Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypertension in China: epidemiology and treatment initiatives

Abstract

The past two to three decades have seen a steady increase in the prevalence of hypertension in China, largely owing to increased life expectancy and lifestyle changes (particularly among individuals aged 35–44 years). Data from the China hypertension survey conducted in 2012–2015 revealed a high prevalence of grade 3 hypertension (systolic blood pressure ≥180 mmHg and diastolic blood pressure ≥110 mmHg) in the general population, which increased with age to up to 5% among individuals aged ≥65 years. The risk profile of patients with hypertension in China has also been a subject of intense study in the past 30 years. Dietary sodium and potassium intake have remained largely the same in China in the past three decades, and salt substitution strategies seem to be effective in reducing blood pressure levels and the risk of cardiovascular events and death. However, the number of individuals with risk factors for hypertension and cardiovascular disease in general, such as physical inactivity and obesity, has increased dramatically in the same period. Moreover, even in patients diagnosed with hypertension, their disease is often poorly managed owing to a lack of patient education and poor treatment compliance. In this Review, we summarize the latest epidemiological data on hypertension in China, discuss the risk factors for hypertension that are specific to this population, and describe several ongoing nationwide hypertension control initiatives that target these risk factors, especially in the low-resource rural setting.

Key points

  • The prevalence of hypertension in China has increased substantially in the past 30 years, and hypertension now affects approximately a quarter of all Chinese adults; this increase is mainly attributable to increased life expectancy among the general population, but also to lifestyle changes among individuals aged 35–44 years.

  • The north–south gradient in the prevalence of hypertension in China, which was apparent from data in 1991, is no longer prominent given the increasing prevalence of hypertension in the entire region.

  • The prevalence of grade 3 hypertension is high (1.6%) and increases substantially with age to up to 5% in patients aged ≥65 years.

  • The blood pressure control rate among patients in China is generally low owing to poor awareness and poor treatment adherence; several ongoing initiatives are aimed at improving blood pressure control, especially in the low-resource rural setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in the prevalence of hypertension and life expectancy in China from the late 1950s to the 2010s.
Fig. 2: Hypertension prevalence in China in 1991 and 2012 by age group.
Fig. 3: Prevalence of grade 1, grade 2 and grade 3 hypertension in China by age group.
Fig. 4: Changes in major lifestyle risk factors for hypertension from the 1990s to the 2010s.
Fig. 5: Cumulative incidence of total mortality and all cardiovascular events by ambulatory blood pressure status.
Fig. 6: Rate of awareness, treatment and control of hypertension in Chinese adults.

Similar content being viewed by others

References

  1. Roth, G. A. et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  3. Joint Committee for Guideline Revision 2018 Chinese guidelines for prevention and treatment of hypertension-a report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. 16, 182–241 (2019).

    PubMed Central  Google Scholar 

  4. Umemura, S. et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens. Res. 42, 1235–1481 (2019).

    Article  PubMed  Google Scholar 

  5. Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 36, 1953–2041 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, 1269–1324 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article  Google Scholar 

  8. Geldsetzer, P. et al. The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1.1 million adults. Lancet 394, 652–662 (2019).

    Article  PubMed  Google Scholar 

  9. Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parati, G. et al. Adherence to single-pill versus free-equivalent combination therapy in hypertension: a systematic review and meta-analysis. Hypertension 77, 692–705 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, Y. et al. Ambulatory blood pressure monitoring for the management of hypertension. Chin. Med. J. 135, 1027–1035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, Y. L. Analysis of spatio-temporal changes in life expectancy and its influencing factors in China [Chinese]. Chin. J. Health Policy 11, 44–49 (2018).

    Google Scholar 

  13. Wu, Y. K. et al. Nation-wide hypertension screening in China during 1979–1980. Chin. Med. J. 95, 101–108 (1982).

    CAS  PubMed  Google Scholar 

  14. Tao, S. C. et al. Hypertension prevalence and status of awareness treatment and control in China. Chin. Med. J. 108, 483–489 (1995).

    CAS  PubMed  Google Scholar 

  15. Wu, Y. et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the China National Nutrition and Health Survey 2002. Circulation 118, 2679–2686 (2008).

    Article  PubMed  Google Scholar 

  16. Wang, Z. et al. Status of hypertension in China: results from the China Hypertension Survey, 2012-2015. Circulation 137, 2344–2356 (2018).

    Article  PubMed  Google Scholar 

  17. Li, R. et al. Domestic physical activity and new-onset hypertension: a nationwide cohort study in China. Am. J. Med. 135, 1362–1370.e6 (2022).

    Article  PubMed  Google Scholar 

  18. Sun, J. Y. et al. High waist circumference is a risk factor of new-onset hypertension: evidence from the China Health and Retirement Longitudinal Study. J. Clin. Hypertens. 24, 320–328 (2022).

    Article  Google Scholar 

  19. Gong, L. et al. Shanghai trial of nifedipine in the elderly (STONE). J. Hypertens. 14, 1237–1245 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, L. et al. Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. J. Hypertens. 16, 1823–1829 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, L. et al. The Felodipine Event Reduction (FEVER) Study: a randomized long-term placebo-controlled trial in Chinese hypertensive patients. J. Hypertens. 23, 2157–2172 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Y. et al. A village doctor-led multifaceted intervention for blood pressure control in rural China: an open, cluster randomised trial. Lancet 399, 1964–1975 (2022).

    Article  PubMed  Google Scholar 

  23. Neal, B. et al. Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 385, 1067–1077 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Hou, L. et al. China CDC in action – hypertension prevention and control. China CDC Wkly. 2, 783–786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Parry, J. Nine in 10 Chinese are covered by medical insurance, but access to treatment remains a problem. BMJ 344, e248 (2012).

    Article  PubMed  Google Scholar 

  26. Li, S. et al. Modifiable risk factors associated with cardiovascular disease and mortality in China: a PURE substudy. Eur. Heart J. 43, 2852–2863 (2022).

    Article  PubMed  Google Scholar 

  27. Franklin, S. S. et al. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 96, 308–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X. et al. Barriers to blood pressure control in China in a large opportunistic screening. J. Clin. Hypertens. 22, 835–841 (2020).

    Article  CAS  Google Scholar 

  29. Liu, J. et al. Global burden of cardiovascular diseases attributable to hypertension in young adults from 1990 to 2019. J. Hypertens. 39, 2488–2496 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, M. et al. Prevalence and control of hypertension in adults in China, 2018 [Chinese]. Chin. J. Epidemiol. 42, 1780–1789 (2021).

    CAS  Google Scholar 

  31. Huang, Z. D. et al. A north-south comparison of blood pressure and factors related to blood pressure in the People’s Republic of China: a report from the PRC-USA Collaborative Study of Cardiovascular Epidemiology. J. Hypertens. 12, 1103–1112 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J. et al. Prevalence of diabetes mellitus in outpatients with essential hypertension in China: a cross-sectional study. BMJ Open 3, e003798 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Song, J. et al. Management of hypertension and diabetes mellitus by cardiovascular and endocrine physicians: a China registry. J. Hypertens. 34, 1648–1653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao, C. Y., Ye, X. F., Zhang, W., Ji, L. N. Wang, J. G. & ATTEND Investigators Association between dyslipidemia and antihypertensive and antidiabetic treatments in a China multicenter study. J. Clin. Hypertens. 23, 1399–1404 (2021).

    Article  CAS  Google Scholar 

  35. Zhang, L. et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379, 815–822 (2012).

    Article  PubMed  Google Scholar 

  36. Ye, X. et al. Trends in prevalence of hypertension and hypertension phenotypes among Chinese children and adolescents over two decades (1991–2015). Front. Cardiovasc. Med. 8, 627741 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dong, J. et al. Prevalence of hypertension and hypertension phenotypes after three visits in Chinese urban children. J. Hypertens. 40, 1270–1277 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zeng, Y. & Hesketh, T. The effects of China’s universal two-child policy. Lancet 388, 1930–1938 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Normile, D. China’s population still growing, census shows–but barely. Science 372, 669 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang, C. et al. Risk factors and potential protective factors of pregnancy-induced hypertension in China: a cross-sectional study. J. Clin. Hypertens. 21, 618–623 (2019).

    Article  CAS  Google Scholar 

  41. Li, F. et al. Prevalence of hypertensive disorders in pregnancy in China: a systematic review and meta-analysis. Pregnancy Hypertens. 24, 13–21 (2021).

    Article  PubMed  Google Scholar 

  42. Carey, R. M. et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension 72, e53–e90 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, C. et al. Prevalence and characteristics of apparent treatment-resistant hypertension in older people in China: a cross-sectional study. Clin. Exp. Hypertens. 41, 753–758 (2019).

    Article  PubMed  Google Scholar 

  44. Noubiap, J. J. et al. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart 105, 98–105 (2019).

    Article  PubMed  Google Scholar 

  45. Wang, G. L. et al. Anthropometric and lifestyle factors associated with white-coat, masked and sustained hypertension in a Chinese population. J. Hypertens. 25, 2398–2405 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kang, Y. Y. et al. Accuracy of home versus ambulatory blood pressure monitoring in the diagnosis of white-coat and masked hypertension. J. Hypertens. 33, 1580–1587 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Conen, D. et al. Age-specific differences between conventional and ambulatory daytime blood pressure values. Hypertension 64, 1073–1079 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, J. et al. Characteristics of white coat hypertension in Chinese Han patients with type 2 diabetes mellitus. Clin. Exp. Hypertens. 36, 321–325 (2014).

    Article  PubMed  Google Scholar 

  49. Tang, H. et al. Prevalence, determinants, and clinical significance of masked hypertension and white-coat hypertension in patients with chronic kidney disease. Nephrology 21, 841–850 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, C. et al. Masked hypertension, rather than white-coat hypertension, has a prognostic role in patients with non-dialysis chronic kidney disease. Int. J. Cardiol. 230, 33–39 (2017).

    Article  PubMed  Google Scholar 

  51. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ 297, 319–328 (1988).

    Article  Google Scholar 

  52. Zhou, B. F. et al. Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: the INTERMAP study. J. Hum. Hypertens. 17, 623–630 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan, M. et al. Twenty-four-hour urinary sodium and potassium excretion in China: a systematic review and meta-analysis. J. Am. Heart Assoc. 8, e012923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Du, S. et al. Dietary potassium intake remains low and sodium intake remains high, and most sodium is derived from home food preparation for Chinese adults, 1991–2015 trends. J. Nutr. 150, 1230–1239 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu, L. S. et al. Relationship between salt excretion and blood pressure in various regions of China. Bull. World Health Organ. 62, 255–260 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, B. F. et al. Dietary patterns in 10 groups and the relationship with blood pressure. Chin. Med. J. 102, 257–261 (1988).

    Google Scholar 

  57. Tian, H. G. et al. Associations between blood pressure and dietary intake and urinary excretion of electrolytes in a Chinese population. J. Hypertens. 13, 49–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, M. et al. A meta-analysis of effect of dietary salt restriction on blood pressure in Chinese adults. Glob. Heart 10, 291–299.e6 (2015).

    Article  PubMed  Google Scholar 

  59. Jin, A. et al. Effect of salt reduction interventions in lowering blood pressure in Chinese populations: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 10, e032941 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. et al. Sodium sensitivity of blood pressure in Chinese populations. J. Hum. Hypertens. 34, 94–107 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Zou, J. et al. Blood pressure in relation to interactions between sodium dietary intake and renal handling. Hypertension 62, 719–725 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. He, F. J. et al. School based education programme to reduce salt intake in children and their families (School-EduSalt): cluster randomised controlled trial. BMJ 350, h770 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. He, F. J. et al. App based education programme to reduce salt intake (AppSalt) in schoolchildren and their families in China: parallel, cluster randomised controlled trial. BMJ 376, e066982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang, L. et al. Interim effects of salt substitution on urinary electrolytes and blood pressure in the China Salt Substitute and Stroke Study (SSaSS). Am. Heart J. 221, 136–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Marklund, M. et al. Estimated population wide benefits and risks in China of lowering sodium through potassium enriched salt substitution: modelling study. BMJ 369, m824 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. China Salt Substitute Study Collaborative Group. Salt substitution: a low-cost strategy for blood pressure control among rural Chinese. A randomized, controlled trial. J. Hypertens. 25, 2011–2018 (2007).

    Article  Google Scholar 

  67. Zhou, B. et al. Long-term effects of salt substitution on blood pressure in a rural north Chinese population. J. Hum. Hypertens. 27, 427–433 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, B. et al. Intake of low sodium salt substitute for 3 years attenuates the increase in blood pressure in a rural population of North China – A randomized controlled trial. Int. J. Cardiol. 215, 377–382 (2016).

    Article  PubMed  Google Scholar 

  69. Zhao, X. et al. Using a low-sodium, high-potassium salt substitute to reduce blood pressure among Tibetans with high blood pressure: a patient-blinded randomized controlled trial. PLoS ONE 9, e110131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Che, L. et al. A randomized, double-blind clinical trial to evaluate the blood pressure lowing effect of low-sodium salt substitution on middle-aged and elderly hypertensive patients with different plasma renin concentrations. J. Clin. Hypertens. 24, 140–147 (2022).

    Article  CAS  Google Scholar 

  71. Wang, Y. et al. Effects of cuisine-based Chinese heart-healthy diet in lowering blood pressure among adults in China: multicenter, single-blind, randomized, parallel controlled feeding trial. Circulation 146, 303–315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, A. et al. Association of a province-wide intervention with salt intake and hypertension in Shandong Province, China, 2011-2016. JAMA Intern. Med. 180, 877–886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pan, X. F. et al. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 9, 373–392 (2021).

    Article  PubMed  Google Scholar 

  74. Song, X. et al. Secular trends in time-of-day of energy intake in a Chinese cohort. Nutrients 14, 2019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. He, D. et al. Association between the proportions of carbohydrate and fat intake and hypertension risk: findings from the China Health and Nutrition Survey. J. Hypertens. 39, 1386–1392 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. He, J. et al. Association between protein intake and the risk of hypertension among Chinese men and women: a longitudinal study. Nutrients 14, 1276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, C. et al. Inverse association between variety of proteins with appropriate quantity from different food sources and new-onset hypertension. Hypertension 79, 1017–1027 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Li, Q. et al. Dietary carbohydrate intake and new-onset hypertension: a nationwide cohort study in China. Hypertension 78, 422–430 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Xue, Y. et al. The effect of dietary fiber (oat bran) supplement on blood pressure in patients with essential hypertension: a randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 31, 2458–2470 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Y. et al. Inverse association between dietary vitamin A intake and new-onset hypertension. Clin. Nutr. 40, 2868–2875 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, M. et al. Inverse association between riboflavin intake and new-onset hypertension: a nationwide cohort study in China. Hypertension 76, 1709–1716 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, Z. et al. Evaluation of dietary niacin and new-onset hypertension among Chinese adults. JAMA Netw. Open 4, e2031669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wong, M. C. et al. Dietary counselling has no effect on cardiovascular risk factors among Chinese grade 1 hypertensive patients: a randomized controlled trial. Eur. Heart J. 36, 2598–2607 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Wei, J. L. et al. Associations of soybean products intake with blood pressure changes and hypertension incidence: the China-PAR project. J. Geriatr. Cardiol. 17, 384–392 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. He, J. et al. Effect of soybean protein on blood pressure: a randomized controlled trial. Ann. Intern. Med. 143, 1–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Niu, X. G. et al. Associations of tea consumption with blood pressure progression and hypertension incidence. J. Geriatr. Cardiol. 18, 645–653 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Feng, C. et al. Association between tea consumption and hypertension risk among middle-aged and older Chinese adults. J. Nutr. 151, 3773–3780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li, Q. et al. Enjoyment of spicy flavor enhances central salty-taste perception and reduces salt intake and blood pressure. Hypertension 70, 1291–1299 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, H. et al. Association between frequency of spicy food consumption and hypertension: a cross-sectional study in Zhejiang Province, China. Nutr. Metab. 18, 70 (2021).

    Article  Google Scholar 

  90. Zhang, Y. et al. Association between spicy foods consumption and cardiovascular disease risk factors: Guangzhou Biobank Cohort Study. BMC Public Health 22, 1278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ozemek, C. et al. Global physical activity levels – need for intervention. Prog. Cardiovasc. Dis. 62, 102–107 (2019).

    Article  PubMed  Google Scholar 

  92. Zou, Q. et al. Longitudinal association between physical activity and blood pressure, risk of hypertension among Chinese adults: China Health and Nutrition Survey 1991–2015. Eur. J. Clin. Nutr. 75, 274–282 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, Z. et al. Increasing trends in mental health problems among urban Chinese adolescents: results from repeated cross-sectional data in Changsha 2016-2020. Front. Public Health 10, 829674 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu, X. et al. Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies. Hypertension 69, 813–820 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, M. Y. et al. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol. Res. 39, 573–580 (2017).

    Article  PubMed  Google Scholar 

  96. Cai, C. et al. Effects of the total physical activity and its changes on incidence, progression, and remission of hypertension. J. Geriatr. Cardiol. 18, 175–184 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, R. et al. Transportation physical activity and new-onset hypertension: a nationwide cohort study in China. Hypertens. Res. 45, 1430–1440 (2022).

    Article  PubMed  Google Scholar 

  98. Li, Q. et al. Occupational physical activity and new-onset hypertension: a nationwide cohort study in China. Hypertension 78, 220–229 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Lu, Y. et al. Occupational stress and psychological health impact on hypertension of miners in noisy environment in Wulumuqi, China: a case-control study. BMC Public Health 20, 1675 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hu, B. et al. Effects of psychological stress on hypertension in middle-aged Chinese: a cross-sectional study. PLoS ONE 10, e0129163 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ma, C. et al. The impact of group-based Tai chi on health-status outcomes among community-dwelling older adults with hypertension. Heart Lung 47, 337–344 (2018).

    Article  PubMed  Google Scholar 

  102. Wang, M. et al. Trends in smoking prevalence and implication for chronic diseases in China: serial national cross-sectional surveys from 2003 to 2013. Lancet Respir. Med. 7, 35–45 (2019).

    Article  PubMed  Google Scholar 

  103. Puranik, R. & Celermajer, D. S. Smoking and endothelial function. Prog. Cardiovasc. Dis. 45, 443–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Woo, K. S. et al. The impact of heavy passive smoking on arterial endothelial function in modernized Chinese. J. Am. Coll. Cardiol. 36, 1228–1232 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, J. G. et al. Risks of smoking in treated and untreated older Chinese patients with isolated systolic hypertension. J. Hypertens. 19, 187–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, Y. et al. Association of husband smoking with wife’s hypertension status in over 5 million Chinese females aged 20 to 49 years. J. Am. Heart Assoc. 6, e004924 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wu, L. et al. Association between passive smoking and hypertension in Chinese non-smoking elderly women. Hypertens. Res. 40, 399–404 (2017).

    Article  PubMed  Google Scholar 

  108. Zhang, D. Y. et al. The prevalence of masked hypertension in relation to cigarette smoking in a Chinese male population. J. Hypertens. 38, 1056–1063 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Li, Y. et al. Interaction between body mass index and alcohol intake in relation to blood pressure in HAN and SHE Chinese. Am. J. Hypertens. 19, 448–453 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Millwood, I. Y. et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500 000 men and women in China. Lancet 393, 1831–1842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ye, X. F. et al. Alcohol consumption in relation to the incidence of atrial fibrillation in an elderly Chinese population. J. Geriatr. Cardiol. 19, 52–60 (2022).

    PubMed  PubMed Central  Google Scholar 

  112. Ye, X. F. et al. Alcohol consumption in relation to cardiovascular and non-cardiovascular mortality in an elderly male Chinese population. BMC Public Health 21, 2053 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Im, P. K. et al. Patterns and trends of alcohol consumption in rural and urban areas of China: findings from the China Kadoorie Biobank. BMC Public Health 19, 217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhao, F. et al. Association between alcohol consumption and hypertension in Chinese adults: findings from the CHNS. Alcohol 83, 83–88 (2020).

    Article  PubMed  Google Scholar 

  115. Wang, Y. et al. Association between drinking patterns and incident hypertension in southwest China. Int. J. Env. Res. Public Health 19, 3801 (2022).

    Article  Google Scholar 

  116. Nan, X. et al. The interactive association between sodium intake, alcohol consumption and hypertension among elderly in northern China: a cross-sectional study. BMC Geriatr. 21, 135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Feng, X. et al. Longitudinal study of the relationship between sleep duration and hypertension in Chinese adult residents (CHNS 2004-2011). Sleep. Med. 58, 88–92 (2019).

    Article  PubMed  Google Scholar 

  118. Huang, L. et al. The associations of trajectory of sleep duration and inflammation with hypertension: a longitudinal study in China. Nat. Sci. Sleep. 13, 1797–1806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yao, F. et al. Daytime sleep as compensation for the effects of reduced nocturnal sleep on the incidence of hypertension: a cohort study. Nat. Sci. Sleep. 13, 1061–1074 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhao, B. et al. Effect of frequency and pattern of night shift on hypertension risk in female nurses: a cross-sectional study. J. Hypertens. 39, 1170–1176 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Zhao, B. et al. A cross-sectional study of the interaction between night shift frequency and age on hypertension prevalence among female nurses. J. Clin. Hypertens. 24, 598–608 (2022).

    Article  Google Scholar 

  122. Poorolajal, J. et al. How much excess weight loss can reduce the risk of hypertension? J. Public Health 39, e95–e102 (2017).

    Google Scholar 

  123. Chen, Y. et al. Association of body fat mass and fat distribution with the incidence of hypertension in a population-based Chinese cohort: a 22-year follow-up. J. Am. Heart Assoc. 7, e007153 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu, Y., Sun, G. & Li, Y. A prospective cohort study on the association of lean body mass estimated by mid-upper arm muscle circumference with hypertension risk in Chinese residents. J. Clin. Hypertens. 24, 329–338 (2022).

    Article  Google Scholar 

  125. Zhou, L. et al. Relations of body weight status in early adulthood and weight changes until middle age with hypertension in the Chinese population. Hypertens. Res. 39, 913–918 (2016).

    Article  PubMed  Google Scholar 

  126. Fan, B. et al. Body mass index trajectories during young adulthood and incident hypertension: a longitudinal cohort in Chinese population. J. Am. Heart Assoc. 8, e011937 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Li, W. et al. Association between age at onset of overweight and risk of hypertension across adulthood. Heart 108, 683–688 (2022).

    Article  PubMed  Google Scholar 

  128. Gao, M., Wells, J. C. K. & Li, L. Secular trends in blood pressure trajectories in Chinese children and adolescents: the impact of changing physical growth. J. Hypertens. 40, 389–397 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, M. et al. The association between growth patterns and blood pressure in children and adolescents: a cross-sectional study of seven provinces in China. J. Clin. Hypertens. 23, 2053–2064 (2021).

    Article  Google Scholar 

  130. Liu, L. S. et al. A five year follow-up study of hypertension in 10450 steel workers. Chin. Med. J. 92, 719–722 (1979).

    CAS  PubMed  Google Scholar 

  131. Lawes, C. M. et al. Blood pressure and cardiovascular disease in the Asia Pacific region. J. Hypertens. 21, 707–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Eastern Stroke and Coronary Heart Disease Collaborative Research. Blood pressure, cholesterol, and stroke in eastern Asia. Lancet 352, 1801–1807 (1998).

    Article  Google Scholar 

  133. Martiniuk, A. L. et al. Hypertension: its prevalence and population-attributable fraction for mortality from cardiovascular disease in the Asia-Pacific region. J. Hypertens. 25, 73–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Gu, D. et al. Blood pressure and risk of cardiovascular disease in Chinese men and women. Am. J. Hypertens. 21, 265–272 (2008).

    Article  PubMed  Google Scholar 

  135. Zhou, M. et al. Body mass index, blood pressure, and mortality from stroke: a nationally representative prospective study of 212,000 Chinese men. Stroke 39, 753–759 (2008).

    Article  PubMed  Google Scholar 

  136. Kelly, T. N. et al. Hypertension subtype and risk of cardiovascular disease in Chinese adults. Circulation 118, 558–566 (2008).

    Article  Google Scholar 

  137. Dorjgochoo, T. et al. Relation of blood pressure components and categories and all-cause, stroke and coronary heart disease mortality in urban Chinese women: a population-based prospective study. J. Hypertens. 27, 468–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu, S. et al. Blood pressure classification of 2017 associated with cardiovascular disease and mortality in young Chinese adults. Hypertension 76, 251–258 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Zhou, Z. et al. Hypertension, arterial stiffness, and clinical outcomes: a cohort study of Chinese community-based population. Hypertension 78, 333–341 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Dai, L. et al. Association of visit-to-visit blood pressure variability with the risk of all-cause mortality and cardiovascular events in general population. J. Clin. Hypertens. 20, 280–288 (2018).

    Article  CAS  Google Scholar 

  141. Cui, X. et al. Cumulative mean arterial pressure and risks of adverse cardiac and cerebrovascular events: a prospective cohort study of 53,813 adults. J. Hum. Hypertens. 32, 585–593 (2018).

    Article  PubMed  Google Scholar 

  142. Liu, S. et al. Association between cumulative blood pressure and long-term risk of cardiovascular disease: findings from the 26-year Chinese Multi-provincial Cohort Study–Beijing Project. Chin. Med. J. 134, 920–926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Li, W. et al. Blood pressure trajectories and the risk of intracerebral hemorrhage and cerebral infarction: a prospective study. Hypertension 70, 508–514 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Zheng, W. et al. Association of blood pressure trajectories in early life with subclinical renal damage in middle age. J. Am. Soc. Nephrol. 29, 2835–2846 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang, Y. et al. Lifetime risk of stroke in young-aged and middle-aged Chinese population: the Chinese Multi-Provincial Cohort Study. J. Hypertens. 34, 2434–2440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gu, D. et al. Prehypertension and risk of cardiovascular disease in Chinese adults. J. Hypertens. 27, 721–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Duan, W. et al. Impact of prehypertension on the risk of major adverse cardiovascular events in a Chinese rural cohort. Am. J. Hypertens. 33, 465–470 (2020).

    Article  PubMed  Google Scholar 

  148. Qi, Y. et al. Long-term cardiovascular risk associated with stage 1 hypertension defined by the 2017 ACC/AHA hypertension guideline. J. Am. Coll. Cardiol. 72, 1201–1210 (2018).

    Article  PubMed  Google Scholar 

  149. Li, Y. et al. Ambulatory hypertension subtypes and 24-hour systolic and diastolic blood pressure as distinct outcome predictors in 8341 untreated people recruited from 12 populations. Circulation 130, 466–474 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Li, Y. et al. Cardiovascular risks associated with diastolic blood pressure and isolated diastolic hypertension. Curr. Hypertens. Rep. 16, 489 (2014).

    Article  PubMed  Google Scholar 

  151. Wu, S. et al. Isolated diastolic hypertension as defined by the 2017 American College of Cardiology/American Heart Association blood pressure guideline and incident cardiovascular events in Chinese. J. Hypertens. 39, 519–525 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, S. et al. Association of isolated diastolic hypertension based on different guideline definitions with incident cardiovascular risk in a Chinese rural cohort. J. Clin. Hypertens. 24, 18–25 (2022).

    Article  Google Scholar 

  153. Liao, Y. et al. Isolated diastolic hypertension in childhood and risk of adult subclinical target organ damage: a 30-year prospective cohort study. J. Hypertens. 40, 1556–1563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. McEvoy, J. W. et al. Isolated diastolic hypertension in the IDACO study: an age-stratified analysis using 24-hour ambulatory blood pressure measurements. Hypertension 78, 1222–1231 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Asayama, K. et al. Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population. Hypertension 64, 935–942 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Li, Y. et al. Is isolated nocturnal hypertension a novel clinical entity? Findings from a Chinese population study. Hypertension 50, 333–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Fan, H. Q. et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J. Hypertens. 28, 2036–2045 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Li, Y. & Wang, J. G. Isolated nocturnal hypertension: a disease masked in the dark. Hypertension 61, 278–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, C. et al. Prognostic effect of isolated nocturnal hypertension in Chinese patients with nondialysis chronic kidney disease. J. Am. Heart Assoc. 5, e004198 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cheng, H. M. et al. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J. Am. Coll. Cardiol. 62, 1780–1787 (2013).

    Article  PubMed  Google Scholar 

  161. Huang, Q. F. et al. Cardiovascular end points and mortality are not closer associated with central than peripheral pulsatile blood pressure components. Hypertension 76, 350–358 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Cheng, Y. B. et al. Risk stratification by cross-classification of central and brachial systolic blood pressure. Hypertension 79, 1101–1111 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, J. G. et al. Telemedicine in the management of hypertension: evolving technological platforms for blood pressure telemonitoring. J. Clin. Hypertens. 23, 435–439 (2021).

    Article  Google Scholar 

  164. Huang, J. et al. Prevalence of isolated systolic and isolated diastolic hypertension subtypes in China. Am. J. Hypertens. 17, 955–962 (2004).

    Article  PubMed  Google Scholar 

  165. Staessen, J. A., Wang, J. G. & Thijs, L. Cardiovascular protection and blood pressure reduction: a meta-analysis. Lancet 358, 1305–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Wei, F. F. et al. Persistence of masked hypertension in Chinese patients. Am. J. Hypertens. 29, 326–331 (2016).

    PubMed  Google Scholar 

  167. Zhang, D. Y. et al. Treatment of masked hypertension with a Chinese herbal formula: a randomized, placebo-controlled trial. Circulation 142, 1821–1830 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02893358 (2021).

  169. Li, Y. et al. Are published characteristics of the ambulatory blood pressure generalizable to rural Chinese? The JingNing population study. Blood Press. Monit. 10, 125–134 (2005).

    Article  PubMed  Google Scholar 

  170. Chinese Clinical Trial Registry. ChiCTR http://www.chictr.org.cn/showproj.aspx?proj=58548 (2021).

  171. Yang, W. Y. et al. Association of office and ambulatory blood pressure with mortality and cardiovascular outcomes. JAMA 322, 409–420 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Li, Y. et al. Opposing age-related trends in absolute and relative risk of adverse health outcomes associated with out-of-office blood pressure. Hypertension 74, 1333–1342 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Li, Y. et al. Prognostic value of the morning blood pressure surge in 5645 subjects from 8 populations. Hypertension 55, 1040–1048 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Hansen, T. W. et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension 55, 1049–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Li, Y. et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension 47, 359–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Li, Y. et al. Blood pressure load does not add to ambulatory blood pressure level for cardiovascular risk stratification. Hypertension 63, 925–933 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, T. J., Du, C. L. & Lin, R. L. Therapeutic effect of nifedipine in the treatment of systemic hypertension [Chinese]. Chin. J. Cardiol. 13, 102–105 (1985).

    CAS  Google Scholar 

  178. Wang, J. G. et al. Chinese trial on isolated systolic hypertension in the elderly. Arch. Intern. Med. 160, 211–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, Y. et al. Is a systolic blood pressure target <140 mmHg indicated in all hypertensives? Subgroup analyses of findings from the randomized FEVER trial. Eur. Heart J. 32, 1500–1508 (2011).

    Article  PubMed  Google Scholar 

  180. Wang, J. G. et al. Use of dihydropyridine calcium channel blockers in the management of hypertension in Eastern Asians: a scientific statement from the Asian Pacific Heart Association. Hypertens. Res. 34, 423–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  PubMed  Google Scholar 

  182. Chinese Clinical Trial Registry. ChiCTR http://www.chictr.org.cn/showproj.aspx?proj=8688 (2015).

  183. Zhang, D. et al. A randomized controlled trial on home blood pressure monitoring and quality of care in stage 2 and 3 hypertension. Hypertens. Res. 44, 533–540 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, P., Li, F. & Harmer, P. Healthy China 2030: moving from blueprint to action with a new focus on public health. Lancet Public Health 4, e447 (2019).

    Article  PubMed  Google Scholar 

  185. Beaney, T. et al. May measurement month 2017: an analysis of blood pressure screening results worldwide. Lancet Glob. Health 6, e736–e743 (2018).

    Article  PubMed  Google Scholar 

  186. Olsen, M. H. et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 388, 2665–2712 (2016).

    Article  PubMed  Google Scholar 

  187. Chen, X. et al. May measurement month 2017: an analysis of blood pressure screening results in China-East Asia. Eur. Heart J. Suppl. 21, D37–D39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Chen, X. et al. May measurement month 2018: an analysis of blood pressure screening results from China. Eur. Heart J. Suppl. 22, H40–H42 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Chen, X. et al. May measurement month 2019: an analysis of blood pressure screening results from China. Eur. Heart J. Suppl. 23, B43–B45 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Beaney, T. et al. May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension. Eur. Heart J. 40, 2006–2017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Beaney, T. et al. May measurement month 2019: the Global Blood Pressure Screening Campaign of the International Society of Hypertension. Hypertension 76, 333–341 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, J. G. Unique approaches to hypertension control in China. Ann. Transl. Med. 6, 296 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chen, X., Cheng, Y. B. & Wang, J. G. China nationwide screening and registry of primary aldosteronism in hypertensive patients. J. Hum. Hypertens. 35, 157–161 (2021).

    Article  PubMed  Google Scholar 

  194. Sun, Y. et al. Rationale and design of a cluster randomized trial of a village doctor-led intervention on hypertension control in China. Am. J. Hypertens. 34, 831–839 (2021).

    Article  PubMed  Google Scholar 

  195. Yang, L. & Wang, H. Who will protect the health of rural residents in China if village doctors run out? Aust. J. Prim. Health 25, 99–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Jeemon, P. et al. World Heart Federation roadmap for hypertension – a 2021 update. Glob. Heart 16, 63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Jaffe, M. G. et al. Recommended treatment protocols to improve management of hypertension globally: a statement by Resolve to Save Lives and the World Hypertension League (WHL). J. Clin. Hypertens. 20, 829–836 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

J.-G.W. was financially supported by grants from the National Natural Science Foundation of China (91639203 and 81770455), Beijing, China.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Ji-Guang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Yu-Qing Zhang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JG., Zhang, W., Li, Y. et al. Hypertension in China: epidemiology and treatment initiatives. Nat Rev Cardiol 20, 531–545 (2023). https://doi.org/10.1038/s41569-022-00829-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00829-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing