Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The oral microbiome in the pathophysiology of cardiovascular disease

Abstract

Despite advances in our understanding of the pathophysiology of many cardiovascular diseases (CVDs) and expansion of available therapies, the global burden of CVD-associated morbidity and mortality remains unacceptably high. Important gaps remain in our understanding of the mechanisms of CVD and determinants of disease progression. In the past decade, much research has been conducted on the human microbiome and its potential role in modulating CVD. With the advent of high-throughput technologies and multiomics analyses, the complex and dynamic relationship between the microbiota, their ‘theatre of activity’ and the host is gradually being elucidated. The relationship between the gut microbiome and CVD is well established. Much less is known about the role of disruption (dysbiosis) of the oral microbiome; however, interest in the field is growing, as is the body of literature from basic science and animal and human investigations. In this Review, we examine the link between the oral microbiome and CVD, specifically coronary artery disease, stroke, peripheral artery disease, heart failure, infective endocarditis and rheumatic heart disease. We discuss the various mechanisms by which oral dysbiosis contributes to CVD pathogenesis and potential strategies for prevention and treatment.

Key points

  • The incidence and prevalence of cardiovascular diseases (CVDs) are increasing despite advances in our understanding of their pathophysiology and an expanded arsenal of treatment options.

  • An association between the oral microbiome (or oralome) and cardiovascular inflammation and CVD is supported by a growing body of epidemiological studies, systematic reviews and basic science investigations.

  • Validated links exist between oral dysbiosis and CVDs, including atherosclerotic diseases, heart failure, infective endocarditis and rheumatic heart disease.

  • The mechanisms by which oral dysbiosis contributes to CVD include immunomodulation; endothelial dysfunction; molecular mimicry and antibody cross-reactivity; protein citrullination; platelet activation, aggregation and thrombogenesis; arterial invasion; and systemic inflammation.

  • Targeting oral dysbiosis in a clinical setting could be an important component of CVD management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development and progression of atherosclerotic cardiovascular disease.
Fig. 2: Oral dysbiosis in the pathogenesis of atherosclerotic cardiovascular disease.
Fig. 3: Oral dysbiosis in the pathogenesis of heart failure.
Fig. 4: Oral dysbiosis in the pathogenesis of infective endocarditis.
Fig. 5: Oral dysbiosis in the pathogenesis of RHD.

Similar content being viewed by others

References

  1. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bowry, A. D., Lewey, J., Dugani, S. B. & Choudhry, N. K. The burden of cardiovascular disease in low- and middle-income countries: epidemiology and management. Can. J. Cardiol. 31, 1151–1159 (2015).

    Article  PubMed  Google Scholar 

  3. Tang, W. H. W., Kitai, T. & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183–1196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Degruttola, A. K., Low, D., Mizoguchi, A. & Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 22, 1137–1150 (2016).

    Article  PubMed  Google Scholar 

  6. Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilbert, J. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hasan, N. & Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7, e7502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  PubMed Central  Google Scholar 

  11. Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Nikitakis, N. G., Papaioannou, W., Sakkas, L. I. & Kousvelari, E. The autoimmunity-oral microbiome connection. Oral. Dis. 23, 828–839 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Dhadse, P., Gattani, D. & Mishra, R. The link between periodontal disease and cardiovascular disease: how far we have come in last two decades? J. Indian Soc. Periodontol. 14, 148–154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leishman, S. J., Do, H. L. & Ford, P. J. Cardiovascular disease and the role of oral bacteria. J. Oral. Microbiol. 2, 5781 (2010).

    Article  Google Scholar 

  16. Kholy, K.El, Genco, R. J. & Dyke, T. E.Van Oral infections and cardiovascular disease. Trends Endocrinol. Metab. 26, 315–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Albandar, J. M. & Kingman, A. Gingival recession, gingival bleeding, and dental calculus in adults 30 years of age and older in the United States, 1988-1994. J. Periodontol. 70, 30–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Dotre, S. V., Davane, M. S. & Nagoba, B. S. Peridontitis, bacteremia and infective endocarditis: a review study. Arch. Pediatr. Infect. Dis. 5, e41067 (2017).

    Google Scholar 

  19. Lockhart, P. B. et al. Bacteremia associated with toothbrushing and dental extraction. Circulation 117, 3118–3125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lockhart, P. B. et al. Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J. Am. Dent. Assoc. 140, 1238–1244 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bartova, J. et al. Periodontitis as a risk factor of atherosclerosis. J. Immunol. Res. 2014, 636893 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gorelick, P. B. Stroke prevention therapy beyond antithrombotics: unifying mechanisms in ischemic stroke pathogenesis and implications for therapy: an invited review. Stroke 33, 862–875 (2002).

    Article  PubMed  Google Scholar 

  23. Raber-Durlacher, J. E. et al. Periodontal status and bacteremia with oral viridans streptococci and coagulase negative staphylococci in allogeneic hematopoietic stem cell transplantation recipients: a prospective observational study. Support. Care Cancer 21, 1621–1627 (2013).

    Article  PubMed  Google Scholar 

  24. Forner, L., Larsen, T., Kilian, M. & Holmstrup, P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J. Clin. Periodontol. 33, 401–407 (2006).

    Article  PubMed  Google Scholar 

  25. Sreedevi, M., Ramesh, A. & Dwarakanath, C. Periodontal status in smokers and nonsmokers: a clinical, microbiological, and histopathological study. Int. J. Dent. 2012, 571590 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    Article  PubMed  Google Scholar 

  27. Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Zühlke, L. et al. Cardiovascular medicine and research in sub-Saharan Africa: challenges and opportunities. Nat. Rev. Cardiol. 16, 642–644 (2019).

    Article  PubMed  Google Scholar 

  29. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Sanz, M. et al. Periodontitis and cardiovascular diseases: consensus report. J. Clin. Periodontol. 47, 268–288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. DeStefano, F., Anda, R. F., Kahn, H. S., Williamson, D. F. & Russell, C. M. Dental disease and risk of coronary heart disease and mortality. BMJ 306, 688–691 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dietrich, T., Sharma, P. & Walter, C. The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease. J. Clin. Periodontol. 40 (Suppl. 14), S70–S84 (2013).

    PubMed  Google Scholar 

  33. Sen, S., Giamberardino, L. D. & Moss, K. Periodontal disease, regular dental care use, and incident ischemic stroke. Stroke 49, 355–362 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cowan, L. T., Lakshminarayan, K. & Lutsey, P. L. Periodontal disease and incident venous thromboembolism: the Atherosclerosis Risk in Communities study. J. Clin. Periodontol. 46, 12–19 (2019).

    Article  PubMed  Google Scholar 

  35. Humphrey, L. L., Fu, R. & Buckley, D. I. Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. J. Gen. Intern. Med. 23, 2079–2086 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mattila, K. J., Nieminen, M. S. & Valtonen, V. V. Association between dental health and acute myocardial infarction. BMJ 298, 779–781 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, Y. W. et al. Periodontitis may increase the risk of peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 35, 153–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Cauley, J. A., Kassem, A. M., Lane, N. E. & Thorson, S. Prevalent peripheral arterial disease and inflammatory burden. BMC Geriatr. 16, 213 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Soto‐Barreras, U., Olvera‐Rubio, J. O. & Loyola‐Rodriguez, J. P. Peripheral arterial disease associated with caries and periodontal disease. J. Periodontol. 84, 486–494 (2013).

    Article  PubMed  Google Scholar 

  40. Chandy, S., Joseph, K. & Sankaranarayanan, A. Evaluation of C-reactive protein and fibrinogen in patients with chronic and aggressive periodontitis: a clinico-biochemical study. J. Clin. Diagn. Res. 11, ZC41–ZC45 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fentoglu, O. & Bozkurt, F. Y. The bi-directional relationship between periodontal disease and hyperlipidemia. Eur. J. Dent. 2, 142–146 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Golpasand, H. L., Zakavi, F., Hajizadeh, F. & Saleki, M. The association between hyperlipidemia and periodontal infection. Iran. Red. Crescent Med. J. 16, e6577 (2014).

    Google Scholar 

  43. Herzberg, M. C. Platelet-streptococcal interactions in endocarditis. Crit. Rev. Oral. Biol. Med. 7, 222–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Nakano, K., Nomura, R., Matsumoto, M. & Ooshima, T. Roles of oral bacteria in cardiovascular diseases – from molecular mechanisms to clinical cases: cell-surface structures of novel serotype k streptococcus mutans strains and their correlation to virulence. J. Pharmacol. Sci. 113, 120–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Schenkein, H. A. & Loos, B. G. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J. Clin. Periodontol. 40 (Suppl. 14), S51–S69 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Hashizume-Takizawa, T., Yamaguchi, Y. & Kobayashi, R. Oral challenge with Streptococcus sanguinis induces aortic inflammation and accelerates atherosclerosis in spontaneously hyperlipidemic mice. Biochem. Biophys. Res. Commun. 520, 507–513 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Chhibber-Goel, J., Singhal, V. & Bhowmik, D. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes 2, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Radaic, A. & Kapila, Y. L. The oralome and its dysbiosis: new insights into oral microbiome–host interactions. Comp. Struct. Biotechnol. J. 19, 1335–1360 (2021).

    Article  CAS  Google Scholar 

  49. Schenkein, H. A., Papapanou, P. N., Genco, R. & Sanz, M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 83, 90–106 (2000).

    Article  Google Scholar 

  50. Pussinen, P. J. et al. Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler. Thromb. Vasc. Biol. 27, 1433–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Aarabi, G., Heydecke, G. & Seedorf, U. Roles of oral infections in the pathomechanism of atherosclerosis. Int. J. Mol. Sci. 19, 1978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saini, R., Marawar, P. P., Shete, S. & Periodontitis, S. S. A true infection. J. Glob. Infect. Dis. 1, 149–150 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Virani, S. S. et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia. J. Am. Coll. Card. 78, 960–993 (2021).

    Article  Google Scholar 

  55. Rosenson, R. S. et al. HDL and atherosclerotic cardiovascular disease: genetic insights into complex biology. Nat. Rev. Cardiol. 15, 9–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Sammalkorpi, K., Valtonen, V., Kerttula, Y., Nikkila, E. & Taskinen, M. R. Changes in serum lipoprotein pattern induced by acute infections. Metabolism 37, 859–865 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Popa, C., Netea, M. G., van Riel, P. L., van der Meer, J. W. & Stalenhoef, A. F. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 48, 751–762 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Berbee, J. F., Havekes, L. M. & Rensen, P. C. Apolipoproteins modulate the inflammatory response to lipopolysaccharide. J. Endotoxin Res. 11, 97–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Auerbach, B. J. & Parks, J. S. Lipoprotein abnormalities associated with lipopolysaccharide-induced lecithin: cholesterol acyltransferase and lipase deficiency. J. Biol. Chem. 264, 10264–10270 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Feingold, K. R., Memon, R. A., Moser, A. H., Shigenaga, J. K. & Grunfeld, C. Endotoxin and interleukin-1 decrease hepatic lipase mRNA levels. Atherosclerosis 142, 379–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Khovidhunkit, W. et al. Apolipoproteins A-IV and A-V are acute-phase proteins in mouse HDL. Atherosclerosis 176, 37–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hossain, E. et al. Lipopolysaccharide augments the uptake of oxidized LDL by up-regulating lectin-like oxidized LDL receptor-1 in macrophages. Mol. Cell Biochem. 400, 29–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Levine, B., Kalman, J. & Mayer, L. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Mann, D. L. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ. Res. 116, 1254–1268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, L., Wang, Y. & Cao, Z. Y. Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J. Cell Mol. Med. 19, 2728–2740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi, R., Ogawa, Y., Hashizume-Takizawa, T. & Kurita-Ochiai, T. Oral bacteria affect the gut microbiome and intestinal immunity. Pathog. Dis. 78, ftaa024 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Kitai, T. & Tang, W. H. W. Gut microbiota in cardiovascular disease and heart failure. Clin. Sci. 132, 85–91 (2018).

    Article  Google Scholar 

  69. Francisqueti-Ferron, F. V. et al. The role of gut dysbiosis-associated inflammation in heart failure. Rev. Assoc. Med. Bras. 68, 1120–1124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Piya, M. K., Harte, A. L. & McTernan, P. G. Metabolic endotoxaemia: is it more than just a gut feeling? Curr. Opin. Lipidol. 24, 78–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Kallio, K. A. E., Hätönen, K. A. & Lehto, M. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 52, 395–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Rogler, G. & Rosano, G. The heart and the gut. Eur. Heart J. 35, 426–430 (2014).

    Article  PubMed  Google Scholar 

  73. Pasini, E., Aquilani, R. & Testa, C. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 4, 220–227 (2016).

    Article  PubMed  Google Scholar 

  74. Niebauer, J., Volk, H. D. & Kemp, M. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353, 1838–1842 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Genth-Zotz, S., Haehling, S. & Bolger, A. P. Pathophysiologic quantities of endotoxin-induced tumor necrosis factor-alpha release in whole blood from patients with chronic heart failure. Am. J. Cardiol. 90, 1226–1230 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Jamart, C., Gomes, A. V. & Dewey, S. Regulation of ubiquitin-proteasome and autophagy pathways after acute LPS and epoxomicin administration in mice. BMC Musculoskelet. Disord. 15, 166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yao, Z., Mates, J. M. & Cheplowitz, A. M. Blood-borne lipopolysaccharide is rapidly eliminated by liver sinusoidal endothelial cells via high-density lipoprotein. J. Immunol. 197, 2390–2399 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Tsukamoto, H., Takeuchi, S. & Kubota, K. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1–IKKε–IRF3 axis activation. J. Biol. Chem. 293, 10186–10201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sandek, A., Bjarnason, I. & Volk, H. D. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int. J. Cardiol. 157, 80–85 (2012).

    Article  PubMed  Google Scholar 

  81. Habib, G. et al. 2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology. Eur. Heart J. 36, 3075–3128 (2015).

    Article  PubMed  Google Scholar 

  82. Kanafani, Z. A., Mahfouz, T. H. & Kanj, S. S. Infective endocarditis at a tertiary care centre in Lebanon: predominance of streptococcal infection. J. Infect. 45, 152–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Barrau, K., Boulamery, A. & Imbert, G. Causative organisms of infective endocarditis according to host status. Clin. Microbiol. Infect. 10, 302–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Tariq, M., Alam, M. & Munir, G. Infective endocarditis: a five-year experience at a tertiary care hospital in Pakistan. Int. J. Infect. Dis. 8, 163–170 (2004).

    Article  PubMed  Google Scholar 

  85. Nakatani, S., Mitsutake, K. & Ohara, T. Recent picture of infective endocarditis in Japan–lessons from Cardiac Disease Registration (CADRE-IE). Circ. J. 77, 1558–1564 (2013).

    Article  PubMed  Google Scholar 

  86. Horliana, A. C. et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: a systematic review. PLoS ONE 9, e98271 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vikram, H. R. The long and short of vegetations in infective endocarditis. Expert. Rev. Anti Infect. Ther. 5, 529–533 (2007).

    Article  PubMed  Google Scholar 

  88. Drangsholt, M. T. A new causal model of dental diseases associated with endocarditis. Ann. Periodontol. 3, 184–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Moreillon, P., Que, Y. A. & Bayer, A. S. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect. Dis. Clin. North. Am. 16, 297–318 (2002).

    Article  PubMed  Google Scholar 

  90. Brown, M. & Griffin, G. E. Immune responses in endocarditis. Heart 79, 1–2 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gould, K., Ramirez-Ronda, C. H., Holmes, R. K. & Sanford, J. P. Adherence of bacteria to heart valves in vitro. J. Clin. Invest. 56, 1364–1370 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kuusela, P., Vartio, T., Vuento, M. & Myhre, E. B. Attachment of staphylococci and streptococci on fibronectin, fibronectin fragments, and fibrinogen bound to a solid phase. Infect. Immun. 50, 77–81 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mandell, G.L. & Korzeniowski, O.M. Atlas of Infectious Diseases Vol. 10 (Current Medicine, 1997).

  94. Durack, D. T. & Beeson, P. B. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br. J. Exp. Pathol. 53, 44–49 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Carapetis, J. R. et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Prim. 2, 15084 (2016).

    Article  PubMed  Google Scholar 

  96. Mayosi, B., Robertson, K. & Volmink, J. The Drakensberg declaration on the control of rheumatic fever and rheumatic heart disease in Africa. S Afr. Med. J. 96 (3 Pt 2), 246 (2006).

    PubMed  Google Scholar 

  97. Watkins, D. A., Beaton, A. Z. & Carapetis, J. R. Rheumatic heart disease worldwide. JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 72, 1397–1416 (2018).

    Article  PubMed  Google Scholar 

  98. McDonald, M., Currie, B. J. & Carapetis, J. R. Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infect. Dis. 4, 240–245 (2004).

    Article  PubMed  Google Scholar 

  99. Dinkla, K. et al. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS ONE 4, e4666 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tandon, R., Sharma, M. & Chandrashekhar, Y. Revisiting the pathogenesis of rheumatic fever and carditis. Nat. Rev. Cardiol. 10, 171–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Martins, T. B., Hoffman, J. L. & Augustine, N. H. Comprehensive analysis of antibody responses to streptococcal and tissue antigens in patients with acute rheumatic fever. Int. Immunol. 20, 445–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Entine, M. A survey of dental diseases as a diagnostic aid in rheumatic fever. J. Am. Dent. Assoc. 38, 303–308 (1949).

    Article  CAS  PubMed  Google Scholar 

  103. Peres, M. A., Macpherson, L. M. D. & Weyant, R. J. Oral diseases: a global public health challenge. Lancet 394, 249–260 (2019).

    Article  PubMed  Google Scholar 

  104. Petersen, P. E., Bourgeois, D. & Ogawa, H. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. 83, 661–669 (2005).

    PubMed  PubMed Central  Google Scholar 

  105. Easley, M. W. Celebrating 50 years of fluoridation: a public health success story. Br. Dent. J. 178, 72–75 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Grembowski, D., Fiset, L., Spadafora, A. & Milgrom, P. Fluoridation effects on periodontal disease among adults. J. Periodontal Res. 28, 166–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Anuradha, K. P., Chadrashekar, J. & Ramesh, N. Prevalence of periodontal disease in endemically flourosed areas of Davangere Taluk, India. Indian J. Dent. Res. 13, 15–19 (2002).

    CAS  PubMed  Google Scholar 

  108. Thongboonkerd, V., Luengpailin, J. & Cao, J. Fluoride exposure attenuates expression of Streptococcus pyogenes virulence factors. J. Biol. Chem. 277, 16599–16605 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Surve, N. Z. et al. A longitudinal study of antibody responses to selected host antigens in rheumatic fever and rheumatic heart disease. J. Med. Microbiol. https://doi.org/10.1099/jmm.0.001355 (2021).

    Article  PubMed  Google Scholar 

  110. Pilapitiya, D. H. et al. Antibody responses to collagen peptides and streptococcal collagen-like 1 proteins in acute rheumatic fever patients. Pathog. Dis. 79, ftab033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maresz, K. J. et al. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD). PLoS Pathog. 9, e1003627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamada, R., Suzuki, A., Chang, X. & Yamamoto, K. Citrullinated proteins in rheumatoid arthritis. Front. Biosci. 10, 54–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Koziel, J., Mydel, P. & Potempa, J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr. Rheumatol. Rep. 16, 408 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Into, T. et al. Arginine-specific gingipains from Porphyromonas gingivalis deprive protective functions of secretory leucocyte protease inhibitor in periodontal tissue. Clin. Exp. Immunol. 145, 545–554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pathirana, R. D., O’Brien-Simpson, N. M., Veith, P. D., Riley, P. F. & Reynolds, E. C. Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis. Microbiology 152, 2381–2394 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Ruggiero, S. et al. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C. Biochim. Biophys. Acta 1832, 517–526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, B. et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS ONE 7, e37919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sintim, H. O. & Gürsoy, U. K. Biofilms as “connectors” for oral and systems medicine: a new opportunity for biomarkers, molecular targets, and bacterial eradication. OMICS 20, 3–11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sudhakara, P., Gupta, A., Bhardwaj, A. & Wilson, A. Oral dysbiotic communities and their implications in systemic diseases. Dent. J. 6, 10 (2018).

    Article  Google Scholar 

  120. Olsen, I. & Hajishengallis, G. Major neutrophil functions subverted by Porphyromonas gingivalis. J. Oral. Microbiol. 8, 30936 (2016).

    Article  PubMed  Google Scholar 

  121. Darveau, R. P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Hajishengallis, E. & Hajishengallis, G. Neutrophil homeostasis and periodontal health in children and adults. J. Dent. Res. 93, 231–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hajishengallis, G. & Harokopakis, E. Porphyromonas gingivalis interactions with complement receptor 3 (CR3): innate immunity or immune evasion? Front. Biosci. 12, 4547–4557 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Hajishengallis, G., Shakhatreh, M. A., Wang, M. & Liang, S. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. J. Immunol. 179, 2359–2367 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Zargar, A. et al. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways: a closer investigation of interkingdom signaling. mBio 6, e00025-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yee, M., Kim, S. & Sethi, P. Porphyromonas gingivalis stimulates IL-6 and IL-8 secretion in GMSM-K, HSC-3 and H413 oral epithelial cells. Anaerobe 28, 62–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Imamura, T., Potempa, J., Tanase, S. & Travis, J. Activation of blood coagulation factor X by arginine-specific cysteine proteinases (gingipain-Rs) from Porphyromonas gingivalis. J. Biol. Chem. 272, 16062–16067 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Roth, G. A., Moser, B. & Huang, S. J. Infection with a periodontal pathogen induces procoagulant effects in human aortic endothelial cells. J. Thromb. Haemost. 4, 2256–2261 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Roth, G. A., Moser, B. & Roth-Walter, F. Infection with periodontal pathogen increases mononuclear cell adhesion to human aortic endothelial cells. Atherosclerosis 190, 271–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Moran, A. P., Prendergast, M. M. & Appelmelk, B. J. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16, 105–115 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Neves, A. L., Coelho, J. & Couto, L. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J. Mol. Endocrinol. 51, R51–R64 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Liljestrand, J. M. et al. Immunologic burden links periodontitis to acute coronary syndrome. Atherosclerosis 268, 177–184 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Jia, R., Kurita-Ochiai, T., Oguchi, S. & Yamamoto, M. Periodontal pathogen accelerates lipid peroxidation and atherosclerosis. J. Dent. Res. 92, 247–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Tuomainen, A. M., Jauhiainen, M. & Kovanen, P. T. Aggregatibacter actinomycetemcomitans induces MMP-9 expression and proatherogenic lipoprotein profile in apoE-deficient mice. Microb. Pathog. 44, 111–117 (2007).

    Article  PubMed  Google Scholar 

  135. Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug. Discov. 7, 156–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Goh, C. E. et al. Association between nitrate‐reducing oral bacteria and cardiometabolic outcomes: results from ORIGINS. J. Am. Heart Assoc. 8, e013324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Aurer, A., Aleksic, J., Ivic-Kardum, M., Aurer, J. & Culo, F. Nitric oxide synthesis is decreased in periodontitis. J. Clin. Periodontol. 28, 565–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Kleinbongard, P. et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic. Biol. Med. 40, 295–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Desvarieux, M. et al. Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J. Hypertens. 28, 1413–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tonetti, M. S. et al. Treatment of periodontitis and endothelial function. N. Engl. J. Med. 356, 911–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Mollenhauer, J. & Schulmeister, A. The humoral immune response to heat shock proteins. Experientia 48, 644–649 (1992).

    Article  CAS  PubMed  Google Scholar 

  142. Suarez, L. J., Garzon, H., Arboleda, S. & Rodriguez, A. Oral dysbiosis and autoimmunity: from local periodontal responses to an imbalanced systemic immunity. A review. Front. Immunol. 11, 591255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wick, G., Perschinka, H. & Xu, Q. Autoimmunity and atherosclerosis. Am. Heart J. 138, 444–449 (1999).

    Article  Google Scholar 

  144. Wick, G., Jakic, B. & Buszko, M. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11, 516–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Perschinka, H. et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 1060–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Tutturen, A. E. V., Fleckenstein, B. & Souza, G. A. Assessing the citrullinome in rheumatoid arthritis synovial fluid with and without enrichment of citrullinated peptides. J. Proteome Res. 13, 2867–2873 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Steendam, K., Tilleman, K. & Ceuleneer, M. Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res. Ther. 12, R132 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Fert-Bober, J. & Sokolove, J. Proteomics of citrullination in cardiovascular disease. Proteom. Clin. Appl. 8, 522–533 (2014).

    Article  CAS  Google Scholar 

  149. Weyrich, A. S. & Zimmerman, G. A. Platelets: signaling cells in the immune continuum. Trends Immunol. 25, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Kerrigan, S. W. et al. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect. Immun. 75, 5740–5747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fitzgerald, F. Jr, Foster, T. J. & Cox, D. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol. 4, 445–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Kerrigan, S. W. & Cox, D. Platelet-bacterial interactions. Cell Mol. Life Sci. 67, 513–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Erickson, P. R. & Herzberg, M. C. The Streptococcus sanguis platelet aggregation-associated protein. J. Biol. Chem. 268, 1646–1649 (1993).

    Article  CAS  PubMed  Google Scholar 

  154. Plummer, C., Wu, H. & Kerrigan, S. W. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br. J. Haematol. 129, 101–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Takahashi, Y., Ruhl, S. & Yoon, J. W. Adhesion of viridans group streptococci to sialic acid-, galactose-, and N-acetylgalactosamine-containing receptors. Oral. Microbiol. Immunol. 17, 257–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Taniguchi, N. et al. Defect of glucosyltransferases reduces platelet aggregation activity of Streptococcus mutans: analysis of clinical strains isolated from oral cavities. Arch. Oral. Biol. 55, 410–416 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Nakano, K. et al. Detection of oral bacteria in cardiovascular specimens. Oral. Microbiol. Immunol. 24, 64–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Kozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A. Jr & Progulske-Fox, A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25, e17–e18 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Torrungruang, K., Jitpakdeebordin, S., Charatkulangkun, O. & Gleebbua, Y. Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola/Prevotella intermedia co-infection are associated with severe Periodontitis in a Thai population. PLoS ONE 10, e0136646 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Pucar, A., Milasin, J. & Lekovic, V. Correlation between atherosclerosis and periodontal putative pathogenic bacterial infections in coronary and internal mammary arteries. J. Periodontol. 78, 677–682 (2007).

    Article  PubMed  Google Scholar 

  161. Ford, P. J., Gemmell, E. & Hamlet, S. M. Cross-reactivity of GroEL antibodies with human heat shock protein 60 and quantification of pathogens in atherosclerosis. Oral. Microbiol. Immunol. 20, 296–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Kozarov, E., Sweier, D., Shelburne, C., Progulske-Fox, A. & Lopatin, D. Detection of bacterial DNA in atheromatous plaques by quantitative PCR. Microbes Infect. 8, 687–693 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Rafferty, B. et al. Impact of monocytic cells on recovery of uncultivable bacteria from atherosclerotic lesions. J. Intern. Med. 270, 273–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Amar, S., Wu, S.-C. & Madan, M. Is Porphyromonas gingivalis cell invasion required for atherogenesis? Pharmacotherapeutic implications. J. Immunol. 182, 1584–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Amin, M. N. et al. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 8, 2050312120965752 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kaptoge, S. et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur. Heart J. 35, 578–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Lagrand, W. K. et al. C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation 100, 96–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Danesh, J. et al. Risk factors for coronary heart disease and acute-phase proteins. A population-based study. Eur. Heart J. 20, 954–959 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Cardoso, E. M., Reis, C. & Manzanares-Cespedes, M. C. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad. Med. 130, 98–104 (2018).

    Article  PubMed  Google Scholar 

  170. Polepalle, T., Moogala, S., Boggarapu, S., Pesala, D. S. & Palagi, F. B. Acute phase proteins and their role in periodontitis: a review. J. Clin. Diagn. Res. 9, ZE01–ZE05 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Amar, S. et al. Periodontal disease is associated with brachial artery endothelial dysfunction and systemic inflammation. Arterioscler. Thromb. Vasc. Biol. 23, 1245–1249 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Fukuchi, Y. et al. Immunohistochemical detection of oxidative stress biomarkers, dityrosine and Nε-(hexanoyl)lysine, and C-reactive protein in rabbit atherosclerotic lesions. J. Atheroscler. Thromb. 15, 185–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Tsutsui, H., Kinugawa, S. & Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 301, H2181–H2190 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Fagundes, N. C. F. et al. Periodontitis as a risk factor for stroke: a systematic review and meta-analysis. Vasc. Health Risk Manag. 15, 519–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kurita-Ochiai, T., Jia, R., Cai, Y., Yamaguchi, Y. & Yamamoto, M. Periodontal disease-induced atherosclerosis and oxidative stress. Antioxidants 4, 577–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dahiya, P. et al. Reactive oxygen species in periodontitis. J. Indian Soc. Periodontol. 17, 411–416 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Takimoto, E. & Kass, D. A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49, 241–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Madan, M. & Amar, S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS ONE 3, e3204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chi, H., Messas, E., Levine, R. A., Graves, D. T. & Amar, S. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model. Circulation 110, 1678–1685 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Madan, M., Bishayi, B., Hoge, M. & Amar, S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis 197, 504–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Reiss, A. B., Siegart, N. M. & De Leon, J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin. Lipidol. 12, 14–23 (2017).

    CAS  Google Scholar 

  182. Ser, H. L., Letchumanan, V., Goh, B. H., Wong, S. H. & Lee, L. H. The use of fecal microbiome transplant in treating human diseases: too early for poop? Front. Microbiol. 12, 519836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Gupta, S., Allen-Vercoe, E. & Petrof, E. O. Fecal microbiota transplantation: in perspective. Ther. Adv. Gastroenterol. 9, 229–239 (2016).

    Article  Google Scholar 

  184. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68, 70–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Debédat, J., Clément, K. & Aron-Wisnewsky, J. Gut microbiota dysbiosis in human obesity: impact of bariatric surgery. Curr. Obes. Rep. 8, 229–242 (2019).

    Article  PubMed  Google Scholar 

  186. Džunková, M. et al. Salivary microbiome composition changes after bariatric surgery. Sci. Rep. 10, 20086 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Stefura, T. et al. Changes in the composition of oral and intestinal microbiota after sleeve gastrectomy and Roux-en-Y gastric bypass and their impact on outcomes of bariatric surgery. Obes. Surg. 32, 1439–1450 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Durand, R. et al. Dental caries are positively associated with periodontal disease severity. Clin. Oral. Investig. 23, 3811–3819 (2019).

    Article  PubMed  Google Scholar 

  189. Kilian, M. The oral microbiome – friend or foe? Eur. J. Oral. Sci. 126, 5–12 (2018).

    Article  PubMed  Google Scholar 

  190. Sälzer, S., Graetz, C., Dörfer, C. E., Slot, D. E. & Weijden, F. A. Contemporary practices for mechanical oral hygiene to prevent periodontal disease. Periodontology 84, 35–44 (2000).

    Article  Google Scholar 

  191. Chapple, I. L. C. et al. Primary prevention of periodontitis: managing gingivitis. J. Clin. Periodontol. 42 (Suppl. 16), S71–S76 (2015).

    Article  PubMed  Google Scholar 

  192. Innes, N. & Fee, P. A. Is personal oral hygiene advice effective in preventing coronal dental caries? Evid. Based Dent. 20, 52–53 (2019).

    Article  PubMed  Google Scholar 

  193. Ten Cate, J. M. & Featherstone, J. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit. Rev. Oral. Biol. Med. 2, 283–296 (1991).

    Article  PubMed  Google Scholar 

  194. Joshipura, K., Muñoz-Torres, F., Fernández-Santiago, J., Patel, R. P. & Lopez-Candales, A. Over-the-counter mouthwash use, nitric oxide and hypertension risk. Blood Press. 29, 103–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Kapil, V. et al. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free. Radic. Biol. Med. 55, 93–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Dagher, A. & Hannan, N. Mouthwash: more harm than good? Br. Dent. J. 226, 240 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. D’Aiuto, F. et al. Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial. Lancet Diabetes Endocrinol. 6, 954–965 (2018).

    Article  PubMed  Google Scholar 

  198. Cavero-Redondo, I., Peleteiro, B., Alvarez-Bueno, C., Rodriguez-Artalejo, F. & Martinez-Vizcaino, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: a systematic review and meta-analysis. BMJ Open 7, e015949 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mulhall, H., Huck, O. & Amar, S. Porphyromonas gingivalis, a long-range pathogen: systemic impact and therapeutic implications. Microorganisms 8, 869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wong, J. M. W. et al. Gut microbiota, diet, and heart disease. J. AOAC Int. 95, 24–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Hara, H., Haga, S., Aoyama, Y. & Kiriyama, S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J. Nutr. 129, 942–948 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Granado-Serrano, A. B. et al. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 9, 1772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Satija, A. & Hu, F. B. Plant-based diets and cardiovascular health. Trends Cardiovasc. Med. 28, 437–441 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Tian, Y. et al. The microbiome modulating activity of bile acids. Gut Microbes 11, 979–996 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Tang, W. H. W., Li, D. Y. & Hazen, S. L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 16, 137–154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li, Y. T., Swales, K. E., Thomas, G. J., Warner, T. D. & Bishop-Bailey, D. Farnesoid X receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler. Thromb. Vasc. Biol. 27, 2606–2611 (2007).

    Article  PubMed  Google Scholar 

  208. Wang, Y. D. et al. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Xu, Y. et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 64, 1072–1085 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Cipriani, S., Mencarelli, A., Palladino, G. & Fiorucci, S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res. 51, 771–784 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. von Haehling, S. et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial. J. Am. Coll. Cardiol. 59, 585–592 (2012).

    Article  Google Scholar 

  212. Nascimento, M. M. Approaches to modulate biofilm ecology. Dent. Clin. North. Am. 63, 581–594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Shin, J. M. et al. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front. Microbiol. 6, 617 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Altman, H. et al. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J. Antimicrob. Chemother. 58, 198–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Sol, A. et al. LL-37 opsonizes and inhibits biofilm formation of Aggregatibacter actinomycetemcomitans at subbactericidal concentrations. Infect. Immun. 81, 3577–3585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Libby, P. et al. Inflammation, immunity, and infection in atherothrombosis. J. Am. Coll. Cardiol. 72, 2071–2081 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 70, 2278–2289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Umu, O. C. O., Rudi, K. & Diep, D. B. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb. Ecol. Health Dis. 28, 1348886 (2017).

    PubMed  PubMed Central  Google Scholar 

  220. Maitre, Y. et al. Pre and probiotics involved in the modulation of oral bacterial species: new therapeutic leads in mental disorders? Microorganisms 9, 1450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jimenez-Hernandez, N. et al. Modulation of saliva microbiota through prebiotic intervention in HIV-infected individuals. Nutrients 11, 1346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Nascimento, M. M. Potential uses of arginine in dentistry. Adv. Dent. Res. 29, 98–103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Agnello, M. et al. Arginine improves pH homeostasis via metabolism and microbiome modulation. J. Dent. Res. 96, 924–930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Rosier, B. T., Buetas, E., Moya-Gonzalvez, E. M., Artacho, A. & Mira, A. Nitrate as a potential prebiotic for the oral microbiome. Sci. Rep. 10, 12895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Slomka, V. et al. Oral prebiotics and the influence of environmental conditions in vitro. J. Periodontol. 89, 708–717 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Nguyen, T. et al. Probiotics, including nisin-based probiotics, improve clinical and microbial outcomes relevant to oral and systemic diseases. Periodontol 82, 173–185 (2020).

    Article  Google Scholar 

  227. Nguyen, T., Brody, H., Radaic, A. & Kapila, Y. L. Probiotics for periodontal health–current molecular findings. Periodontol 87, 254–267 (2021).

    Article  Google Scholar 

  228. Khalaf, H. et al. Antibacterial effects of Lactobacillus and bacteriocin PLNC8 ab on the periodontal pathogen Porphyromonas gingivalis. BMC Microbiol. 16, 188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Terai, T. et al. Screening of probiotic candidates in human oral bacteria for the prevention of dental disease. PLoS ONE 10, e0128657 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Preshaw, P. M. et al. Subantimicrobial dose doxycycline as adjunctive treatment for periodontitis: a review. J. Clin. Periodontol. 31, 697–707 (2004).

    Article  CAS  PubMed  Google Scholar 

  231. Ramamurthy, N. S. et al. Inhibition of matrix metalloproteinase-mediated periodontal bone loss in rats: a comparison of 6 chemically modified tetracyclines. J. Periodontol. 73, 726–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Jiao, Y., Tay, F. R., Niu, L. N. & Chen, J. H. Advancing antimicrobial strategies for managing oral biofilm infections. Int. J. Oral. Sci. 11, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Bernegossi, J. et al. Peptide KSL-W-loaded mucoadhesive liquid crystalline vehicle as an alternative treatment for multispecies oral biofilm. Molecules 21, E37 (2015).

    Article  PubMed  Google Scholar 

  234. Liu, Y. L., Nascimento, M. & Burne, R. A. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int. J. Oral. Sci. 4, 135–140 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  235. He, J. et al. l-Arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. J. Bacteriol. 198, 2651–2661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Fabbri, S. et al. High-velocity microsprays enhance antimicrobial activity in Streptococcus mutans biofilms. J. Dent. Res. 95, 1494–1500 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Gao, L. et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101, 272–284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kovacic, S. & Bakran, M. Genetic susceptibility to atherosclerosis. Stroke Res. Treat. 2012, 362941 (2012).

    PubMed  PubMed Central  Google Scholar 

  239. Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 47, C7–C12 (2006).

    Article  CAS  PubMed  Google Scholar 

  240. Malekmohammad, K., Bezsonov, E. E. & Rafieian-Kopaei, M. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms. Front. Cardiovasc. Med. 8, 707529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lehti, S. et al. Extracellular lipids accumulate in human carotid arteries as distinct three-dimensional structures and have proinflammatory properties. Am. J. Pathol. 188, 525–538 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Geng, Y. J. & Libby, P. Progression of atheroma: a struggle between death and procreation. Arterioscler. Thromb. Vasc. Biol. 22, 1370–1380 (2002).

    Article  CAS  PubMed  Google Scholar 

  243. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article  CAS  PubMed  Google Scholar 

  244. Sakakura, K. et al. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 22, 399–411 (2013).

    Article  PubMed  Google Scholar 

  245. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Verma, D., Garg, P. K. & Dubey, A. K. Insights into the human oral microbiome. Arch. Microbiol. 200, 525–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Aas, J. A., Paster, B. J. & Stokes, L. N. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Dewhirst, F. E., Chen, T. & Izard, J. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Palmer, R. J. Composition and development of oral bacterial communities. Periodontology 64, 20–39 (2014).

    Article  Google Scholar 

  250. Sutter, V. L. Anaerobes as normal oral flora. Rev. Infect. Dis. 6 (Suppl. 1), S62–S66 (1984).

    Article  PubMed  Google Scholar 

  251. Deo, P. N. & Deshmukh, R. Oral microbiome: unveiling the fundamentals. J. Oral. Maxillofac. Pathol. 23, 122–128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Thomas, T., Gilbert, J. & Meyer, F. Metagenomics – a guide from sampling to data analysis. Microb. Inf. Exp. 2, 3 (2012).

    Article  Google Scholar 

  253. Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  254. Lowe, R., Shirley, N. & Bleackley, M. Transcriptomics technologies. PLoS Comput. Biol. 13, e1005457 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Rifai, N., Gillette, M. A. & Carr, S. A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  256. Gilbert, J. A., Field, D. & Huang, Y. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS ONE 3, e3042 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Jones, N. R. V., Tong, T. Y. N. & Monsivais, P. Meeting UK dietary recommendations is associated with higher estimated consumer food costs: an analysis using the National Diet and Nutrition Survey and consumer expenditure data, 2008–2012. Public Health Nutr. 21, 948–956 (2018).

    Article  PubMed  Google Scholar 

  258. Bhupathiraju, S. N., Wedick, N. M. & Pan, A. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am. J. Clin. Nutr. 98, 1514–1523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bahadoran, Z., Mirmiran, P. & Kabir, A. The nitrate-independent blood pressure-lowering effect of beetroot juice: a systematic review and meta-analysis. Adv. Nutr. 8, 830–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Larsen, F. J., Ekblom, B. & Sahlin, K. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 355, 2792–2793 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Broxterman, R. M., Salle, D. T. & Zhao, J. Influence of dietary inorganic nitrate on blood pressure and vascular function in hypertension: prospective implications for adjunctive treatment. J. Appl. Physiol. 127, 1085–1094 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. D’El-Rei, J., Cunha, A. R. & Trindade, M. Beneficial effects of dietary nitrate on endothelial function and blood pressure levels. Int. J. Hypertens. 2016, 6791519 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Velmurugan, S., Gan, J. M. & Rathod, K. S. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 103, 25–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Lidder, S. & Webb, A. J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate–nitrite–nitric oxide pathway. Br. J. Clin. Pharmacol. 75, 677–696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Jackson, J. K., Patterson, A. J. & MacDonald-Wick, L. K. The role of inorganic nitrate and nitrite in cardiovascular disease risk factors: a systematic review and meta-analysis of human evidence. Nutr. Rev. 76, 348–371 (2018).

    Article  PubMed  Google Scholar 

  266. Petersson, J., Carlström, M. & Schreiber, O. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic. Biol. Med. 46, 1068–1075 (2006).

    Article  Google Scholar 

  267. Mitsui, T. & Harasawa, R. The effects of essential oil, povidone-iodine, and chlorhexidine mouthwash on salivary nitrate/nitrite and nitrate-reducing bacteria. J. Oral. Sci. 59, 597–601 (2017).

    Article  PubMed  Google Scholar 

  268. Bondonno, C. P., Liu, A. H. & Croft, K. D. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am. J. Hypertens. 28, 572–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Deehan, E. C., Yang, C. & Perez-Muñoz, M. E. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27, 389–404 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Perry, R. J., Peng, L. & Barry, N. A. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Whelton, S. P., Hyre, A. D. & Pedersen, B. Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J. Hypertens. 23, 475–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  272. Pluznick, J. L., Protzko, R. J. & Gevorgyan, H. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Natarajan, N., Hori, D. & Flavahan, S. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genomics 48, 826–834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Li, J., Zhao, F. & Wang, Y. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Espina, M., Gabarrini, G. & Harmsen, H. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol. Rev. 43, 1–18 (2019).

    Article  Google Scholar 

  276. Brusca, S. B., Abramson, S. B. & Scher, J. U. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr. Opin. Rheumatol. 26, 101–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Chen, B., Sun, L. & Zhang, X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J. Autoimmun. 83, 31–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  278. Saini, R., Saini, S. & Sharma, S. Biofilm: a dental microbial infection. J. Nat. Sci. Biol. Med. 2, 71–75 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Pischon, N., Pischon, T. & Kröger, J. Association among rheumatoid arthritis, oral hygiene, and periodontitis. J. Periodontol. 79, 979–986 (2008).

    Article  CAS  PubMed  Google Scholar 

  280. Meulen, T., Harmsen, H. & Bootsma, H. Dysbiosis of the buccal mucosa microbiome in primary Sjögren’s syndrome patients. Rheumatol 57, 2225–2234 (2018).

    Article  Google Scholar 

  281. Gent, A. E., Hellier, M. D. & Grace, R. H. Inflammatory bowel disease and domestic hygiene in infancy. Lancet 343, 766–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  282. Li, B. Z., Zhou, H. Y. & Guo, B. Dysbiosis of oral microbiota is associated with systemic lupus erythematosus. Arch. Oral. Biol. 113, 104708 (2020).

    Article  CAS  PubMed  Google Scholar 

  283. Kitamoto, S., Nagao-Kitamoto, H. & Jiao, Y. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.T. acknowledges funding from the Skye Foundation, the Life Healthcare Group and The Mandela Rhodes Foundation. E.N.L. acknowledges funding from the National Research Foundation of South Africa and the Carnegie Corporation of New York. N.A.B.N. acknowledges funding from the National Research Foundation, South African Medical Research Council, Medical Research Council United Kingdom, and the Lily and Ernst Hausmann Trust. The funders had no role in the design and conduct of the research.

Author information

Authors and Affiliations

Authors

Contributions

E.N.L. and N.A.B.N. conceived the microbiome project. A.T., E.N.L. and N.A.B.N. researched data for the article, and A.T. compiled the figures. All the authors contributed to discussion of content, writing of the manuscript and reviewing/editing the article before submission.

Corresponding author

Correspondence to Ntobeko A. B. Ntusi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Bruno Bohn, Ryan Demmer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dysbiosis

Any change to the composition or function, in terms of abundance and diversity, of resident commensal microbes relative to the composition or role in healthy individuals. Owing to the close, bidirectional orchestration of these communities and human physiology, perturbations in abundance and diversity can lead to inflammatory and metabolic abnormalities that contribute to a plethora of diseases.

Endotoxaemia

Translocation of lipopolysaccharide in the circulation, which can arise from infections or commensal bacteria. The oral cavity is an important source of endotoxaemia. The mouth harbours approximately 100–200 commensal bacterial species and has higher phylogenetic diversity than any other location in the body.

Eubiosis

A healthy or optimal microbiome, one with diversity and uniformity of respective microbiota, at abundances characteristically found in healthy individuals. A eubiotic microbiome confers a protective and beneficial physiological effect, helping to maintain the optimal homeostatic balance while ensuring appropriate training and maintenance of the immunological system.

Microbiome

A characteristic community of microbiota, including bacteria, archaea, fungi, viruses, protists and algae, occupying a specific habitat, including their ‘theatre of activity’, consisting of various microbial structural elements (proteins, lipids and polysaccharides and nucleic acids), internal and external structural elements (including microbial metabolites and mobile genetic elements) and the immediate environmental conditions. Together, these elements form unique ecological niches that are dynamic and adaptable through time, integrating with host physiology to influence function and health.

Multiomics

A comprehensive, or global, assessment of a set of molecules. The term is commonly applied to high-throughput technologies in the fields of genomics, proteomics, transcriptomics, metabolomics and lipidomics. When these fields are combined, specifically looking at data from a ‘multiomics’ perspective, the flow of information that underlies disease, from gene to phenotype, can be elucidated.

Oralome

The overarching term using to summarize the dynamic interactions between the ecological community of oral microorganisms, including bacteria, fungi, viruses, archaea and protozoa that live within the oral cavity of the host.

Periodontitis

A chronic inflammatory disease associated with destruction of connective tissue of gingiva, periodontal ligament and alveolar bone following untreated or improperly treated gingivitis. Bacterial biofilms (dental plaque), predominantly composed of the viridans group streptococci, are the primary aetiological factors for the inflammatory process of gingivitis, leading to subsequent destruction of periodontal tissues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonelli, A., Lumngwena, E.N. & Ntusi, N.A.B. The oral microbiome in the pathophysiology of cardiovascular disease. Nat Rev Cardiol 20, 386–403 (2023). https://doi.org/10.1038/s41569-022-00825-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00825-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing