D. et al. Transportation noise exposure and cardiovascular mortality: 15-years of follow-up in a nationwide prospective cohort in Switzerland. Environ. Int. 158, 106974 (2022).

    PubMed  Google Scholar 

  43. Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Falchi, F. et al. Light pollution in USA and Europe: the good, the bad and the ugly. J. Environ. Manag. 248, 109227 (2019).

    CAS  Google Scholar 

  45. Chepesiuk, R. Missing the dark: health effects of light pollution. Environ. Health Perspect. 117, A20–A27 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Barboza, E. P. et al. Green space and mortality in European cities: a health impact assessment study. Lancet Planet. Health 5, e718–e730 (2021).

    PubMed  Google Scholar 

  47. Markevych, I. et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ. Res. 158, 301–317 (2017).

    CAS  PubMed  Google Scholar 

  48. Liu, J. et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet. Health 6, e484–e495 (2022).

    PubMed  Google Scholar 

  49. Jacobsen, A. P. et al. Climate change and the prevention of cardiovascular disease. Am. J. Prev. Cardiol. 12, 100391 (2022).

    PubMed  PubMed Central  Google Scholar 

  50. Schiermeier, Q. Climate change made North America’s deadly heatwave 150 times more likely. Nature https://doi.org/10.1038/d41586-021-01869-0 (2021).

    Article  PubMed  Google Scholar 

  51. Khatana, S. A. M., Werner, R. M. & Groeneveld, P. W. Association of extreme heat with all-cause mortality in the contiguous US, 2008-2017. JAMA Netw. Open 5, e2212957 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Alahmad, B. et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation 147, 35–46 (2023).

    PubMed  Google Scholar 

  53. Sun, S. et al. Outdoor light at night and risk of coronary heart disease among older adults: a prospective cohort study. Eur. Heart J. 42, 822–830 (2021).

    PubMed  Google Scholar 

  54. Kuntic, M. et al. Co-exposure to urban particulate matter and aircraft noise adversely impacts the cerebro-pulmonary-cardiovascular axis in mice. Redox Biol. 59, 102580 (2023).

    CAS  PubMed  Google Scholar 

  55. Palanivel, R. et al. Exposure to air pollution disrupts circadian rhythm through alterations in chromatin dynamics. iScience 23, 101728 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Heritier, H. et al. A systematic analysis of mutual effects of transportation noise and air pollution exposure on myocardial infarction mortality: a nationwide cohort study in Switzerland. Eur. Heart J. 40, 598–603 (2019).

    PubMed  Google Scholar 

  57. Sørensen, M. et al. Air pollution, road traffic noise and lack of greenness and risk of type 2 diabetes: a multi-exposure prospective study covering Denmark. Environ. Int. 170, 107570 (2022).

    PubMed  Google Scholar 

  58. Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

    CAS  Google Scholar 

  59. Vrijheid, M. The exposome: a new paradigm to study the impact of environment on health. Thorax 69, 876–878 (2014).

    PubMed  Google Scholar 

  60. Wild, C. P. The exposome: from concept to utility. Int. J. Epidemiol. 41, 24–32 (2012).

    PubMed  Google Scholar 

  61. Faisandier, L., Bonneterre, V., De Gaudemaris, R. & Bicout, D. J. Occupational exposome: a network-based approach for characterizing occupational health problems. J. Biomed. Inf. 44, 545–552 (2011).

    Google Scholar 

  62. Gittner, L. S., Kilbourne, B. J., Vadapalli, R., Khan, H. M. K. & Langston, M. A. A multifactorial obesity model developed from nationwide public health exposome data and modern computational analyses. Obes. Res. Clin. Pract. 11, 522–533 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Beulens, J. W. J. et al. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 65, 263–274 (2022).

    CAS  PubMed  Google Scholar 

  64. Wild, C. P., Scalbert, A. & Herceg, Z. Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. Environ. Mol. Mutagen. 54, 480–499 (2013).

    CAS  PubMed  Google Scholar 

  65. Morawska, L. et al. How to build Urbanome, the genome of the city? Sci. Total Environ. 810, 152310 (2022).

    CAS  PubMed  Google Scholar 

  66. Robinson, O. et al. The urban exposome during pregnancy and its socioeconomic determinants. Environ. Health Perspect. 126, 077005 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Zhang, P. et al. Defining the scope of exposome studies and research needs from a multidisciplinary perspective. Environ. Sci. Technol. Lett. 8, 839–852 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cui, Y. et al. The exposome: embracing the complexity for discovery in environmental health. Environ. Health Perspect. 124, A137–A140 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Booth, J. et al. Evidence of perceived psychosocial stress as a risk factor for stroke in adults: a meta-analysis. BMC Neurol. 15, 233 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Osborne, M. T. et al. Disentangling the links between psychosocial stress and cardiovascular disease. Circ. Cardiovasc. Imaging 13, e010931 (2020).

    PubMed  PubMed Central  Google Scholar 

  71. Schmidt, F. et al. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease. Clin. Res. Cardiol. 104, 23–30 (2015).

    CAS  PubMed  Google Scholar 

  72. Bhatnagar, A. Environmental determinants of cardiovascular disease. Circ. Res. 121, 162–180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Steven, S. et al. Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension. Redox Biol. 34, 101515 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang, W. et al. Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender. Am. J. Epidemiol. 176, 117–126 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. Kaufman, J. D. et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet 388, 696–704 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Munzel, T. & Daiber, A. The air pollution constituent particulate matter (PM2.5) destabilizes coronary artery plaques. Eur. Heart J. Cardiovasc. Imaging 20, 1365–1367 (2019).

    PubMed  Google Scholar 

  77. Yang, S. et al. PM2.5 concentration in the ambient air is a risk factor for the development of high-risk coronary plaques. Eur. Heart J. Cardiovasc. Imaging 20, 1355–1364 (2019).

    PubMed  Google Scholar 

  78. Pearson, T. A. et al. Precision health analytics with predictive analytics and implementation research: JACC state-of-the-art review. J. Am. Coll. Cardiol. 76, 306–320 (2020).

    PubMed  Google Scholar 

  79. Rojas-Rueda, D. et al. Environmental burden of childhood disease in Europe. Int. J. Environ. Res. Public Health 16, 1084 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Andreadou, I. et al. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: role of cardiac redox signaling. Free Radic. Biol. Med. 166, 33–52 (2021).

    CAS  PubMed  Google Scholar 

  81. Daiber, A. et al. The “exposome” concept — how environmental risk factors influence cardiovascular health. Acta Biochim. Pol. 66, 269–283 (2019).

    CAS  PubMed  Google Scholar 

  82. Bukhman, G. et al. The Lancet NCDI Poverty Commission: bridging a gap in universal health coverage for the poorest billion. Lancet 396, 991–1044 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Grell, G. A. et al. Fully coupled ‘online’ chemistry in the WRF model. Atmos. Environ. 39, 6957–6976 (2005).

    CAS  Google Scholar 

  84. Pozzer, A. et al. Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmos. Chem. Phys. 12, 961–987 (2012).

    CAS  Google Scholar 

  85. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    CAS  PubMed  Google Scholar 

  86. Lelieveld, J., Haines, A. & Pozzer, A. Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. Lancet Planet. Health 2, e292–e300 (2018).

    PubMed  Google Scholar 

  87. Eeftens, M. et al. Development of land use regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 46, 11195–11205 (2012).

    CAS  PubMed  Google Scholar 

  88. Young, M. T. et al. Satellite-based NO2 and model validation in a national prediction model based on universal kriging and land-use regression. Environ. Sci. Technol. 50, 3686–3694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rappaport, S. M., Barupal, D. K., Wishart, D., Vineis, P. & Scalbert, A. The blood exposome and its role in discovering causes of disease. Environ. Health Perspect. 122, 769–774 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Schutte, M., Marks, A., Wenning, E. & Griefahn, B. The development of the noise sensitivity questionnaire. Noise Health 9, 15–24 (2007).

    PubMed  Google Scholar 

  91. Horne, J. A. & Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 4, 97–110 (1976).

    CAS  PubMed  Google Scholar 

  92. Turner, M. C. et al. Assessing the exposome with external measures: commentary on the state of the science and research recommendations. Annu. Rev. Public Health 38, 215–239 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Dunn, J., Runge, R. & Snyder, M. Wearables and the medical revolution. Per Med. 15, 429–448 (2018).

    CAS  PubMed  Google Scholar 

  94. Doherty, B. T., Koelmel, J. P., Lin, E. Z., Romano, M. E. & Godri Pollitt, K. J. Use of exposomic methods incorporating sensors in environmental epidemiology. Curr. Environ. Health Rep. 8, 34–41 (2021).

    PubMed  Google Scholar 

  95. Donaire-Gonzalez, D. et al. Personal assessment of the external exposome during pregnancy and childhood in Europe. Environ. Res. 174, 95–104 (2019).

    CAS  PubMed  Google Scholar 

  96. Mila, C. et al. When, where, and what? Characterizing personal PM2.5 exposure in periurban India by integrating GPS, wearable camera, and ambient and personal monitoring data. Environ. Sci. Technol. 52, 13481–13490 (2018).

    CAS  PubMed  Google Scholar 

  97. Nieuwenhuijsen, M. J., Donaire-Gonzalez, D., Foraster, M., Martinez, D. & Cisneros, A. Using personal sensors to assess the exposome and acute health effects. Int. J. Environ. Res. Public Health 11, 7805–7819 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Triguero-Mas, M. et al. Living close to natural outdoor environments in four European cities: adults’ contact with the environments and physical activity.Int. J. Environ. Res. Public Health 14, 1162 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Yeo, W. H. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013).

    CAS  PubMed  Google Scholar 

  100. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shan, G., Li, X. & Huang, W. AI-enabled wearable and flexible electronics for assessing full personal exposures. Innovation 1, 100031 (2020).

    PubMed  PubMed Central  Google Scholar 

  102. Nieuwenhuijsen, M. J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; a review of the current evidence. Environ. Int. 140, 105661 (2020).

    PubMed  Google Scholar 

  103. Dennis, K. K. et al. Biomonitoring in the era of the exposome. Environ. Health Perspect. 125, 502–510 (2017).

    CAS  PubMed  Google Scholar 

  104. Dennis, K. K. et al. The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect. 124, 1504–1510 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Juarez, P. D., Hood, D. B., Song, M. A. & Ramesh, A. Use of an exposome approach to understand the effects of exposures from the natural, built, and social environments on cardio-vascular disease onset, progression, and outcomes. Front. Public Health 8, 379 (2020).

    PubMed  PubMed Central  Google Scholar 

  106. Bibli, S. I. et al. Mapping the endothelial cell S-sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function. Circulation 143, 935–948 (2021).

    CAS  PubMed  Google Scholar 

  107. Garlapati, V. et al. Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1 driven fibrotic remodeling in ischemic heart failure. J. Clin. Invest. 133, e156436 (2023).

    PubMed  PubMed Central  Google Scholar 

  108. Bayo Jimenez, M. T. et al. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic. Biol. Med. 187, 72–91 (2022).

    CAS  PubMed  Google Scholar 

  109. Babisch, W., Fromme, H., Beyer, A. & Ising, H. Increased catecholamine levels in urine in subjects exposed to road traffic noise: the role of stress hormones in noise research. Environ. Int. 26, 475–481 (2001).

    CAS  PubMed  Google Scholar 

  110. Selander, J. et al. Saliva cortisol and exposure to aircraft noise in six European countries. Environ. Health Perspect. 117, 1713–1717 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Eze, I. C. et al. Exposure to night-time traffic noise, melatonin-regulating gene variants and change in glycemia in adults. Int. J. Environ. Res. Public Health 14, 1492 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Daiber, A. et al. Redox regulatory changes of circadian rhythm by the environmental risk factors traffic noise and air pollution. Antioxid. Redox Signal. 37, 679–703 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, H. et al. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br. J. Pharmacol. 177, 5393–5412 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kroller-Schon, S. et al. Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation. Eur. Heart J. 39, 3528–3539 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Daiber, A. et al. Redox-related biomarkers in human cardiovascular disease — classical footprints and beyond. Redox Biol. 42, 101875 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Daiber, A. et al. Environmental noise induces the release of stress hormones and inflammatory signaling molecules leading to oxidative stress and vascular dysfunction — signatures of the internal exposome. Biofactors 45, 495–506 (2019).

    CAS  PubMed  Google Scholar 

  117. Herzog, J. et al. Acute exposure to nocturnal train noise induces endothelial dysfunction and pro-thromboinflammatory changes of the plasma proteome in healthy subjects. Basic. Res. Cardiol. 114, 46 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Eckrich, J. et al. Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice. Redox Biol. 46, 102063 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jones, D. P. Sequencing the exposome: a call to action. Toxicol. Rep. 3, 29–45 (2016).

    CAS  PubMed  Google Scholar 

  120. Escher, B. I. et al. From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int. 99, 97–106 (2017).

    CAS  PubMed  Google Scholar 

  121. Ren, H. et al. Direct injection ultra-performance liquid chromatography-tandem mass spectrometry for the high-throughput determination of 11 illicit drugs and metabolites in wastewater. J. Chromatogr. A 1685, 463587 (2022).

    CAS  PubMed  Google Scholar 

  122. Gonzalez-Marino, I. et al. Spatio-temporal assessment of illicit drug use at large scale: evidence from 7 years of international wastewater monitoring. Addiction 115, 109–120 (2020).

    PubMed  Google Scholar 

  123. Eze, I. C. et al. Genome-wide DNA methylation in peripheral blood and long-term exposure to source-specific transportation noise and air pollution: the SAPALDIA study. Environ. Health Perspect. 128, 67003 (2020).

    CAS  PubMed  Google Scholar 

  124. Vineis, P. et al. The exposome in practice: design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health 220, 142–151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fiorito, G. et al. Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: a prospective study in nonsmokers. Environ. Mol. Mutagen. 59, 234–246 (2018).

    CAS  PubMed  Google Scholar 

  126. Vrijens, K., Bollati, V. & Nawrot, T. S. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ. Health Perspect. 123, 399–411 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M. & Beedle, A. S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 5, 401–408 (2009).

    CAS  PubMed  Google Scholar 

  128. Ordovas, J. M. & Smith, C. E. Epigenetics and cardiovascular disease. Nat. Rev. Cardiol. 7, 510–519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lanki, T. et al. Air pollution from road traffic and systemic inflammation in adults: a cross-sectional analysis in the European ESCAPE project. Environ. Health Perspect. 123, 785–791 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Stratakis, N. et al. In utero exposure to mercury is associated with increased susceptibility to liver injury and inflammation in childhood. Hepatology 74, 1546–1559 (2021).

    CAS  PubMed  Google Scholar 

  131. Jeong, A. et al. Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environ. Int. 119, 334–345 (2018).

    CAS  PubMed  Google Scholar 

  132. Rappaport, S. M., Li, H., Grigoryan, H., Funk, W. E. & Williams, E. R. Adductomics: characterizing exposures to reactive electrophiles. Toxicol. Lett. 213, 83–90 (2012).

    CAS  PubMed  Google Scholar 

  133. Balbo, S., Turesky, R. J. & Villalta, P. W. DNA adductomics. Chem. Res. Toxicol. 27, 356–366 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Poirier, M. C., Santella, R. M. & Weston, A. Carcinogen macromolecular adducts and their measurement. Carcinogenesis 21, 353–359 (2000).

    CAS  PubMed  Google Scholar 

  135. Foraster, M. et al. Exposure to road, railway, and aircraft noise and arterial stiffness in the SAPALDIA study: annual average noise levels and temporal noise characteristics. Environ. Health Perspect. 125, 097004 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Pieters, N. et al. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis. Heart 98, 1127–1135 (2012).

    PubMed  Google Scholar 

  137. Kuntic, M. et al. Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur. Heart J. 41, 2472–2483 (2020).

    CAS  PubMed  Google Scholar 

  138. Mills, N. L. et al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur. Heart J. 32, 2660–2671 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mills, N. L. et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112, 3930–3936 (2005).

    CAS  PubMed  Google Scholar 

  140. Mills, N. L. et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N. Engl. J. Med. 357, 1075–1082 (2007).

    CAS  PubMed  Google Scholar 

  141. Wang, M. et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects. Environ. Int. 66, 97–106 (2014).

    CAS  PubMed  Google Scholar 

  142. Beelen, R. et al. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology 25, 368–378 (2014).

    PubMed  Google Scholar 

  143. Stafoggia, M. et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ. Health Perspect. 122, 919–925 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Cesaroni, G. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE project. BMJ 348, f7412 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Wolf, K. et al. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet. Health 5, e620–e632 (2021).

    PubMed  Google Scholar 

  146. Fuks, K. B. et al. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur. Heart J. 38, 983–990 (2017).

    CAS  PubMed  Google Scholar 

  147. Ronkainen, J. et al. LongITools: dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases. Environ. Epidemiol. 6, e184 (2022).

    PubMed  Google Scholar 

  148. Turner, M. C. et al. EXPOsOMICS: final policy workshop and stakeholder consultation. BMC Public Health 18, 260 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Schillemans, T. et al. Cross-sectional associations between exposure to per- and polyfluoroalkyl substances and body mass index among European teenagers in the HBM4EU aligned studies. Environ. Pollut. 316, 120566 (2023).

    CAS  PubMed  Google Scholar 

  150. Maitre, L. et al. Human Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open 8, e021311 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Vrijheid, M. et al. The Human Early-Life Exposome (HELIX): project rationale and design. Environ. Health Perspect. 122, 535–544 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Warembourg, C. et al. Early-life environmental exposures and blood pressure in children. J. Am. Coll. Cardiol. 74, 1317–1328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Vrijheid, M. et al. Early-life environmental exposures and childhood obesity: an exposome-wide approach. Environ. Health Perspect. 128, 67009 (2020).

    CAS  PubMed  Google Scholar 

  154. Warembourg, C. et al. Exposure to phthalate metabolites, phenols and organophosphate pesticide metabolites and blood pressure during pregnancy. Int. J. Hyg. Environ. Health 222, 446–454 (2019).

    CAS  PubMed  Google Scholar 

  155. Papadopoulou, E. et al. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. Environ. Int. 157, 106853 (2021).

    CAS  PubMed  Google Scholar 

  156. de Prado-Bert, P. et al. Short- and medium-term air pollution exposure, plasmatic protein levels and blood pressure in children. Environ. Res. 211, 113109 (2022).

    PubMed  Google Scholar 

  157. Gruzieva, O. et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ. Health Perspect. 125, 104–110 (2017).

    CAS  PubMed  Google Scholar 

  158. Gruzieva, O. et al. Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis. Environ. Health Perspect. 127, 57012 (2019).

    PubMed  Google Scholar 

  159. Blaauwendraad, S. M. et al. Maternal phthalate and bisphenol urine concentrations during pregnancy and early markers of arterial health in children. Environ. Health Perspect. 130, 47007 (2022).

    CAS  PubMed  Google Scholar 

  160. Vlaanderen, J. et al. Developing the building blocks to elucidate the impact of the urban exposome on cardiometabolic-pulmonary disease: the EU EXPANSE project. Environ. Epidemiol. 5, e162 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Vrijheid, M. et al. Advancing tools for human early lifecourse exposome research and translation (ATHLETE): project overview. Environ. Epidemiol. 5, e166 (2021).

    PubMed  PubMed Central  Google Scholar 

  162. Pronk, A. et al. Applying the exposome concept to working life health: the EU EPHOR project. Environ. Epidemiol. 6, e185 (2022).

    PubMed  PubMed Central  Google Scholar 

  163. Loh, M. et al. How sensors might help define the external exposome.Int. J. Environ. Res. Public Health 14, 434 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Santos, S. et al. Applying the exposome concept in birth cohort research: a review of statistical approaches. Eur. J. Epidemiol. 35, 193–204 (2020).

    PubMed  PubMed Central  Google Scholar 

  165. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Nieuwenhuijsen, M. J. New urban models for more sustainable, liveable and healthier cities post covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environ. Int. 157, 106850 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Allam, Z., Nieuwenhuijsen, M., Chabaud, D. & Moreno, C. The 15-minute city offers a new framework for sustainability, liveability, and health. Lancet Planet. Health 6, e181–e183 (2022).

    PubMed  Google Scholar 

  168. Munzel, T. et al. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur. Heart J. 39, 3543–3550 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Di, Q. et al. Air pollution and mortality in the medicare population. N. Engl. J. Med. 376, 2513–2522 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sillé, F. C. M. et al. The exposome – a new approach for risk assessment. ALTEX 37, 3–23 (2020).

    PubMed  Google Scholar 

  171. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Vohra, K. et al. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: results from GEOS-Chem. Environ. Res. 195, 110754 (2021).

    CAS  PubMed  Google Scholar 

  173. Huang, K. et al. Long-term exposure to fine particulate matter and hypertension incidence in China. Hypertension 73, 1195–1201 (2019).

    CAS  PubMed  Google Scholar 

  174. Mount Sinai. Pollution leading cause of death. https://www.mountsinai.org/about/newsroom/2017/pollution-leading-cause-of-death (2017).

  175. The World Counts. Deaths from dirty water and related diseases. https://www.theworldcounts.com/challenges/planet-earth/freshwater/deaths-from-dirty-water (2023).

  176. Yousefi, M. et al. Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran. Biol. Trace Elem. Res. 185, 282–288 (2018).

    CAS  PubMed  Google Scholar 

  177. WHO/ILO. Almost 2 million people die from work-related causes each year. https://www.who.int/news/item/17-09-2021-who-ilo-almost-2-million-people-die-from-work-related-causes-each-year (2021).

  178. Bulka, C. M. et al. Association of occupational exposures with cardiovascular disease among US Hispanics/Latinos. Heart 105, 439–448 (2019).

    CAS  PubMed  Google Scholar 

  179. Ericson, B. et al. The global burden of lead toxicity attributable to informal used lead-acid battery sites. Ann. Glob. Health 82, 686–699 (2016).

    PubMed  Google Scholar 

  180. WHO. Almost 1 million people die every year due to lead poisoning, with more children suffering long-term health effects. https://www.who.int/news/item/23-10-2022-almost-1-million-people-die-every-year-due-to-lead-poisoning--with-more-children-suffering-long-term-health-effects (2022).

  181. Jain, N. B. et al. Lead levels and ischemic heart disease in a prospective study of middle-aged and elderly men: the VA Normative Aging Study. Environ. Health Perspect. 115, 871–875 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Munzel, T. et al. The adverse effects of environmental noise exposure on oxidative stress and cardiovascular risk. Antioxid. Redox Signal. 28, 873–908 (2018).

    PubMed  PubMed Central  Google Scholar 

  183. Inesta-Vaquera, F. et al. Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity. Environ. Pollut. 270, 116053 (2021).

    CAS  PubMed  Google Scholar 

  184. Muthusamy, S., Peng, C. & Ng, J. C. Effects of multi-component mixtures of polyaromatic hydrocarbons and heavy metal/loid(s) on Nrf2-antioxidant response element (ARE) pathway in ARE reporter-HepG2 cells. Toxicol. Res. 5, 1160–1171 (2016).

    CAS  Google Scholar 

  185. Sen, P. et al. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J. Hepatol. 76, 283–293 (2022).

    CAS  PubMed  Google Scholar 

  186. Frohn, L. et al. Evaluation of multidecadal high-resolution atmospheric chemistry-transport modelling for exposure assessments in the continental Nordic countries. Atmos. Environ. 290, 119334 (2022).

    CAS  Google Scholar 

  187. Ketzel, M. et al. Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979 to 2018 - Part 2: Local and street scale modelling and evaluation. Atmos. Environ. 264, 118633 (2021).

    CAS  Google Scholar 

  188. European Environment Agency. Corine exposure maps: Greespace Denmark 2011. https://www.eea.europa.eu/data-and-maps/figures/corine-land-cover-2006-by-country-1/denmark (2011).

  189. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Google Scholar 

  190. Guengerich, F. P. The Environmental Genome Project: functional analysis of polymorphisms. Environ. Health Perspect. 106, 365–368 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Taylor, J. A. et al. The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res. 58, 3603–3610 (1998).

    CAS  PubMed  Google Scholar 

  192. Hartiala, J. A., Hilser, J. R., Biswas, S., Lusis, A. J. & Allayee, H. Gene-environment interactions for cardiovascular disease. Curr. Atheroscler. Rep. 23, 75 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. United States Environmental Protection Agency. Summary of the Toxic Substances Control Act 2016. https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act (2022).

  194. Muir, D. C. & Howard, P. H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40, 7157–7166 (2006).

    CAS  PubMed  Google Scholar 

  195. Neveu, V. et al. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 45, D979–D984 (2017).

    CAS  PubMed  Google Scholar 

  196. Wishart, D. et al. T3DB: the toxic exposome database. Nucleic Acids Res. 43, D928–D934 (2015).

    CAS  PubMed  Google Scholar 

  197. Vermeulen, R., Schymanski, E. L., Barabasi, A. L. & Miller, G. W. The exposome and health: Where chemistry meets biology. Science 367, 392–396 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.M. and A.D. received support from vascular biology research grants from the Boehringer Ingelheim Foundation for the collaborative research group “Novel and neglected cardiovascular risk factors: molecular mechanisms and therapeutics” and through continuous research support from the Foundation Heart of Mainz. M.S. received support from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No 874753 (REMEDIA). T.M. is a principal investigator and A.D. is a scientist of the DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to the discussion of content and wrote the manuscript. T.M., M.S., O.H., M.N. and A.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thomas Münzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Mark Miller and George Thurston for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Exposome-Explorer: http://exposome-explorer.iarc.fr/

T3DB: www.t3db.ca

The European Human Exposome Network (EHEN): https://www.humanexposome.eu/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münzel, T., Sørensen, M., Hahad, O. et al. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 20, 651–669 (2023). https://doi.org/10.1038/s41569-023-00873-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00873-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research