Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcific aortic valve disease: mechanisms, prevention and treatment

Abstract

Calcific aortic valve disease (CAVD) is the most common disorder affecting heart valves and is characterized by thickening, fibrosis and mineralization of the aortic valve leaflets. Analyses of surgically explanted aortic valve leaflets have shown that dystrophic mineralization and osteogenic transition of valve interstitial cells co-occur with neovascularization, microhaemorrhage and abnormal production of extracellular matrix. Age and congenital bicuspid aortic valve morphology are important and unalterable risk factors for CAVD, whereas additional risk is conferred by elevated blood pressure and plasma lipoprotein(a) levels and the presence of obesity and diabetes mellitus, which are modifiable factors. Genetic and molecular studies have identified that the NOTCH, WNT–β-catenin and myocardin signalling pathways are involved in the control and commitment of valvular cells to a fibrocalcific lineage. Complex interactions between valve endothelial and interstitial cells and immune cells promote the remodelling of aortic valve leaflets and the development of CAVD. Although no medical therapy is effective for reducing or preventing the progression of CAVD, studies have started to identify actionable targets.

Key points

  • Risk factors for calcific aortic valve disease (CAVD) include age, male sex, genetics, hypertension, smoking, diabetes mellitus, obesity, high plasma lipoprotein(a) levels and bicuspid aortic valve.

  • Genetic studies are revealing the polygenic architecture of CAVD, and the risk loci identified so far have emphasized the importance of lipids and cell signalling related to fibrosis, mineralization and inflammation in its pathogenesis.

  • Alterations to the haemostatic system, including the function of platelets, are associated with CAVD.

  • Evidence suggests that decreasing the plasma levels of lipids such as lipoprotein(a) might be most effective for preventing the onset of aortic valve mineralization.

  • Advances in data science together with multimodal tissue-based and single-cell genomic datasets will be key for future research into CAVD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural organization of tricuspid and bicuspid aortic valves.
Fig. 2: Molecular pathways involved in mineralization in valve interstitial cells.
Fig. 3: Pathways and mechanisms in CAVD.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-based study. Lancet 368, 1005–1011 (2006).

    Article  PubMed  Google Scholar 

  2. Rajamannan, N. M. et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease–2011 update. Circulation 124, 1783–1791 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pujari, S. H. & Agasthi, P. Aortic stenosis. StatPearls https://www.statpearls.com/point-of-care/17744 (2022).

  4. Lindman, B. R. et al. Calcific aortic stenosis. Nat. Rev. Dis. Prim. 2, 16006 (2016).

    Article  PubMed  Google Scholar 

  5. Yi, B., Zeng, W., Lv, L. & Hua, P. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories. Aging 13, 12710–12732 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kumar, V., Sandhu, G. S., Harper, C. M., Ting, H. H. & Rihal, C. S. Transcatheter aortic valve replacement programs: clinical outcomes and developments. J. Am. Heart Assoc. 9, e015921 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spears, J., Al-Saiegh, Y., Goldberg, D., Manthey, S. & Goldberg, S. TAVR: a review of current practices and considerations in low-risk patients. J. Interv. Cardiol. 2020, 2582938 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mas-Peiro, S., Fichtlscherer, S., Walther, C. & Vasa-Nicotera, M. Current issues in transcatheter aortic valve replacement. J. Thorac. Dis. 12, 1665–1680 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yadgir, S. et al. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation 141, 1670–1680 (2020).

    Article  PubMed  Google Scholar 

  10. Fullman, N. et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. Lancet 391, 2236–2271 (2018).

    Article  Google Scholar 

  11. Stewart, B. F. et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J. Am. Coll. Cardiol. 29, 630–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Larsson, S. C., Wolk, A., Håkansson, N. & Bäck, M. Overall and abdominal obesity and incident aortic valve stenosis: two prospective cohort studies. Eur. Heart J. 38, 2192–2197 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ljungberg, J. et al. Traditional cardiovascular risk factors and their relation to future surgery for valvular heart disease or ascending aortic disease: a case-referent study. J. Am. Heart Assoc. 6, e005133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Capoulade, R. et al. Impact of hypertension and renin-angiotensin system inhibitors in aortic stenosis. Eur. J. Clin. Invest. 43, 1262–1272 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Briand, M. et al. Metabolic syndrome negatively influences disease progression and prognosis in aortic stenosis. J. Am. Coll. Cardiol. 47, 2229–2236 (2006).

    Article  PubMed  Google Scholar 

  16. Perkovic, V., Hunt, D., Griffin, S. V., du Plessis, M. & Becker, G. J. Accelerated progression of calcific aortic stenosis in dialysis patients. Nephron Clin. Pract. 94, c40–c45 (2003).

    Article  PubMed  Google Scholar 

  17. Rattazzi, M. et al. Aortic valve calcification in chronic kidney disease. Nephrol. Dial. Transpl. 28, 2968–2976 (2013).

    Article  CAS  Google Scholar 

  18. Siu, S. C. & Silversides, C. K. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55, 2789–2800 (2010).

    Article  PubMed  Google Scholar 

  19. Slostad, B. D. et al. Unicuspid aortic valve: demographics, comorbidities, echocardiographic features, and long-term outcomes. Circulation 140, 1853–1855 (2019).

    Article  PubMed  Google Scholar 

  20. Niaz, T. et al. Incidence, morphology, and progression of bicuspid aortic valve in pediatric and young adult subjects with coexisting congenital heart defects. Congenit. Heart Dis. 12, 261–269 (2017).

    Article  PubMed  Google Scholar 

  21. Tripathi, A., Wang, Y. & Jerrell, J. M. Population-based treated prevalence, risk factors, and outcomes of bicuspid aortic valve in a pediatric Medicaid cohort. Ann. Pediatr. Cardiol. 11, 119–124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kong, W. K. F., Bax, J. J., Michelena, H. I. & Delgado, V. Sex differences in bicuspid aortic valve disease. Prog. Cardiovasc. Dis. 63, 452–456 (2020).

    Article  PubMed  Google Scholar 

  23. Fernandes, S. M. et al. Morphology of bicuspid aortic valve in children and adolescents. J. Am. Coll. Cardiol. 44, 1648–1651 (2004).

    Article  PubMed  Google Scholar 

  24. Roberts, W. C. & Ko, J. M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111, 920–925 (2005).

    Article  PubMed  Google Scholar 

  25. Probst, V. et al. Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation 113, 856–860 (2006).

    Article  PubMed  Google Scholar 

  26. Martinsson, A. et al. Familial aggregation of aortic valvular stenosis: a nationwide study of sibling risk. Circ. Cardiovasc. Genet. 10, e001742 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Galian-Gay, L. et al. Familial clustering of bicuspid aortic valve and its relationship with aortic dilation in first-degree relatives. Heart 105, 603–608 (2019).

    PubMed  Google Scholar 

  28. Cripe, L., Andelfinger, G., Martin, L. J., Shooner, K. & Benson, D. W. Bicuspid aortic valve is heritable. J. Am. Coll. Cardiol. 44, 138–143 (2004).

    Article  PubMed  Google Scholar 

  29. Thériault, S. et al. Genetic association analyses highlight IL6, ALPL, and NAV1 as 3 new susceptibility genes underlying calcific aortic valve stenosis. Circ. Genom. Precis. Med. 12, e002617 (2019).

    Article  PubMed  Google Scholar 

  30. Helgadottir, A. et al. Genome-wide analysis yields new loci associating with aortic valve stenosis. Nat. Commun. 9, 987 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang, B. et al. Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat. Commun. 8, 15481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rivera-Feliciano, J. et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607–3618 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Guauque-Olarte, S. et al. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing. Physiol. Genomics 48, 749–761 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Padang, R., Bagnall, R. D., Tsoutsman, T., Bannon, P. G. & Semsarian, C. Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing. Physiol. Genomics 47, 75–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Arsenault, B. J. et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 7, 304–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Thanassoulis, G. et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 368, 503–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathieu, P., Arsenault, B. J., Boulanger, M.-C., Bossé, Y. & Koschinsky, M. L. Pathobiology of Lp(a) in calcific aortic valve disease. Expert. Rev. Cardiovasc. Ther. 15, 797–807 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Perrot, N. et al. Genetic variation in LPA, calcific aortic valve stenosis in patients undergoing cardiac surgery, and familial risk of aortic valve microcalcification. JAMA Cardiol. 4, 620–627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guertin, J. et al. Sex-specific associations of genetically predicted circulating Lp(a) (lipoprotein(a)) and hepatic LPA gene expression levels with cardiovascular outcomes: Mendelian randomization and observational analyses. Circ. Genom. Precis. Med. 14, e003271 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Nazarzadeh, M. et al. Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study. Eur. Heart J. 41, 3913–3920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perrot, N. et al. Genetic and in vitro inhibition of PCSK9 and calcific aortic valve stenosis. JACC Basic. Transl. Sci. 5, 649–661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thériault, S. et al. A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nat. Commun. 9, 988 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nazarzadeh, M. et al. Systolic blood pressure and risk of valvular heart disease: a Mendelian randomization study. JAMA Cardiol. 4, 788–795 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaltoft, M., Langsted, A. & Nordestgaard, B. G. Obesity as a causal risk factor for aortic valve stenosis. J. Am. Coll. Cardiol. 75, 163–176 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, G. Q. & Zhang, W. Heart rate, lifespan, and mortality risk. Ageing Res. Rev. 8, 52–60 (2009).

    Article  PubMed  Google Scholar 

  46. Sacks, M. S., David Merryman, W. & Schmidt, D. E. On the biomechanics of heart valve function. J. Biomech. 42, 1804–1824 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chester, A. H. et al. The living aortic valve: from molecules to function. Glob. Cardiol. Sci. Pract. 2014, 52–77 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Vesely, I. & Noseworthy, R. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25, 101–113 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Sohmer, B. et al. Aortic valve cusp coaptation surface area using 3-dimensional transesophageal echocardiography correlates with severity of aortic valve insufficiency. J. Cardiothorac. Vasc. Anesth. 32, 344–351 (2018).

    Article  PubMed  Google Scholar 

  50. Grande-Allen, K. J. et al. Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 14, 621–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Vallet, S. D., Berthollier, C. & Ricard-Blum, S. The glycosaminoglycan interactome 2.0. Am. J. Physiol. Cell Physiol. 322, C1271–C1278 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Monaghan, M. G. et al. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development 143, 473–482 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, K. et al. Cell-type transcriptome atlas of human aortic valves reveal cell heterogeneity and endothelial to mesenchymal transition involved in calcific aortic valve disease. Arterioscler. Thromb. Vasc. Biol. 40, 2910–2921 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Latif, N., Sarathchandra, P., Chester, A. H. & Yacoub, M. H. Expression of smooth muscle cell markers and co-activators in calcified aortic valves. Eur. Heart J. 36, 1335–1345 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Deck, J. D. Endothelial cell orientation on aortic valve leaflets. Cardiovasc. Res. 20, 760–767 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J. et al. A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells. Lab Chip 18, 2946–2954 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Fernández Esmerats, J., Heath, J. & Jo, H. Shear-sensitive genes in aortic valve endothelium. Antioxid. Redox Signal. 25, 401–414 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Simmons, C. A., Grant, G. R., Manduchi, E. & Davies, P. F. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 96, 792–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sorescu, G. P. et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95, 773–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. El-Hamamsy, I., Yacoub, M. H. & Chester, A. H. Neuronal regulation of aortic valve cusps. Curr. Vasc. Pharmacol. 7, 40–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Kholová, I. et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur. J. Clin. Invest. 41, 487–497 (2011).

    Article  PubMed  Google Scholar 

  62. Schacht, V. et al. T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 22, 3546–3556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hinton, R. B. et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ. Res. 98, 1431–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Helske, S. et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 26, 1791–1798 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Aikawa, E. et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119, 1785–1794 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stephens, E. H. et al. Differential proteoglycan and hyaluronan distribution in calcified aortic valves. Cardiovasc. Pathol. 20, 334–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Nastase, M. V., Young, M. F. & Schaefer, L. Biglycan: a multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem. 60, 963–975 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Derbali, H. et al. Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via Toll-like receptor 2. Am. J. Pathol. 176, 2638–2645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neufeld, E. B. et al. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis 233, 113–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bickmore, W. A. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Chignon, A. et al. Genome-wide chromatin contacts of super-enhancer-associated lncRNA identify LINC01013 as a regulator of fibrosis in the aortic valve. PLoS Genet. 18, e1010010 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Crider, B. J., Risinger, G. M., Haaksma, C. J., Howard, E. W. & Tomasek, J. J. Myocardin-related transcription factors A and B are key regulators of TGF-β1-induced fibroblast to myofibroblast differentiation. J. Invest. Dermatol. 131, 2378–2385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chignon, A. et al. Enhancer-associated aortic valve stenosis risk locus 1p21.2 alters NFATC2 binding site and promotes fibrogenesis. iScience 24, 102241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sáinz-Jaspeado, M. et al. Palmdelphin regulates nuclear resilience to mechanical stress in the endothelium. Circulation 144, 1629–1645 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Viloria, K. & Hill, N. J. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol. Concepts 7, 117–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Ballard, V. L. T. et al. Vascular tenascin-C regulates cardiac endothelial phenotype and neovascularization. FASEB J. 20, 717–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Jian, B. et al. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am. J. Pathol. 159, 321–327 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brekken, R. A. & Sage, E. H. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 19, 816–827 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Charest, A. et al. Distribution of SPARC during neovascularisation of degenerative aortic stenosis. Heart 92, 1844–1849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Norris, R. A. et al. Periostin regulates atrioventricular valve maturation. Dev. Biol. 316, 200–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bogdanova, M. et al. Inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells. Front. Physiol. 9, 1635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tkatchenko, T. V. et al. Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiol. Genomics 39, 160–168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Myasoedova, V. A. et al. Sex-specific cell types and molecular pathways indicate fibro-calcific aortic valve stenosis. Front. Immunol. 13, 747714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simard, L. et al. Sex-related discordance between aortic valve calcification and hemodynamic severity of aortic stenosis: is valvular fibrosis the explanation? Circ. Res. 120, 681–691 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Matilla, L. et al. Sex-differences in aortic stenosis: mechanistic insights and clinical implications. Front. Cardiovasc. Med. 9, 818371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shvetsova, E. et al. Skewed X-inactivation is common in the general female population. Eur. J. Hum. Genet. 27, 455–465 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Aguado, B. A. et al. Genes that escape X chromosome inactivation modulate sex differences in valve myofibroblasts. Circulation 145, 513–530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Decano, J. L. et al. A disease-driver population within interstitial cells of human calcific aortic valves identified via single-cell and proteomic profiling. Cell Rep. 39, 110685 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Baugh, L. et al. Knockdown of CD44 expression decreases valve interstitial cell calcification in vitro. Am. J. Physiol. Heart Circ. Physiol. 317, H26–H36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Poggio, P. et al. Osteopontin-CD44v6 interaction mediates calcium deposition via phospho-Akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis. Arterioscler. Thromb. Vasc. Biol. 34, 2086–2094 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mohler, E. R. et al. Bone formation and inflammation in cardiac valves. Circulation 103, 1522–1528 (2001).

    Article  PubMed  Google Scholar 

  93. Kim, J.-M. et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat. Commun. 11, 2289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rajamannan, N. M. et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107, 2181–2184 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mathieu, P. et al. Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J. Heart Valve Dis. 14, 353–357 (2005).

    PubMed  Google Scholar 

  96. Côté, N. et al. ATP acts as a survival signal and prevents the mineralization of aortic valve. J. Mol. Cell Cardiol. 52, 1191–1202 (2012).

    Article  PubMed  Google Scholar 

  97. Mahmut, A., Boulanger, M.-C., Bouchareb, R., Hadji, F. & Mathieu, P. Adenosine derived from ecto-nucleotidases in calcific aortic valve disease promotes mineralization through A2a adenosine receptor. Cardiovasc. Res. 106, 109–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Bouchareb, R. et al. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J. Mol. Cell Cardiol. 67, 49–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Bertazzo, S. et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 12, 576–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bertazzo, S. & Gentleman, E. Aortic valve calcification: a bone of contention. Eur. Heart J. 38, 1189–1193 (2017).

    CAS  PubMed  Google Scholar 

  101. Torre, M., Hwang, D. H., Padera, R. F., Mitchell, R. N. & VanderLaan, P. A. Osseous and chondromatous metaplasia in calcific aortic valve stenosis. Cardiovasc. Pathol. 25, 18–24 (2016).

    Article  PubMed  Google Scholar 

  102. Lin, G. L. & Hankenson, K. D. Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation. J. Cell Biochem. 112, 3491–3501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Xu, J., Li, Z., Hou, Y. & Fang, W. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am. J. Transl. Res. 7, 2527–2535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nigam, V. & Srivastava, D. Notch1 represses osteogenic pathways in aortic valve cells. J. Mol. Cell Cardiol. 47, 828–834 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Debiec, R. M. et al. Contribution of NOTCH1 genetic variants to bicuspid aortic valve and other congenital lesions. Heart 108, 1114–1120 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Ducharme, V. et al. NOTCH1 genetic variants in patients with tricuspid calcific aortic valve stenosis. J. Heart Valve Dis. 22, 142–149 (2013).

    PubMed  Google Scholar 

  108. Hadji, F. et al. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation 134, 1848–1862 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Clark, C. R., Bowler, M. A., Snider, J. C. & Merryman, W. D. Targeting cadherin-11 prevents Notch1-mediated calcific aortic valve disease. Circulation 135, 2448–2450 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Satriyo, P. B. et al. Cadherin 11 inhibition downregulates β-catenin, deactivates the canonical WNT signalling pathway and suppresses the cancer stem cell-like phenotype of triple negative breast cancer. J. Clin. Med. 8, E148 (2019).

    Article  Google Scholar 

  111. Huang, H. & He, X. Wnt/β-catenin signaling: new (and old) players and new insights. Curr. Opin. Cell Biol. 20, 119–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Caira, F. C. et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J. Am. Coll. Cardiol. 47, 1707–1712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thanassoulis, G. Lipoprotein (a) in calcific aortic valve disease: from genomics to novel drug target for aortic stenosis. J. Lipid Res. 57, 917–924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sticchi, E. et al. Role of lipoprotein (a) and LPA KIV2 repeat polymorphism in bicuspid aortic valve stenosis and calcification: a proof of concept study. Intern. Emerg. Med. 14, 45–50 (2019).

    Article  PubMed  Google Scholar 

  115. Olofsson, S.-O. & Borèn, J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J. Intern. Med. 258, 395–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Maranhão, R. C., Carvalho, P. O., Strunz, C. C. & Pileggi, F. Lipoprotein (a): structure, pathophysiology and clinical implications. Arq. Bras. Cardiol. 103, 76–84 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Koschinsky, M. L. & Boffa, M. B. Oxidized phospholipid modification of lipoprotein(a): epidemiology, biochemistry and pathophysiology. Atherosclerosis 349, 92–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Matt, U., Sharif, O., Martins, R. & Knapp, S. Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell Mol. Life Sci. 72, 1059–1071 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Bouchareb, R. et al. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation 132, 677–690 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Saga, H. et al. A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension. PLoS ONE 9, e93230 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Torzewski, M. et al. Lipoprotein(a) associated molecules are prominent components in plasma and valve leaflets in calcific aortic valve stenosis. JACC Basic. Transl. Sci. 2, 229–240 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nsaibia, M. J. et al. OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA-NF-κB pathway. Cardiovasc. Res. 113, 1351–1363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mkannez, G. et al. DNA methylation of a PLPP3 MIR transposon-based enhancer promotes an osteogenic programme in calcific aortic valve disease. Cardiovasc. Res. 114, 1525–1535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moreno, P. R. et al. Increased macrophage infiltration and neovascularization in congenital bicuspid aortic valve stenosis. J. Thorac. Cardiovasc. Surg. 142, 895–901 (2011).

    Article  PubMed  Google Scholar 

  125. Akahori, H. et al. Intraleaflet haemorrhage is associated with rapid progression of degenerative aortic valve stenosis. Eur. Heart J. 32, 888–896 (2011).

    Article  PubMed  Google Scholar 

  126. Morvan, M. et al. Relationship of iron deposition to calcium deposition in human aortic valve leaflets. J. Am. Coll. Cardiol. 73, 1043–1054 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Laguna-Fernandez, A. et al. Iron alters valvular interstitial cell function and is associated with calcification in aortic stenosis. Eur. Heart J. 37, 3532–3535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem. Sci. 41, 274–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, Z. et al. Zinc ameliorates human aortic valve calcification through GPR39 mediated ERK1/2 signalling pathway. Cardiovasc. Res. 117, 820–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Xu, R., Zhu, D., Guo, J. & Wang, C. IL-18 promotes erythrophagocytosis and erythrocyte degradation by M1 macrophages in a calcific microenvironment. Can. J. Cardiol. 37, 1460–1471 (2021).

    Article  PubMed  Google Scholar 

  131. Vincentelli, A. et al. Acquired von Willebrand syndrome in aortic stenosis. N. Engl. J. Med. 349, 343–349 (2003).

    Article  PubMed  Google Scholar 

  132. Wan, S., DeSmet, J. M., Vincent, J. L. & LeClerc, J. L. Thrombus formation on a calcific and severely stenotic bicuspid aortic valve. Ann. Thorac. Surg. 64, 535–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Natorska, J. et al. Increased thrombin generation and platelet activation are associated with deficiency in high molecular weight multimers of von Willebrand factor in patients with moderate-to-severe aortic stenosis. Heart 97, 2023–2028 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Diehl, P. et al. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb. Haemost. 99, 711–719 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Varshney, R. et al. Inactivation of platelet-derived TGF-β1 attenuates aortic stenosis progression in a robust murine model. Blood Adv. 3, 777–788 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bouchareb, R. et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur. Heart J. 40, 1362–1373 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Hulin, A. et al. Maturation of heart valve cell populations during postnatal remodeling. Development 146, dev173047 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Helske, S. et al. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur. Heart J. 27, 1495–1504 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, A. J., Xu, N. & Yutzey, K. E. Macrophage lineages in heart valve development and disease. Cardiovasc. Res. 117, 663–673 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhao, W., Lu, H., Wang, X., Ransohoff, R. M. & Zhou, L. CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J. 30, 380–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Boniakowski, A. E. et al. Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. Eur. J. Immunol. 48, 1445–1455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Raddatz, M. A. et al. Macrophages promote aortic valve cell calcification and alter STAT3 splicing. Arterioscler. Thromb. Vasc. Biol. 40, e153–e165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lu, J., Xie, S., Deng, Y., Xie, X. & Liu, Y. Blocking the NLRP3 inflammasome reduces osteogenic calcification and M1 macrophage polarization in a mouse model of calcified aortic valve stenosis. Atherosclerosis 347, 28–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Helske, S. et al. Increased expression of profibrotic neutral endopeptidase and bradykinin type 1 receptors in stenotic aortic valves. Eur. Heart J. 28, 1894–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. El Husseini, D. et al. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease. J. Mol. Cell Cardiol. 72, 146–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Mahler, G. J., Farrar, E. J. & Butcher, J. T. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 121–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Bischoff, J. & Aikawa, E. Progenitor cells confer plasticity to cardiac valve endothelium. J. Cardiovasc. Transl. Res. 4, 710–719 (2011).

    Article  PubMed  Google Scholar 

  150. Panizo, S. et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ. Res. 104, 1041–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Galeone, A. et al. Aortic valvular interstitial cells apoptosis and calcification are mediated by TNF-related apoptosis-inducing ligand. Int. J. Cardiol. 169, 296–304 (2013).

    Article  PubMed  Google Scholar 

  152. Kaden, J. J. et al. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int. J. Mol. Med. 16, 869–872 (2005).

    CAS  PubMed  Google Scholar 

  153. Yu, Z. et al. Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway. J. Pharmacol. Exp. Ther. 337, 16–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Nagy, E. et al. Upregulation of the 5-lipoxygenase pathway in human aortic valves correlates with severity of stenosis and leads to leukotriene-induced effects on valvular myofibroblasts. Circulation 123, 1316–1325 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Wirrig, E. E., Gomez, M. V., Hinton, R. B. & Yutzey, K. E. COX2 inhibition reduces aortic valve calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 35, 938–947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Artiach, G. et al. Omega-3 polyunsaturated fatty acids decrease aortic valve disease through the resolvin E1 and ChemR23 axis. Circulation 142, 776–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kang, J. X., Wang, J., Wu, L. & Kang, Z. B. Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427, 504 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Morgan, M. J. & Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Miller, J. D. et al. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 52, 843–850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Valerio, V. et al. Enduring reactive oxygen species emission causes aberrant protein S-glutathionylation transitioning human aortic valve cells from a sclerotic to a stenotic phenotype. Antioxid. Redox Signal. 37, 1051–1071 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Liberman, M. et al. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler. Thromb. Vasc. Biol. 28, 463–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Liu, H. et al. Celastrol alleviates aortic valve calcification via inhibition of NADPH oxidase 2 in valvular interstitial cells. JACC Basic. Transl. Sci. 5, 35–49 (2020).

    Article  PubMed  Google Scholar 

  163. Benigni, A., Cassis, P. & Remuzzi, G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol. Med. 2, 247–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Côté, N. et al. Oxidized low-density lipoprotein, angiotensin II and increased waist cirumference are associated with valve inflammation in prehypertensive patients with aortic stenosis. Int. J. Cardiol. 145, 444–449 (2010).

    Article  PubMed  Google Scholar 

  165. O’Brien, K. D. et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 106, 2224–2230 (2002).

    Article  PubMed  Google Scholar 

  166. Helske, S. et al. Induction of local angiotensin II-producing systems in stenotic aortic valves. J. Am. Coll. Cardiol. 44, 1859–1866 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Helske-Suihko, S. et al. Is blockade of the renin-angiotensin system able to reverse the structural and functional remodeling of the left ventricle in severe aortic stenosis? J. Cardiovasc. Pharmacol. 65, 233–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Bull, S. et al. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor ramipril in aortic stenosis (RIAS trial). Eur. Heart J. Cardiovasc. Imaging 16, 834–841 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Côté, N., Couture, C., Pibarot, P., Després, J.-P. & Mathieu, P. Angiotensin receptor blockers are associated with a lower remodelling score of stenotic aortic valves. Eur. J. Clin. Invest. 41, 1172–1179 (2011).

    Article  PubMed  Google Scholar 

  170. Côté, N. et al. Angiotensin receptor blockers are associated with reduced fibrosis and interleukin-6 expression in calcific aortic valve disease. Pathobiology 81, 15–24 (2014).

    Article  PubMed  Google Scholar 

  171. Arishiro, K. et al. Angiotensin receptor-1 blocker inhibits atherosclerotic changes and endothelial disruption of the aortic valve in hypercholesterolemic rabbits. J. Am. Coll. Cardiol. 49, 1482–1489 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Fujisaka, T. et al. Angiotensin II promotes aortic valve thickening independent of elevated blood pressure in apolipoprotein-E deficient mice. Atherosclerosis 226, 82–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Mathieu, P. & Arsenault, B. J. CAVD: civilization aortic valve disease. Eur. Heart J. 38, 2198–2200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nordbø, E. C. A., Raanaas, R. K., Nordh, H. & Aamodt, G. Neighborhood green spaces, facilities and population density as predictors of activity participation among 8-year-olds: a cross-sectional GIS study based on the Norwegian mother and child cohort study. BMC Public Health 19, 1426 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bácsné-Bába, É. et al. Sustainability-sport-physical activity. Int. J. Environ. Res. Public. Health 18, 1455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lopez, R. P. & Hynes, H. P. Obesity, physical activity, and the urban environment: public health research needs. Environ. Health 5, 25 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lloyd-Jones, D. M. et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 121, 586–613 (2010).

    Article  PubMed  Google Scholar 

  178. Perrot, N. et al. Life’s simple 7 and calcific aortic valve stenosis incidence in apparently healthy men and women. Int. J. Cardiol. 269, 226–228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Enserro, D. M., Vasan, R. S. & Xanthakis, V. Twenty-year trends in the American Heart Association Cardiovascular Health Score and impact on subclinical and clinical cardiovascular disease: the Framingham offspring study. J. Am. Heart Assoc. 7, e008741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Bergmark, B. A. et al. An exploratory analysis of proprotein convertase subtilisin/kexin type 9 inhibition and aortic stenosis in the Fourier trial. JAMA Cardiol. 5, 709–713 (2020).

    Article  PubMed  Google Scholar 

  181. Moura, L. M. et al. Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J. Am. Coll. Cardiol. 49, 554–561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dichtl, W. et al. Prognosis and risk factors in patients with asymptomatic aortic stenosis and their modulation by atorvastatin (20 mg). Am. J. Cardiol. 102, 743–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Rossebø, A. B. et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359, 1343–1356 (2008).

    Article  PubMed  Google Scholar 

  184. Chan, K. L. et al. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121, 306–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Cowell, S. J. et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352, 2389–2397 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Koren, M. J. et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat. Med. 28, 96–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Madsen, C. M., Kamstrup, P. R., Langsted, A., Varbo, A. & Nordestgaard, B. G. Lipoprotein(a)-lowering by 50 mg/dL (105 nmol/L) may be needed to reduce cardiovascular disease 20% in secondary prevention: a population-based study. Arterioscler. Thromb. Vasc. Biol. 40, 255–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 3, 619–627 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Afshar, M. et al. Estimating the population impact of Lp(a) lowering on the incidence of myocardial infarction and aortic stenosis – brief report. Arterioscler. Thromb. Vasc. Biol. 36, 2421–2423 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Kaiser, Y. et al. Lipoprotein(a) is associated with the onset but not the progression of aortic valve calcification. Eur. Heart J. 43, 3960–3967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kaiser, Y. et al. Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis. Heart 108, 61–66 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Bourne, L. E., Wheeler-Jones, C. P. & Orriss, I. R. Regulation of mineralisation in bone and vascular tissue: a comparative review. J. Endocrinol. 248, R51–R65 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Pawade, T. A. et al. Effect of denosumab or alendronic acid on the progression of aortic stenosis: a double-blind randomized controlled trial. Circulation 143, 2418–2427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ogorelkova, M., Gruber, A. & Utermann, G. Molecular basis of congenital Lp(a) deficiency: a frequent apo(a) ‘null’ mutation in Caucasians. Hum. Mol. Genet 8, 2087–2096 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Rader, D. J. et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J. Clin. Invest. 93, 2758–2763 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chennamsetty, I. et al. Farnesoid X receptor represses hepatic human APOA gene expression. J. Clin. Invest. 121, 3724–3734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Romagnuolo, R. et al. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 290, 11649–11662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nsaibia, M. J. et al. Autotaxin interacts with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients with coronary artery disease. J. Intern. Med. 280, 509–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Yu, B. et al. Lipoprotein(a) induces human aortic valve interstitial cell calcification. JACC Basic Transl. Sci. 2, 358–371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Canadian Institutes of Health Research to P.M. (FRN148778, FRN159697) and Y.B. (PJT-159641) and the Quebec Heart and Lung Institute Fund. Y.B. holds a Canada Research Chair in Genomics of Heart and Lung Diseases. P.M. is the recipient of the Joseph C. Edwards Foundation granted to Université Laval.

Author information

Authors and Affiliations

Authors

Contributions

L.-H.M.M., M.B. and P.M. researched data for the article, and all the authors discussed its content. L.-H.M.M., M.B. and P.M. wrote the manuscript, and all the authors reviewed/edited it before submission.

Corresponding author

Correspondence to Patrick Mathieu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks W. David Merryman, Paolo Poggio and Nalini Rajamannan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allelic imbalance

Uneven expression of the two alleles of a gene.

Aortic valve stenosis

(AVS). Calcific aortic valve disease is a general term indicating that the aortic valve is thickened and mineralized; obstruction to the blood flow with an increased transaortic gradient is referred to as aortic valve stenosis.

Bicuspid aortic valves

Valves with two cusps instead of three; this congenital abnormality is present in 1–2% of the general population, is associated with other cardiovascular conditions (aortopathy) and syndromes (Turner syndrome and Loeys–Dietz syndrome), and is a risk factor for CAVD.

Dosage compensation

A process that balances the expression of genes between the sexes; in females (XX), inactivation of one X chromosome is a compensatory mechanism to match the level of gene expression in males (XY).

Ectonucleotidases

A group of secreted enzymes from different families that metabolize nucleotides and modulate purinergic signalling.

Endocardial-to-mesenchymal transition

An embryological process whereby cells from the endocardial cushion progressively acquire gene markers of mesenchymal cells.

Genome-wide association study

(GWAS). An observational study measuring associations between whole-genome common single-nucleotide polymorphisms and continuous or dichotomous outcomes (traits or disorders).

Heritability

The proportion of the variance in a trait that is explained by genetic variation within a population.

Homotypic interactions

Binding interactions involving two identical domains located on two different proteins.

Long non-coding RNA

(lncRNA). RNA molecules longer than 200 nucleotides that are not translated into protein; lncRNAs are often polyadenylated and involved in gene regulation.

Matricellular proteins

Secreted proteins that are not considered to be structural matrix molecules, but which modulate biological functions.

Mendelian randomization

A technique that uses gene variants as instrumental variables to infer causal association; Mendelian randomization assumes that instrumental variables are associated with the exposure and outcomes without independent pathways (horizontal pleiotropy).

NLRP3 inflammasome

A multimer complex that senses various danger signals and activates caspase 1; this process leads to the activation and secretion of IL-1β and IL-18.

Non-synonymous variant

A gene variant located in the coding part of a gene (exon) that substitutes an amino acid and changes the sequence of the protein.

Oscillatory blood flow

A blood flow pattern characterized by cyclical forward and reverse flow of varying intensities.

Quantitative trait loci

Correlation between loci markers, such as single-nucleotide polymorphisms, and quantitative traits, such as gene expression, protein levels or other molecular traits.

Resolvins

ω-3 Fatty acid-derived mediators that act locally to limit inflammation and to restore cell functions.

Shear stress

The frictional force applied to the vascular wall or valve and which is proportional to the blood flow velocity.

Single-nucleotide polymorphism

The most common form of germline genetic variation, consisting of the substitution of a single nucleotide at a specific location in the genome.

Super-enhancers

A collection of nearby distant cis-regulatory elements (enhancers) that are associated with cell fate and are often enriched in gene variants associated with complex traits and disorders.

Transcription factor

A protein that binds to a specific sequence of DNA and controls the transcriptional process; transcription factors can promote or repress transcription and are involved in cell fate and lineage commitment.

X chromosome inactivation

A process by which one of the X chromosomes in female organisms is inactivated to limit allelic imbalance between males (with one X chromosome) and females (with two X chromosomes).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moncla, LH.M., Briend, M., Bossé, Y. et al. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol 20, 546–559 (2023). https://doi.org/10.1038/s41569-023-00845-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00845-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing