Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obstructive sleep apnoea heterogeneity and cardiovascular disease

Abstract

Obstructive sleep apnoea (OSA), characterized by recurrent periods of upper airway obstruction and intermittent hypoxaemia, is prevalent in patients with cardiovascular disease (CVD), and is therefore important to consider in the prevention and management of CVD. Observational studies indicate that OSA is a risk factor for incident hypertension, poorly controlled blood pressure, stroke, myocardial infarction, heart failure, cardiac arrhythmias, sudden cardiac death and all-cause death. However, clinical trials have not provided consistent evidence that treatment with continuous positive airway pressure (CPAP) improves cardiovascular outcomes. These overall null findings might be explained by limitations in trial design and low levels of adherence to CPAP. Studies have also been limited by the failure to consider OSA as a heterogeneous disorder that consists of multiple subtypes resulting from variable contributions from anatomical, physiological, inflammatory and obesity-related risk factors, and resulting in different physiological disturbances. Novel markers of sleep apnoea-associated hypoxic burden and cardiac autonomic response have emerged as predictors of OSA-related susceptibility to adverse health outcomes and treatment response. In this Review, we summarize our understanding of the shared risk factors and causal links between OSA and CVD and emerging knowledge on the heterogeneity of OSA. We discuss the varied mechanistic pathways that result in CVD that also vary across subgroups of OSA, as well as the potential role of new biomarkers for CVD risk stratification.

Key points

  • Obstructive sleep apnoea (OSA) is a heterogeneous disorder that consists of multiple subtypes that result from variable contributions from anatomical, physiological, inflammatory and obesity-related risk factors.

  • OSA-related risk of cardiovascular disease (CVD) varies with age, sex, symptom profile and severity of OSA-related physiological disturbance.

  • OSA results in a range of physiological disturbances that are not well characterized by the apnoea–hypopnoea index and which are associated with increased risk of CVD.

  • Existing clinical trials have not enriched enrolment to target subgroups of patients who are most at risk of CVD or most likely to respond to intervention.

  • Quantitative measures of apnoea-related hypoxic burden, cardiac autonomic response and respiratory arousal intensity are emerging markers of increased risk of CVD and are potential targets for risk stratification and intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity of OSA, leading to various pathways that increase the risk of cardiovascular disease.
Fig. 2: Polysomnographic features of severe obstructive sleep apnoea.
Fig. 3: AHI and endotypic features of obstructive sleep apnoea vary according to BMI, age, sex and race/ethnicity.

Similar content being viewed by others

References

  1. American Academy of Sleep Medicine. International classification of sleep disorders 3rd edn, 53–54 (American Academy of Sleep Medicine, 2014).

  2. Zhao, Y. Y. et al. Effect of manual editing of total recording time: implications for home sleep apnea testing. J. Clin. Sleep. Med. 13, 121–126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Senaratna, C. V. et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep. Med. Rev. 34, 70–81 (2017). This systematic review of 24 studies estimated that the prevalence of OSA, when defined as an AHI of ≥5, varies from 9% to 38%, whereas when defined as an AHI of >15, the prevalence of OSA varies from 6% to 17%.

    Article  PubMed  Google Scholar 

  4. Young, T. et al. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328, 1230–1235 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Redline, S. & Young, T. Epidemiology and natural history of obstructive sleep apnea. Ear Nose Throat J. 72, 24–26 (1993).

    Article  Google Scholar 

  6. Cowie, M. R. et al. Sleep-disordered breathing in heart failure – current state of the art. Card. Fail. Rev. 1, 16–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heinzer, R. et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir. Med. 3, 310–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, T. et al. Type of menopause, age at menopause, and risk of developing obstructive sleep apnea in postmenopausal women. Am. J. Epidemiol. 187, 1370–1379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Billings, M. E. et al. Disparities in sleep health and potential intervention models: a focused review. Chest 159, 1232–1240 (2021). This review of disparities in sleep health summarizes the high prevalence of undiagnosed OSA in racial and ethnic minority populations and factors associated with under-treatment of OSA.

    Article  PubMed  Google Scholar 

  10. Javaheri, S. et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J. Am. Coll. Cardiol. 69, 841–858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Owens, R. L. et al. An integrative model of physiological traits can be used to predict obstructive sleep apnea and response to non positive airway pressure therapy. Sleep 38, 961–970 (2015). This study generated endotypic measurements of OSA in 57 individuals with or without OSA and showed that an integrative model that combines information on anatomy and physiological determinants of airway stability better predict the presence of OSA and treatment responses than single traits.

    PubMed  PubMed Central  Google Scholar 

  12. Eckert, D. J. & Malhotra, A. Pathophysiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 144–153 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. White, D. P. & Younes, M. K. Obstructive sleep apnea. Compr. Physiol. 2, 2541–2594 (2012).

    Article  PubMed  Google Scholar 

  14. Alex, R. M. et al. Within-night repeatability and long-term consistency of sleep apnea endotypes: the multi-ethnic study of atherosclerosis and osteoporotic fractures in men study. Sleep 45, zsac129 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwab, R. J. et al. Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 152, 1673–1689 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Trudo, F. J. et al. State-related changes in upper airway caliber and surrounding soft-tissue structures in normal subjects. Am. J. Respir. Crit. Care Med. 158, 1259–1270 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Wellman, A. et al. Ventilatory control and airway anatomy in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 170, 1225–1232 (2004).

    Article  PubMed  Google Scholar 

  18. Younes, M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 169, 623–633 (2004).

    Article  PubMed  Google Scholar 

  19. Badr, M. S., Toiber, F., Skatrud, J. B. & Dempsey, J. Pharyngeal narrowing/occlusion during central sleep apnea. J. Appl. Physiol. 78, 1806–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Dempsey, J. A., Veasey, S. C., Morgan, B. J. & O’Donnell, C. P. Pathophysiology of sleep apnea. Physiol. Rev. 90, 47–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Somers, V. K., Dyken, M. E., Clary, M. P. & Abboud, F. M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Invest. 96, 1897–1904 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottlieb, D. J. & Punjabi, N. M. Diagnosis and management of obstructive sleep apnea: a review. JAMA 323, 1389–1400 (2020).

    Article  PubMed  Google Scholar 

  23. Kohler, M. & Stradling, J. R. Mechanisms of vascular damage in obstructive sleep apnea. Nat. Rev. Cardiol. 7, 677–685 (2010).

    Article  PubMed  Google Scholar 

  24. Narkiewicz, K., Wolf, J., Lopez-Jimenez, F. & Somers, V. K. Obstructive sleep apnea and hypertension. Curr. Cardiol. Rep. 7, 435–440 (2005).

    Article  PubMed  Google Scholar 

  25. Panza, G. S., Puri, S., Lin, H.-S., Badr, M. S. & Mateika, J. H. Daily exposure to mild intermittent hypoxia reduces blood pressure in male patients with obstructive sleep apnea and hypertension. Am. J. Respir. Crit. Care Med. 205, 949–958 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Javaheri, S. et al. Slow-wave sleep is associated with incident hypertension: the Sleep Heart Health Study. Sleep 41, zsx179 (2018).

    Article  PubMed  Google Scholar 

  27. Fung, M. M. et al. Decreased slow wave sleep increases risk of developing hypertension in elderly men. Hypertension 58, 596–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Mokhlesi, B. et al. Obstructive sleep apnea during REM sleep and hypertension. results of the Wisconsin Sleep Cohort. Am. J. Respir. Crit. Care Med. 190, 1158–1167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mokhlesi, B. et al. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: a longitudinal analysis of the Wisconsin Sleep Cohort. Thorax 70, 1062–1069 (2015).

    Article  PubMed  Google Scholar 

  30. Grover-Páez, F. & Zavalza-Gómez, A. B. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res. Clin. Pract. 84, 1–10 (2009).

    Article  PubMed  Google Scholar 

  31. Hoyos, C. M., Melehan, K. L., Liu, P. Y., Grunstein, R. R. & Phillips, C. L. Does obstructive sleep apnea cause endothelial dysfunction? A critical review of the literature. Sleep. Med. Rev. 20, 15–26 (2015).

    Article  PubMed  Google Scholar 

  32. Ip, M. S. M., Tse, H.-F., Lam, B., Tsang, K. W. T. & Lam, W.-K. Endothelial function in obstructive sleep apnea and response to treatment. Am. J. Respir. Crit. Care Med. 169, 348–353 (2004).

    Article  PubMed  Google Scholar 

  33. Nieto, F. J., Herrington, D. M., Redline, S., Benjamin, E. J. & Robbins, J. A. Sleep apnea and markers of vascular endothelial function in a large community sample of older adults. Am. J. Respir. Crit. Care Med. 169, 354–360 (2004).

    Article  PubMed  Google Scholar 

  34. Ip, M. S. et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am. J. Respir. Crit. Care Med. 162, 2166–2171 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep. Med. Rev. 20, 27–45 (2015).

    Article  PubMed  Google Scholar 

  36. Alonso-Fernández, A. et al. Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax 64, 581–586 (2009).

    Article  PubMed  Google Scholar 

  37. Huang, Z.-W. et al. Association of continuous positive airway pressure with F2-isoprostanes in adults with obstructive sleep apnea: a meta-analysis. Sleep. Breath. 23, 1115–1122 (2019).

    Article  PubMed  Google Scholar 

  38. Gao, S. et al. Complement promotes endothelial von Willebrand factor and angiopoietin-2 release in obstructive sleep apnea. Sleep 44, zsaa286 (2021). This study demonstrated that intermittent hypoxia causes impaired endothelial complement inhibition, resulting in the release of prothrombotic and pro-inflammatory mediators; statins reverse these effects in a CD59-dependent manner.

    Article  PubMed  Google Scholar 

  39. Calvin, A. D., Albuquerque, F. N., Lopez-Jimenez, F. & Somers, V. K. Obstructive sleep apnea, inflammation, and the metabolic syndrome. Metab. Syndr. Relat. Disord. 7, 271–278 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ma, L., Zhang, J. & Liu, Y. Roles and mechanisms of obstructive sleep apnea-hypopnea syndrome and chronic intermittent hypoxia in atherosclerosis: evidence and prospective. Oxid. Med. Cell. Longev. 2016, 8215082 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Baessler, A. et al. Treatment for sleep apnea by continuous positive airway pressure improves levels of inflammatory markers – a meta-analysis. J. Inflamm. 10, 13 (2013).

    Article  CAS  Google Scholar 

  42. Geovanini, G. R. et al. Obstructive sleep apnea associates with elevated leukocytes and markers of inflammation in the multi-ethnic study of atherosclerosis (MESA) [abstract]. Circulation 134, A13147 (2016).

    Google Scholar 

  43. Ryan, S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J. Physiol. 595, 2423–2430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murphy, A. M. et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur. Respir. J. 49, 1601731 (2017).

    Article  PubMed  Google Scholar 

  45. Shechter, A., Grandner, M. A. & St-Onge, M.-P. The role of sleep in the control of food intake. Am. J. Lifestyle Med. 8, 371–374 (2014).

    Article  PubMed  Google Scholar 

  46. Zhu, B., Shi, C., Park, C. G., Zhao, X. & Reutrakul, S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep. Med. Rev. 45, 18–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Baud, M. O., Magistretti, P. J. & Petit, J.-M. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J. Sleep. Res. 22, 3–12 (2013).

    Article  PubMed  Google Scholar 

  48. Logan, A. G. et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J. Hypertens. 19, 2271–2277 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Hou, H. et al. Association of obstructive sleep apnea with hypertension: a systematic review and meta-analysis. J. Glob. Health 8, 010405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnson, D. A. et al. Association between sleep apnea and blood pressure control among blacks. Circulation 139, 1275–1284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seif, F. et al. Obstructive sleep apnea and diurnal nondipping hemodynamic indices in patients at increased cardiovascular risk. J. Hypertens. 32, 267–275 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yano, Y. & Kario, K. Nocturnal blood pressure and cardiovascular disease: a review of recent advances. Hypertens. Res. 35, 695–701 (2012).

    Article  PubMed  Google Scholar 

  53. Booth, J. N. et al. Race and sex differences in asleep blood pressure: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J. Clin. Hypertens. 21, 184–192 (2019).

    Google Scholar 

  54. Pengo, M. F. et al. Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis. Eur. Respir. J. 55, 1901945 (2020). This study identified heterogeneity in the response of BP to CPAP treatment, notably BP reductions with CPAP in individuals aged <60 years, those with more severe baseline hypoxaemia and those with higher BP.

    Article  PubMed  Google Scholar 

  55. Blood Pressure Lowering Treatment Trialists’ Collaboration. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: an individual participant-level data meta-analysis. Lancet 398, 1053–1064 (2021).

    Article  Google Scholar 

  56. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  PubMed  Google Scholar 

  57. Liu, L., Cao, Q., Guo, Z. & Dai, Q. Continuous positive airway pressure in patients with obstructive sleep apnea and resistant hypertension: a meta-analysis of randomized controlled trials. J. Clin. Hypertens. 18, 153–158 (2016).

    Article  Google Scholar 

  58. Navarro-Soriano, C. et al. Effect of continuous positive airway pressure in patients with true refractory hypertension and sleep apnea: a post-hoc intention-to-treat analysis of the HIPARCO randomized clinical trial. J. Hypertens. 37, 1269–1275 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Gottlieb, D. J. et al. CPAP versus oxygen in obstructive sleep apnea. N. Engl. J. Med. 370, 2276–2285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Warchol-Celinska, E. et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase II trial. Hypertension 72, 381–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Pépin, J.-L. et al. Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea. Am. J. Respir. Crit. Care Med. 182, 954–960 (2010).

    Article  PubMed  Google Scholar 

  62. Thunström, E. et al. Neuroendocrine and inflammatory responses to losartan and continuous positive airway pressure in patients with hypertension and obstructive sleep apnea. a randomized controlled trial. Ann. Am. Thorac. Soc. 13, 2002–2011 (2016).

    Article  PubMed  Google Scholar 

  63. Thunström, E., Manhem, K., Rosengren, A. & Peker, Y. Blood pressure response to losartan and continuous positive airway pressure in hypertension and obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 193, 310–320 (2016).

    Article  PubMed  Google Scholar 

  64. Fatureto-Borges, F. et al. Does obstructive sleep apnea influence blood pressure and arterial stiffness in response to antihypertensive treatment? Hypertension 72, 399–407 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Lombardi, C., Pengo, M. F. & Parati, G. Systemic hypertension in obstructive sleep apnea. J. Thorac. Dis. 10, S4231–S4243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khurshid, K. et al. Effect of antihypertensive medications on the severity of obstructive sleep apnea: a systematic review and meta-analysis. J. Clin. Sleep. Med. 12, 1143–1151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gleeson, M. & McNicholas, W. T. Bidirectional relationships of comorbidity with obstructive sleep apnoea. Eur. Respir. Rev. 31, 210256 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Reutrakul, S. & Mokhlesi, B. Obstructive sleep apnea and diabetes: a state of the art review. Chest 152, 1070–1086 (2017). This article reviews the mechanisms by which OSA can influence type 2 diabetes and glucose metabolism dysregulation, and the effect of OSA treatment on metabolism.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huang, T. et al. A population-based study of the bidirectional association between obstructive sleep apnea and type 2 diabetes in three prospective U.S. cohorts. Diabetes Care 41, 2111–2119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, T. et al. Insulin resistance, hyperglycemia, and risk of developing obstructive sleep apnea in men and women in the United States. Ann. Am. Thorac. Soc. 19, 1740–1749 (2022).

    Article  PubMed  Google Scholar 

  71. Tahrani, A. A. et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 186, 434–441 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Altaf, Q. A. et al. Obstructive sleep apnea and retinopathy in patients with type 2 diabetes. A longitudinal study. Am. J. Respir. Crit. Care Med. 196, 892–900 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stadler, S. et al. Association of sleep-disordered breathing with diabetes-associated kidney disease. Ann. Med. 49, 487–495 (2017).

    Article  PubMed  Google Scholar 

  74. Ioachimescu, O. C. et al. VAMONOS (Veterans Affairs’ Metabolism, Obstructed and Non-Obstructed Sleep) study: effects of CPAP therapy on glucose metabolism in patients with obstructive sleep apnea. J. Clin. Sleep. Med. 13, 455–466 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen, L. et al. Continuous positive airway pressure and diabetes risk in sleep apnea patients: a systemic review and meta-analysis. Eur. J. Intern. Med. 39, 39–50 (2017).

    Article  PubMed  Google Scholar 

  76. Labarca, G., Reyes, T., Jorquera, J., Dreyse, J. & Drake, L. CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: systematic review and meta-analysis. Clin. Respir. J. 12, 2361–2368 (2018).

    Article  PubMed  Google Scholar 

  77. Iftikhar, I. H., Khan, M. F., Das, A. & Magalang, U. J. Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann. Am. Thorac. Soc. 10, 115–120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Loffler, K. A. et al. Continuous positive airway pressure treatment, glycemia, and diabetes risk in obstructive sleep apnea and comorbid cardiovascular disease. Diabetes Care 43, 1859–1867 (2020).

    Article  PubMed  Google Scholar 

  79. Pamidi, S. et al. Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. a randomized controlled trial. Am. J. Respir. Crit. Care Med. 192, 96–105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kwon, Y. et al. Obstructive sleep apnea and progression of coronary artery calcium: the multi-ethnic study of atherosclerosis study. J. Am. Heart Assoc. 3, e001241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mak, G. S., Kern, M. J. & Patel, P. M. Influence of obstructive sleep apnea and treatment with continuous positive airway pressure on fractional flow reserve measurements for coronary lesion assessment. Catheter. Cardiovasc. Interv. 75, 207–213 (2010).

    Article  PubMed  Google Scholar 

  82. Querejeta Roca, G. & Shah, A. M. Sleep disordered breathing: hypertension and cardiac structure and function. Curr. Hypertens. Rep. 17, 91 (2015).

    Article  PubMed  Google Scholar 

  83. Monahan, K., Hodges, E., Agrawal, A., Upender, R. & Abraham, R. L. Signal-averaged P wave area increases during respiratory events in patients with paroxysmal atrial fibrillation and obstructive sleep apnea. Sleep. Breath. 23, 1275–1281 (2019).

    Article  PubMed  Google Scholar 

  84. Monahan, K. et al. Triggering of nocturnal arrhythmias by sleep-disordered breathing events. J. Am. Coll. Cardiol. 54, 1797–1804 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kwon, Y. et al. Sleep-disordered breathing and daytime cardiac conduction abnormalities on 12-lead electrocardiogram in community-dwelling older men. Sleep. Breath. 20, 1161–1168 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Redline, S. et al. Obstructive sleep apnea-hypopnea and incident stroke: the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 182, 269–277 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yeboah, J. et al. Association between sleep apnea, snoring, incident cardiovascular events and all-cause mortality in an adult population: MESA. Atherosclerosis 219, 963–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gami, A. S. et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J. Am. Coll. Cardiol. 62, 610–616 (2013).

    Article  PubMed  Google Scholar 

  89. Campos-Rodriguez, F. et al. Role of sleep apnea and continuous positive airway pressure therapy in the incidence of stroke or coronary heart disease in women. Am. J. Respir. Crit. Care Med. 189, 1544–1550 (2014).

    Article  PubMed  Google Scholar 

  90. Mazaki, T. et al. Impact of sleep-disordered breathing on long-term outcomes in patients with acute coronary syndrome who have undergone primary percutaneous coronary intervention. J. Am. Heart Assoc. 5, e003270 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nakashima, H. et al. Effects of moderate-to-severe obstructive sleep apnea on the clinical manifestations of plaque vulnerability and the progression of coronary atherosclerosis in patients with acute coronary syndrome. Eur. Heart J. Acute Cardiovasc. Care 4, 75–84 (2015).

    Article  PubMed  Google Scholar 

  92. Wu, X. et al. Treatment of OSA reduces the risk of repeat revascularization after percutaneous coronary intervention. Chest 147, 708–718 (2015).

    Article  PubMed  Google Scholar 

  93. Lee, C.-H. et al. Obstructive sleep apnea and cardiovascular events after percutaneous coronary intervention. Circulation 133, 2008–2017 (2016).

    Article  PubMed  Google Scholar 

  94. Buchner, S. et al. Impact of sleep-disordered breathing on myocardial salvage and infarct size in patients with acute myocardial infarction. Eur. Heart J. 35, 192–199 (2014).

    Article  PubMed  Google Scholar 

  95. Shah, N. et al. Obstructive sleep apnea and acute myocardial infarction severity: ischemic preconditioning? Sleep. Breath. 17, 819–826 (2013).

    Article  PubMed  Google Scholar 

  96. Peker, Y., Carlson, J. & Hedner, J. Increased incidence of coronary artery disease in sleep apnoea: a long-term follow-up. Eur. Respir. J. 28, 596–602 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Campos-Rodriguez, F. et al. Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: a cohort study. Ann. Intern. Med. 156, 115–122 (2012).

    Article  PubMed  Google Scholar 

  98. Milleron, O. et al. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study. Eur. Heart J. 25, 728–734 (2004).

    Article  PubMed  Google Scholar 

  99. Marin, J. M., Carrizo, S. J., Vicente, E. & Agusti, A. G. N. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365, 1046–1053 (2005).

    Article  PubMed  Google Scholar 

  100. Gervès-Pinquié, C. et al. Positive airway pressure adherence, mortality, and cardiovascular events in patients with sleep apnea. Am. J. Respir. Crit. Care Med. 206, 1393–1404 (2022). This study showed that, among patients with OSA treated with CPAP, there is a dose–response reduction in major acute cardiovascular events in association with the level of adherence to CPAP.

    Article  PubMed  Google Scholar 

  101. McEvoy, R. D. et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 375, 919–931 (2016).

    Article  PubMed  Google Scholar 

  102. Yu, J. et al. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis. JAMA 318, 156–166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Peker, Y. et al. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. Am. J. Respir. Crit. Care Med. 194, 613–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Xie, C., Zhu, R., Tian, Y. & Wang, K. Association of obstructive sleep apnoea with the risk of vascular outcomes and all-cause mortality: a meta-analysis. BMJ Open 7, e013983 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Valham, F. et al. Increased risk of stroke in patients with coronary artery disease and sleep apnea: a 10-year follow-up. Circulation 118, 955–960 (2008).

    Article  PubMed  Google Scholar 

  106. Kim, Y., Koo, Y. S., Lee, H. Y. & Lee, S.-Y. Can continuous positive airway pressure reduce the risk of stroke in obstructive sleep apnea patients? A systematic review and meta-analysis. PLoS ONE 11, e0146317 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Javaheri, S., Martinez-Garcia, M. A., Campos-Rodriguez, F., Muriel, A. & Peker, Y. Continuous positive airway pressure adherence for prevention of major adverse cerebrovascular and cardiovascular events in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 201, 607–610 (2020).

    Article  PubMed  Google Scholar 

  108. Brill, A.-K. et al. CPAP as treatment of sleep apnea after stroke: a meta-analysis of randomized trials. Neurology 90, e1222–e1230 (2018).

    Article  PubMed  Google Scholar 

  109. Drager, L. F. et al. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation 136, 1840–1850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Javaheri, S., Sharma, R. K., Bluemke, D. A. & Redline, S. Association between central sleep apnea and left ventricular structure: the multi-ethnic study of atherosclerosis. J. Sleep. Res. 26, 477–480 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhao, Y. Y. et al. Associations between sleep apnea and subclinical carotid atherosclerosis: the multi-ethnic study of atherosclerosis. Stroke 50, 3340–3346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gottlieb, D. J. et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the Sleep Heart Health Study. Circulation 122, 352–360 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. McMillan, A. & Morrell, M. J. Sleep disordered breathing at the extremes of age: the elderly. Breathe 12, 50–60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sands, S. A. et al. Pathophysiology underlying demographic and obesity determinants of sleep apnea severity. Ann. Am. Thorac. Soc. 20, 440–449 (2023). This study across three independent cohorts showed that endotypic measures of OSA (collapsibility, loop gain and arousal threshold) vary by age, sex, BMI and race/ethnicity.

    Article  PubMed  Google Scholar 

  115. Faulx, M. D. et al. Sex influences endothelial function in sleep-disordered breathing. Sleep 27, 1113–1120 (2004).

    Article  PubMed  Google Scholar 

  116. Korcarz, C. E. et al. Combined effects of sleep disordered breathing and metabolic syndrome on endothelial function: the Wisconsin Sleep Cohort study. Sleep 37, 1707–1713 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. O’Connor, G. T. et al. Prospective study of sleep-disordered breathing and hypertension: the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 179, 1159–1164 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Roca, G. Q. et al. Sex-specific association of sleep apnea severity with subclinical myocardial injury, ventricular hypertrophy, and heart failure risk in a community-dwelling cohort: the Atherosclerosis Risk in Communities – Sleep Heart Health Study. Circulation 132, 1329–1337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Donovan, L. M. et al. Risk of cardiovascular disease related to smoking is greater among women with sleep-disordered breathing. J. Clin. Sleep. Med. 14, 1929–1935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Singh, B. et al. CPAP treatment and cardiovascular prevention: an alternate study design that includes excessively sleepy patients. Chest 157, 1046–1047 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mazzotti, D. R. et al. Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes. Am. J. Respir. Crit. Care Med. 200, 493–506 (2019). This secondary analysis of data from the Sleep Heart Health Study showed that a subgroup defined by the presence of daytime sleepiness and moderate OSA had an increased incidence of CVD events compared with subgroups with other symptom profiles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Quan, W. et al. High risk characteristics for recurrent cardiovascular events among patients with obstructive sleep apnoea in the SAVE study. eClinicalMedicine 2–3, 59–65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ong, J. C., Crawford, M. R. & Wallace, D. M. Sleep apnea and insomnia: emerging evidence for effective clinical management. Chest 159, 2020–2028 (2021).

    Article  PubMed  Google Scholar 

  124. Lechat, B. et al. Co-morbid insomnia and obstructive sleep apnoea is associated with all-cause mortality. Eur. Respir. J. 14, 1817–1828 (2022). This secondary analysis of data from the Sleep Heart Health Study showed that COMISA is associated with a higher prevalence of hypertension and CVD at baseline and a higher mortality than in the absence of COMISA.

    Google Scholar 

  125. Lechat, B. et al. All-cause mortality in people with co-occurring insomnia symptoms and sleep apnea: analysis of the Wisconsin Sleep Cohort. Nat. Sci. Sleep. 14, 1817–1828 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Y. et al. Genetic determinants of cardiometabolic and pulmonary phenotypes and obstructive sleep apnoea in HCHS/SOL. eBioMedicine 84, 104288 (2022). This study from the Hispanic Community Health Study/Study of Latinos used polygenic risk scores, genetic correlations and Mendelian randomization to demonstrate a significant genetic overlap between OSA and multiple cardiovascular and pulmonary phenotypes, with some associations consistent with causal associations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Navarrete-Opazo, A. & Mitchell, G. S. Therapeutic potential of intermittent hypoxia: a matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1181–R1197 (2014). This study described approaches to define the specific characteristics of intermittent hypoxia and the beneficial effects of low-dose intermittent hypoxaemia on multiple physiological processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Goodman, M. O. et al. Pathway-specific polygenic risk scores (PRS) identify OSA-related pathways differentially moderating genetic susceptibility to CAD. Circ. Genom. Precis. Med. 15, e003535 (2022). This study from the UK Biobank generated pathway-specific polygenic risk scores and showed that pathways that respond to hypoxia interact with OSA to modify the risk of CVD.

    Article  CAS  PubMed  Google Scholar 

  129. Martinez-Garcia, M. A., Sánchez-de-la-Torre, M., White, D. P. & Azarbarzin, A. Hypoxic burden in obstructive sleep apnea: present and future. Arch. Bronconeumol. https://doi.org/10.1016/j.arbres.2022.08.009 (2022).

    Article  PubMed  Google Scholar 

  130. Hajipour, M. et al. Association of alternative polysomnographic features with patient outcomes in obstructive sleep apnea: a systematic review. J. Clin. Sleep. Med. 19, 225–242 (2023).

    Article  PubMed  Google Scholar 

  131. Azarbarzin, A., Sands, S. A., Taranto-Montemurro, L., Redline, S. & Wellman, A. Hypoxic burden captures sleep apnoea-specific nocturnal hypoxaemia. Eur. Heart J. 40, 2989–2990 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kulkas, A. et al. Novel parameters for evaluating severity of sleep disordered breathing and for supporting diagnosis of sleep apnea-hypopnea syndrome. J. Med. Eng. Technol. 37, 135–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Cao, W., Luo, J., Huang, R. & Xiao, Y. The association between sleep breathing impairment index and cardiovascular risk in male patients with obstructive sleep apnea. Nat. Sci. Sleep. 14, 53–60 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Azarbarzin, A. et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur. Heart J. 40, 1149–1157 (2019). This study describes the derivation of a summary measure of sleep apnoea-associated hypoxic burden and shows its capacity to predict mortality, even after considering the AHI.

    Article  PubMed  Google Scholar 

  135. Azarbarzin, A. et al. The sleep apnea-specific hypoxic burden predicts incident heart failure. Chest 158, 739–750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Trzepizur, W. et al. Sleep apnea-specific hypoxic burden, symptom subtypes, and risk of cardiovascular events and all-cause mortality. Am. J. Respir. Crit. Care Med. 205, 108–117 (2022).

    Article  PubMed  Google Scholar 

  137. Kim, J. S. et al. Association of novel measures of sleep disturbances with blood pressure: the Multi-Ethnic Study of Atherosclerosis. Thorax 75, 57–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Jackson, C. L. et al. Multiple, objectively measured sleep dimensions including hypoxic burden and chronic kidney disease: findings from the Multi-Ethnic Study of Atherosclerosis. Thorax 76, 704–713 (2021).

    Article  PubMed  Google Scholar 

  139. Dingli, K. et al. Electroencephalographic spectral analysis: detection of cortical activity changes in sleep apnoea patients. Eur. Respir. J. 20, 1246–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Jordan, A. S. et al. Termination of respiratory events with and without cortical arousal in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 184, 1183–1191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Azarbarzin, A., Ostrowski, M., Moussavi, Z., Hanly, P. & Younes, M. Contribution of arousal from sleep to postevent tachycardia in patients with obstructive sleep apnea. Sleep 36, 881–889 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Azarbarzin, A. et al. The sleep apnea-specific pulse-rate response predicts cardiovascular morbidity and mortality. Am. J. Respir. Crit. Care Med. 203, 1546–1555 (2021). In this study, a heightened heart rate response to apnoeas and hypopnoeas (ΔHR) predicted incident CVD and mortality in two independent cohorts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Azarbarzin, A. et al. Cardiovascular benefit of continuous positive airway pressure in adults with coronary artery disease and obstructive sleep apnea without excessive sleepiness. Am. J. Respir. Crit. Care Med. 206, 767–774 (2022).

    Article  PubMed  Google Scholar 

  144. Azarbarzin, A., Ostrowski, M., Hanly, P. & Younes, M. Relationship between arousal intensity and heart rate response to arousal. Sleep 37, 645–653 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Amatoury, J. et al. Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep 39, 2091–2100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Azarbarzin, A. et al. Arousal responses during overnight polysomnography and their reproducibility in healthy young adults. Sleep 38, 1313–1321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Barbé, F. et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA 307, 2161–2168 (2012).

    Article  PubMed  Google Scholar 

  148. Craig, S. E. et al. Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial. Thorax 67, 1090–1096 (2012).

    Article  PubMed  Google Scholar 

  149. McMillan, A. et al. Continuous positive airway pressure in older people with obstructive sleep apnoea syndrome (PREDICT): a 12-month, multicentre, randomised trial. Lancet Respir. Med. 2, 804–812 (2014).

    Article  PubMed  Google Scholar 

  150. Huang, Z. et al. Long-term effects of continuous positive airway pressure on blood pressure and prognosis in hypertensive patients with coronary heart disease and obstructive sleep apnea: a randomized controlled trial. Am. J. Hypertens. 28, 300–306 (2015).

    Article  PubMed  Google Scholar 

  151. Parra, O. et al. Efficacy of continuous positive airway pressure treatment on 5-year survival in patients with ischaemic stroke and obstructive sleep apnea: a randomized controlled trial. J. Sleep. Res. 24, 47–53 (2015).

    Article  PubMed  Google Scholar 

  152. Sánchez-de-la-Torre, M. et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir. Med. 8, 359–367 (2020).

    Article  PubMed  Google Scholar 

  153. Blanchard, M. et al. Hypoxic burden and heart rate variability predict stroke incidence in sleep apnoea. Eur. Respir. J. 57, 2004022 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.R. acknowledges support from the National Institutes of Health (grant HL135818). A.A. reports grant support from the National Institutes of Health and the American Academy of Sleep Medicine Foundation. Y.P. acknowledges institutional grants from the ResMed Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Susan Redline.

Ethics declarations

Competing interests

S.R. reports receipt of consulting funds from Apnimed, Eli Lilly and Jazz Pharm. A.A. receives grant support from Somnifix and serves as a consultant for Apnimed, Eli Lilly, Respicardia and Somnifix. A.A.’s interests were reviewed by Brigham and Women’s Hospital and Mass General Brigham in accordance with their institutional policies. Y.P. receives grant support from ResMed Foundation. Apnimed and Eli Lilly are developing pharmacological treatments for obstructive sleep apnoea, and ResMed produces devices for the treatment of sleep apnoea.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redline, S., Azarbarzin, A. & Peker, Y. Obstructive sleep apnoea heterogeneity and cardiovascular disease. Nat Rev Cardiol 20, 560–573 (2023). https://doi.org/10.1038/s41569-023-00846-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00846-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing