Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential

Abstract

Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.

Key points

  • Pathological cardiac hypertrophy is a leading risk factor for cardiovascular morbidity and mortality and is associated with increased fibrosis and apoptosis that lead to ventricular stiffness, risk of arrhythmia and impaired cardiac function.

  • Partial reversal of cardiac hypertrophy occurs with many existing heart failure therapies, including renin–angiotensin–aldosterone system, β-adrenergic receptor, calcium-channel and SGLT2 antagonists, but is achieved in only a subset of patients.

  • The potential for reverse remodelling in heart disease is influenced by many factors, including biological sex, genetics, duration of hypertension, BMI, age and disease aetiology.

  • Exercise-induced and pregnancy-induced physiological cardiac hypertrophy is driven by cellular mechanisms distinct from those in pathological hypertrophy, and is completely reversible, whereas moderate exercise in heart failure antagonizes pathological cellular pathways and promotes hypertrophy regression.

  • At the molecular level, hypertrophy regression is associated with metabolic shifts, reduced protein synthesis, extracellular matrix remodelling and altered activity of proteolytic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular signalling pathways of physiological and pathological hypertrophy.
Fig. 2: Molecular features of hypertrophy regression with mechanical unloading.
Fig. 3: Molecular features of cardiac atrophy.

Similar content being viewed by others

References

  1. Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bluemke, D. A. et al. The relationship of left ventricular mass and geometry to incident cardiovascular events. The MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 52, 2148–2155 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322, 1561–1566 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Izumi, C. et al. Effect of left ventricular reverse remodeling on long-term outcomes after aortic valve replacement. Am. J. Cardiol. 124, 105–112 (2019).

    Article  PubMed  Google Scholar 

  5. Daubert, M. A. et al. NT-proBNP goal achievement is associated with significant reverse remodeling and improved clinical outcomes in HFrEF. JACC Heart Fail. 7, 158–168 (2019).

    Article  PubMed  Google Scholar 

  6. Kim, G. H., Uriel, N. & Burkhoff, D. Reverse remodelling and myocardial recovery in heart failure. Nat. Rev. Cardiol. 15, 83–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Rawlins, J., Bhan, A. & Sharma, S. Left ventricular hypertrophy in athletes. Eur. J. Echocardiogr. 10, 350–356 (2009).

    Article  PubMed  Google Scholar 

  8. Swoboda, P. P. et al. Regression of left ventricular mass in athletes undergoing complete detraining is mediated by decrease in intracellular but not extracellular compartments. Circ. Cardiovasc. Imaging 12, e009417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chung, E. & Leinwand, L. A. Pregnancy as a cardiac stress model. Cardiovascular Res. 101, 561–570 (2014).

    Article  CAS  Google Scholar 

  10. Nauta, J. F. et al. Concentric vs. eccentric remodelling in heart failure with reduced ejection fraction: clinical characteristics, pathophysiology and response to treatment. Eur. J. Heart Fail. 22, 1147–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Melenovsky, V. Cardiac adaptation to volume overload. Card. Adaptations: Mol. Mechanisms 4, 167–199 (2013).

    Article  Google Scholar 

  12. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carreño, J. E., Apablaza, F., Ocaranza, M. P. & Jalil, J. E. Cardiac hypertrophy: molecular and cellular events. Rev. Esp. Cardiol. 59, 473–486 (2006).

    Article  PubMed  Google Scholar 

  14. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Weeks, K. L. & McMullen, J. R. The athlete’s heart vs. the failing heart: Can signaling explain the two distinct outcomes? Physiology 26, 97–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Troncoso, R., Ibarra, C., Vicencio, J. M., Jaimovich, E. & Lavandero, S. New insights into IGF-1 signaling in the heart. Trends Endocrinol. Metab. 25, 128–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Dale Abel, E. Insulin signaling in the heart. Am. J. Physiol. Endocrinol. Metab. 321, 130–145 (2021).

    Article  Google Scholar 

  19. Nagao, H. et al. Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proc. Natl Acad. Sci. USA 118, e2019474118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riehle, C. et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol. Cell. Biol. 34, 3450–3460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. McMullen, J. R. et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway. J. Biol. Chem. 279, 4782–4793 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. McMullen, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA 100, 12355–12360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skurk, C. et al. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J. Biol. Chem. 280, 20814–20823 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Boström, P. et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143, 1072–1083 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haq, S. et al. Glycogen synthase kinase-3β is a negative regulator of cardiomyocyte hypertrophy. J. Cell Biol. 151, 117–129 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sciarretta, S., Forte, M., Frati, G. & Sadoshima, J. New insights into the role of mtor signaling in the cardiovascular system. Circ. Res. 122, 489–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bueno, O. F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ojamaa, K. Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy. Vasc. Pharmacol. 52, 113–119 (2010).

    Article  CAS  Google Scholar 

  29. Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538–541 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang, K. C. et al. Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and α-myosin heavy chain in rat hearts. J. Clin. Invest. 100, 1742–1749 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trivieri, M. G. et al. Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc. Natl Acad. Sci. USA 103, 6043–6048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iliopoulou, I. et al. Time-dependent and independent effects of thyroid hormone administration following myocardial infarction in rats. Mol. Med. Rep. 18, 864–876 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pantos, C. et al. Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J. Physiol. Pharmacol. 60, 49–56 (2009).

    CAS  PubMed  Google Scholar 

  34. Ojamaa, K., Kenessey, A., Shenoy, R. & Klein, I. Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am. J. Physiol. Endocrinol. Metab. 279, E1319–E1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Riquelme, C. A. et al. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334, 528–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, X. et al. MiR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 21, 584–595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, J. et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7, 664–676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, R. et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144, 303–317 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Li, H. et al. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 145, 1218–1233 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Gogiraju, R., Bochenek, M. L. & Schäfer, K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front. Cardiovasc. Med. 6, 20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oka, T., Akazawa, H., Naito, A. T. & Komuro, I. Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114, 565–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oldfield, C. J., Duhamel, T. A. & Dhalla, N. S. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can. J. Physiol. Pharmacol. 98, 74–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Lymperopoulos, A., Rengo, G. & Koch, W. J. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ. Res. 113, 739–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Morel, E. et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ. Res. 97, 1296–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Métrich, M. et al. Epac activation induces histone deacetylase nuclear export via a Ras-dependent signalling pathway. Cell Signal. 22, 1459–1468 (2010).

    Article  PubMed  Google Scholar 

  47. Métrich, M. et al. Epac mediates β-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ. Res. 102, 959–965 (2008).

    Article  PubMed  Google Scholar 

  48. Osadchii, O. E. Cardiac hypertrophy induced by sustained β-adrenoreceptor activation: pathophysiological aspects. Heart Fail. Rev. 12, 66–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Sato, P. Y., Chuprun, J. K., Schwartz, M. & Koch, W. J. The evolving impact of G protein-coupled receptor kinases in cardiac health and disease. Physiol. Rev. 95, 377–404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hullmann, J. E. et al. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ. Res. 115, 976–985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martini, J. S. et al. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl Acad. Sci. USA 105, 12457–12462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gold, J. I., Gao, E., Shang, X., Premont, R. T. & Koch, W. J. Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ. Res. 111, 1048–1053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rapacciuolo, A. et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38, 876–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Dash, R. et al. Differential regulation of p38 mitogen-activated protein kinase mediates gender-dependent catecholamine-induced hypertrophy. Cardiovasc. Res. 57, 704–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Calvieri, C., Rubattu, S. & Volpe, M. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J. Mol. Med. 90, 5–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hall, E. J. et al. Cardiac natriuretic peptide deficiency sensitizes the heart to stress-induced ventricular arrhythmias via impaired CREB signalling. Cardiovasc. Res. 118, 2124–2138 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Holtwick, R. et al. Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J. Clin. Invest. 111, 1399–1407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Potter, L. R., Yoder, A. R., Flora, D. R., Antos, L. K. & Dickey, D. M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 191, 341–366 (2009).

    Article  CAS  Google Scholar 

  59. Rainer, P. P. & Kass, D. A. Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G. Cardiovasc. Res. 111, 154–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klaiber, M. et al. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide. Proc. Natl Acad. Sci. USA 108, 18500–18505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vinnakota, S. & Chen, H. H. The importance of natriuretic peptides in cardiometabolic diseases. J. Endocr. Soc. 4, bvaa052 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tsai, E. J. & Kass, D. A. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol. Ther. 122, 216–238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11, 214–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Orsborne, C., Chaggar, P. S., Shaw, S. M. & Williams, S. G. The renin-angiotensin-aldosterone system in heart failure for the non-specialist: the past, the present and the future. Postgrad. Med. J. 93, 29–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, C. L. et al. Plasma endothelin-1-related peptides as the prognostic biomarkers for heart failure: a PRISMA-compliant meta-analysis. Medicine 96, e9342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamazaki, T. et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ. Res. 77, 258–265 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Zablocki, D. & Sadoshima, J. Solving the cardiac hypertrophy riddle: the angiotensin II–mechanical stress connection. Circ. Res. 113, 1192–1195 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Lyon, R. C., Zanella, F., Omens, J. H. & Sheikh, F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 116, 1462–1476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molkentin, J. D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 63, 467–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Wilkins, B. J. et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mehta, P. K. & Griendling, K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, Z., Zhao, Y. T. & Zhao, T. C. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp. Biol. Med. 246, 213–225 (2021).

    Article  CAS  Google Scholar 

  74. Singh, M. V. et al. Angiotensin II-induced hypertension and cardiac hypertrophy are differentially mediated by TLR3- and TLR4-dependent pathways. Am. J. Physiol. Heart Circ. Physiol. 316, H1027–H1038 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pierdomenico, S. D., Lapenna, D. & Cuccurullo, F. Regression of echocardiographic left ventricular hypertrophy after 2 years of therapy reduces cardiovascular risk in patients with essential hypertension. Am. J. Hypertens. 21, 464–470 (2008).

    Article  PubMed  Google Scholar 

  76. Moon, M. G. et al. Reverse remodelling by sacubitril/valsartan predicts the prognosis in heart failure with reduced ejection fraction. ESC Heart Fail. 8, 2058–2069 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sayer, G. & Bhat, G. The renin-angiotensin-aldosterone system and heart failure. Cardiol. Clin. 32, 21–32 (2014).

    Article  PubMed  Google Scholar 

  78. Yasunari, K. et al. Comparative effects of valsartan versus amlodipine on left ventricular mass and reactive oxygen species formation by monocytes in hypertensive patients with left ventricular hypertrophy. J. Am. Coll. Cardiol. 43, 2116–2123 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Misra, K. H., Das, M. C. & Ramani, Y. J. Effect of telmisartan on the regression of the left ventricular hypertrophy in the patients of essential hypertension. J. Clin. Diagn. Res. 7, 1352–1355 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Nalbantgil, S. et al. Effects of valsartan and enalapril on regression of left ventricular hypertrophy in patients with mild to moderate hypertension: a randomized, double-blind study. Curr. Ther. Res. Clin. Exp. 61, 331–338 (2000).

    Article  CAS  Google Scholar 

  81. Dyadyk, A. I. et al. ACE inhibitors captopril and enalapril induce regression of left ventricular hypertrophy in hypertensive patients with chronic renal failure. Nephrol. Dial. Transplant. 12, 945–951 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Hernandez, D. et al. Regression of left ventricular hypertrophy by lisinopril after renal transplantation: role of ACE gene polymorphism. Kidney Int. 58, 889–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Nakashima, Y., Fouad, F. M. & Tarazi, R. C. Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am. J. Cardiol. 53, 1044–1049 (1984).

    Article  CAS  PubMed  Google Scholar 

  84. Konstam, M. A. et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. Circulation 86, 431–438 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Wong, M. et al. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiographic study. J. Am. Coll. Cardiol. 40, 970–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wong, M. et al. Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure: valsartan heart failure trial (Val-HeFT) echocardiographic data. J. Am. Coll. Cardiol. 43, 2022–2027 (2004).

    Article  PubMed  Google Scholar 

  87. Cuspidi, C. et al. Effects of angiotensin II receptor blockade-based therapy with losartan on left ventricular hypertrophy and geometry in previously treated hypertensive patients. Blood Press. 15, 107–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Edwards, N. C., Steeds, R. P., Stewart, P. M., Ferro, C. J. & Townend, J. N. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease. a randomized controlled trial. J. Am. Coll. Cardiol. 54, 505–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Feniman Stefano, G. M. M. et al. Spironolactone is secure and reduces left ventricular hypertrophy in hemodialysis patients. Ther. Adv. Cardiovasc. Dis. 9, 158–167 (2015).

    Article  Google Scholar 

  90. Edelmann, F. et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA 309, 781–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Packer, M. et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131, 54–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Martens, P., Beliën, H., Dupont, M., Vandervoort, P. & Mullens, W. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction. Cardiovasc. Ther. 36, e12435 (2018).

    Article  PubMed  Google Scholar 

  93. Piña, I. L. et al. Improvement of health status following initiation of sacubitril/valsartan in heart failure and reduced ejection fraction. JACC Heart Fail. 9, 42–51 (2021).

    Article  PubMed  Google Scholar 

  94. Januzzi, J. L. et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322, 1085–1095 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ibrahim, N. E. et al. Racial and ethnic differences in biomarkers, health status, and cardiac remodeling in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. Circ. Heart Fail. 13, E007829 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ibrahim, N. E. et al. Sex-based differences in biomarkers, health status, and reverse cardiac remodelling in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. Eur. J. Heart Fail. 22, 2018–2025 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Y. et al. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J. Am. Heart Assoc. 8, e012272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Safdar, O. et al. Impact of sacubitril/valsartan in cardiac reverse remodeling in ischemic vs. nonischemic cardiomyopathy. J. Heart Lung Transplant. 39, S239–S240 (2020).

    Article  Google Scholar 

  99. Lønnebakken, M. T. et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania salute network). J. Am. Heart Assoc. 6, e004152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gerdts, E. et al. Impact of age on left ventricular hypertrophy regression during antihypertensive treatment with losartan or atenolol (the LIFE study). J. Hum. Hypertens. 18, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Xie, X. et al. Early prediction of left ventricular reverse remodeling in first-diagnosed idiopathic dilated cardiomyopathy: a comparison of linear model, random forest, and extreme gradient boosting. Front. Cardiovasc. Med. 8, 684004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cannella, G. et al. Prolonged therapy with ACE inhibitors induces a regression of left ventricular hypertrophy of dialyzed uremic patients independently from hypotensive effects. Am. J. Kidney Dis. 30, 659–664 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Bristow, M. R. et al. β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ. Res. 59, 297–309 (1986).

    Article  CAS  PubMed  Google Scholar 

  104. de Lucia, C., Eguchi, A. & Koch, W. J. New insights in cardiac β-adrenergic signaling during heart failure and aging. Front. Pharmacol. 9, 904 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bristow, M. R. et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. Circulation 94, 2807–2816 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Colucci, W. S. et al. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation 116, 49–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Waagstein, F. et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet 342, 1441–1446 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Packer, M. et al. Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure: the PRECISE trial. Circulation 94, 2793–2799 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Godfraind, T. Discovery and development of calcium channel blockers. Front. Pharmacol. 8, 286 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Singh, N. K., Gupta, S. K. & Agrawal, B. V. Left ventricular mass regression with amlodipine in elderly hypertensives. Clin. Exp. Hypertens. 21, 113–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Adalet, K. et al. The effect of amlodipine on the mass and functions of the left ventricle in patients with primary hypertension and left ventricular hypertrophy. Curr. Ther. Res. 56, 607–616 (1995).

    Article  Google Scholar 

  112. Fak, A. S., Okucu, M., Tezcan, H., Bodur, G. & Oktay, A. The effects of amlodipine on left ventricular mass and diastolic function in concentric and eccentric left ventricular hypertrophy. J. Cardiovasc. Pharmacol. Ther. 1, 95–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Szlachcic, J., Tubau, J. F., Vollmer, C. & Massie, B. M. Effect of diltiazem on left ventricular mass and diastolic filling in mild to moderate hypertension. Am. J. Cardiol. 63, 198–201 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Natale, E. et al. The effect of verapamil on left ventricular remodelling and diastolic function after acute myocardial infarction (the Verapamil Infarction Study on Remodelling and Relaxation – VISOR). Cardiovasc. Drugs Ther. 13, 315–324 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Ahmed, S. N., Jhaj, R., Sadasivam, B. & Joshi, R. Regression of the left ventricular hypertrophy in patients with essential hypertension on standard drug therapy. Discoveries 8, e115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sun, S., Lu, F., Zhao, Y., Liu, Z. & Wang, S. Effects and reversal of left ventricular hypertrophy of amlodipine plus amiloride/hydrochlorothiazide versus amlodipine plus telmisartan in patients with mild to moderate hypertension. Int. J. Cardiol. 152, S24 (2011).

    Article  Google Scholar 

  117. Polonia, J. et al. Lisinopril and diltiazem reduce left ventricular mass without changing blood pressure in normotensive subjects with exaggerated blood pressure response to exercise. Rev. Port. Cardiol. 15, 185–193 (1996).

    CAS  PubMed  Google Scholar 

  118. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Verma, S. et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 140, 1693–1702 (2019).

    Article  PubMed  Google Scholar 

  121. Brown, A. J. M. et al. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur. Heart J. 41, 3421–3432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mohan, M. et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur. Heart J. 40, 3409–3417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Guazzi, M., Vicenzi, M., Arena, R. & Guazzi, M. D. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: result of a 1-year, prospective, randomized, placebo-controlled study. Circ. Heart Fail. 4, 8–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Paoletti, E. et al. Everolimus for regression of left ventricular hypertrophy of renal transplant recipients: a randomized controlled trial [abstract 16]. Am. J. Transplant. 12 (Suppl. 3), 31 (2012).

    Google Scholar 

  125. Paoletti, E. et al. Effect of sirolimus on left ventricular hypertrophy in kidney transplant recipients: a 1-year nonrandomized controlled trial. Am. J. Kidney Dis. 52, 324–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Saberi, S. et al. Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis. Circulation 143, 606–608 (2021).

    Article  PubMed  Google Scholar 

  127. Koga-Ikuta, A. et al. Reverse remodelling after aortic valve replacement for chronic aortic regurgitation. Interact. Cardiovasc. Thorac. Surg. 33, 10–18 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lindman, B. R. et al. Early regression of severe left ventricular hypertrophy after transcatheter aortic valve replacement is associated with decreased hospitalizations. JACC Cardiovasc. Interv. 7, 662–673 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Monrad, E. S. et al. Time course of regression of left ventricular hypertrophy after aortic valve replacement. Circulation 77, 1345–1355 (1988).

    Article  CAS  PubMed  Google Scholar 

  130. Treibel, T. A. et al. Reverse myocardial remodeling following valve replacement in patients with aortic stenosis. J. Am. Coll. Cardiol. 71, 860–871 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Flett, A. S. et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 13, 819–826 (2012).

    Article  PubMed  Google Scholar 

  132. Lund, O. & Erlandsen, M. Changes in left ventricular function and mass during serial investigations after valve replacement for aortic stenosis. J. Heart Valve Dis. 9, 583–593 (2000).

    CAS  PubMed  Google Scholar 

  133. Lund, O., Emmertsen, K., Dørup, I., Jensen, F. T. & Flø, C. Regression of left ventricular hypertrophy during 10 years after valve replacement for aortic stenosis is related to the preoperative risk profile. Eur. Heart J. 24, 1437–1446 (2003).

    Article  PubMed  Google Scholar 

  134. Pibarot, P., Dumesnil, J. G., Leblanc, M. H., Cartier, P. & Metras, J. Changes in left ventricular mass and function after aortic valve replacement: a comparison between stentless and stented bioprosthetic valves. J. Am. Soc. Echocardiogr. 12, 981–987 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Walther, T. et al. Prospectively randomized evaluation of stentless versus conventional biological aortic valves: impact on early regression of left ventricular hypertrophy. Circulation 100(Suppl. 2), Ii-6–Ii-10 (1999).

    CAS  Google Scholar 

  136. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease a scientific statement from the American Heart Association. Circulation 143, E984–E1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ippisch, H. M. et al. Reversibility of cardiac abnormalities in morbidly obese adolescents. J. Am. Coll. Cardiol. 51, 1342–1348 (2008).

    Article  PubMed  Google Scholar 

  138. Cunha, L. et al. Evolutive echocardiographic study of the structural and functional heart alterations in obese individuals after bariatric surgery. Arq. Bras. Cardiol. 87, 615–622 (2006).

    Article  PubMed  Google Scholar 

  139. Hsuan, C. F. et al. The effect of surgical weight reduction on left ventricular structure and function in severe obesity. Obesity 18, 1188–1193 (2010).

    Article  PubMed  Google Scholar 

  140. Kanoupakis, E. et al. Left ventricular function and cardiopulmonary performance following surgical treatment of morbid obesity. Obes. Surg. 11, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Syed, M., Torosoff, M., Rosati, C., Alger, S. & Fein, S. Effect of comorbidities and medications on left ventricular mass regression after bariatric surgery. J. Clin. Hypertens. 12, 223–227 (2010).

    Article  Google Scholar 

  142. Jhaveri, R. R. et al. Cardiac remodeling after substantial weight loss: a prospective cardiac magnetic resonance study after bariatric surgery. Surg. Obes. Relat. Dis. 5, 648–652 (2009).

    Article  PubMed  Google Scholar 

  143. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Linde, C. et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J. Am. Coll. Cardiol. 52, 1834–1843 (2008).

    Article  PubMed  Google Scholar 

  145. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  146. St John Sutton, M. et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107, 1985–1990 (2003).

    Article  PubMed  Google Scholar 

  147. Linde, C. et al. Long-term impact of cardiac resynchronization therapy in mild heart failure: 5-year results from the resynchronization reverses remodeling in systolic left ventricular dysfunction (REVERSE) study. Eur. Heart J. 34, 2592–2599 (2013).

    Article  PubMed  Google Scholar 

  148. Naqvi, S. Y. et al. Left ventricular reverse remodeling in cardiac resynchronization therapy and long-term outcomes. JACC Clin. Electrophysiol. 5, 1001–1010 (2019).

    Article  PubMed  Google Scholar 

  149. Matsumoto, K. et al. Reverse remodelling induces progressive ventricular resynchronization after cardiac resynchronization therapy ‘from vicious to virtuous cycle’. Eur. J. Echocardiogr. 12, 782–789 (2011).

    Article  PubMed  Google Scholar 

  150. Alvarez-Alvarez, B. et al. Long-term cardiac reverse remodeling after cardiac resynchronization therapy. J. Arrhythmia 37, 653–659 (2021).

    Article  Google Scholar 

  151. Jefferson, H. L. et al. Left ventricular assist devices: a comprehensive review of major clinical trials, devices, and future directions. J. Card. Surg. 36, 1480–1491 (2021).

    Article  PubMed  Google Scholar 

  152. Burkhoff, D., Topkara, V. K., Sayer, G. & Uriel, N. Reverse remodeling with left ventricular assist devices. Circ. Res. 128, 1594–1612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bruckner, B. A. et al. Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J. Heart Lung Transplant. 20, 457–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Madigan, J. D. et al. Time course of reverse remodeling of the left ventricle during support with a left ventricular assist device. J. Thorac. Cardiovasc. Surg. 121, 902–908 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Zafeiridis, A., Jeevanandam, V., Houser, S. R. & Margulies, K. B. Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98, 656–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Barbone, A. et al. Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation 104, 670–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Johnson, E. J., Dieter, B. P. & Marsh, S. A. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci. 123, 100–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, Y. M., Li, Z. B., Zhu, M. & Cao, Y. M. Effects of exercise training on left ventricular remodelling in heart failure patients: an updated meta-analysis of randomised controlled trials. Int. J. Clin. Pract. 66, 782–791 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Kokkinos, P. F. et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N. Engl. J. Med. 333, 1462–1467 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Haykowsky, M. et al. A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: start early and go longer for greatest exercise benefits on remodeling. Trials 12, 92 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Delagardelle, C. et al. Reverse remodelling through exercise training is more pronounced in non-ischemic heart failure. Clin. Res. Cardiol. 97, 865–871 (2008).

    Article  PubMed  Google Scholar 

  162. Takatsu, M. et al. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome. Hypertension 62, 957–965 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Okoshi, K. et al. Influence of intermittent fasting on myocardial infarction-induced cardiac remodeling. BMC Cardiovasc. Disord. 19, 126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. An, H. S. et al. Caloric restriction reverses left ventricular hypertrophy through the regulation of cardiac iron homeostasis in impaired leptin signaling mice. Sci. Rep. 10, 7176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. De Lucia, C. et al. Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circ. Heart Fail. 11, e004153 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sciarretta, S. et al. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc. Res. 117, 1434–1449 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Hall, C., Gehmlich, K., Denning, C. & Pavlovic, D. Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease. J. Am. Heart Assoc. 10, e019338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dobson, L. E. et al. Acute reverse remodelling after transcatheter aortic valve implantation: a link between myocardial fibrosis and left ventricular mass regression. Can. J. Cardiol. 32, 1411–1418 (2016).

    Article  PubMed  Google Scholar 

  169. Petrov, G. et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122, S23–S28 (2010).

    Article  PubMed  Google Scholar 

  170. Puls, M. et al. Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis. Eur. Heart J. 41, 1903–1914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lewis, G. A. et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat. Med. 27, 1477–1482 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Frieler, R. A. & Mortensen, R. M. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131, 1019–1030 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ma, X. L. et al. Rituximab prevents and reverses cardiac remodeling by depressing B cell function in mice. Biomed. Pharmacother. 114, 108804 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Szardien, S. et al. Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1β synthesis. Eur. Heart J. 33, 595–605 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Chung, E., Yeung, F. & Leinwand, L. A. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J. Appl. Physiol. 112, 1564–1575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chung, E., Heimiller, J. & Leinwand, L. A. Distinct cardiac transcriptional profiles defining pregnancy and exercise. PLoS One 7, e42297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mone, S. M., Sanders, S. P. & Colan, S. D. Control mechanisms for physiological hypertrophy of pregnancy. Circulation 94, 667–672 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Robson, S. C., Dunlop, W., Moore, M. & Hunter, S. Haemodynamic changes during the puerperium: a Doppler and M‐mode echocardiographic study. BJOG . Int. J. Obstet. Gynaecol. 94, 1028–1039 (1987).

    Article  CAS  Google Scholar 

  179. Clapp, J. F. & Capeless, E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am. J. Cardiol. 80, 1469–1473 (1997).

    Article  PubMed  Google Scholar 

  180. Umar, S. et al. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J. Appl. Physiol. 113, 1253–1259 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gonzalez, A. M. D. et al. Hypertrophy signaling during peripartum cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol. 293, H3008–H3013 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Iorga, A., Dewey, S., Partow-Navid, R., Gomes, A. V. & Eghbali, M. Pregnancy is associated with decreased cardiac proteasome activity and oxidative stress in mice. PLoS One 7, e48601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Limon-Miranda, S. et al. Pregnancy differentially regulates the collagens types I and III in left ventricle from rat heart. Biomed. Res. Int. 2014, 984785 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Parrott, M. E. et al. Feature article: Maternal cardiac messenger RNA expression of extracellular matrix proteins in mice during pregnancy and the postpartum period. Exp. Biol. Med. 243, 1220–1232 (2018).

    Article  CAS  Google Scholar 

  185. Bond, C. F. Blood volume changes in the lactating rat. Endocrinology 63, 285–289 (1958).

    Article  CAS  PubMed  Google Scholar 

  186. Lunsford, T. Cardiac Hypertrophy and Regresion during Postpartum in C57B1/6 Mice. Thesis, Texas Tech Univ. Honors College (2014).

  187. Frenzel, H. et al. Regression of cardiac hypertrophy: morphometric and biochemical studies in rat heart after swimming training. J. Mol. Cell. Cardiol. 20, 737–751 (1988).

    Article  CAS  PubMed  Google Scholar 

  188. Rubin, D. A. et al. Endocrine response to acute resistance exercise in obese versus lean physically active men. Eur. J. Appl. Physiol. 115, 1359–1366 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Lin, H. et al. Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779. Circulation 143, 2277–2292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wei, X. et al. Myocardial hypertrophic preconditioning attenuates cardiomyocyte hypertrophy and slows progression to heart failure through upregulation of S100A8/A9. Circulation 131, 1506–1517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kinney LaPier, T. L. & Rodnick, K. J. Effects of aerobic exercise on energy metabolism in the hypertensive rat heart. Phys. Ther. 81, 1006–1017 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Chen, L., Song, J. & Hu, S. Metabolic remodeling of substrate utilization during heart failure progression. Heart Fail. Rev. 24, 143–154 (2019).

    Article  PubMed  Google Scholar 

  193. Gupte, A. A. et al. Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ. Cardiovasc. Genet. 7, 266–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Blaxall, B. C., Tschannen-Moran, B. M., Milano, C. A. & Koch, W. J. Differential gene expression and genomic patient stratification following left ventricular assist device support. J. Am. Coll. Cardiol. 41, 1096–1106 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Schaefer, A. et al. Analysis of fibrosis in control or pressure overloaded rat hearts after mechanical unloading by heterotopic heart transplantation. Sci. Rep. 9, 5710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gao, X. M. et al. Regression of pressure overload-induced left ventricular hypertrophy in mice. Am. J. Physiol. Heart Circ. Physiol. 288, H2702–H2707 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Diakos, N. A. et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic. Transl. Sci. 1, 432–444 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Badolia, R. et al. The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142, 259–274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Heerdt, P. M. et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102, 2713–2719 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Birks, E. J. Molecular changes after left ventricular assist device support for heart failure. Circ. Res. 113, 777–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Ogletree-Hughes, M. L. et al. Mechanical unloading restores β-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104, 881–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Li, Y. Y. et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104, 1147–1152 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Felkin, L. E., Lara-Pezzi, E. A., Hall, J. L., Birks, E. J. & Barton, P. J. R. Reverse remodelling and recovery from heart failure are associated with complex patterns of gene expression. J. Cardiovasc. Transl. Res. 4, 321–331 (2011).

    Article  PubMed  Google Scholar 

  204. Wohlschlaeger, J. et al. Ventricular unloading is associated with increased 20S proteasome protein expression in the myocardium. J. Heart Lung Transplant. 29, 125–132 (2010).

    Article  PubMed  Google Scholar 

  205. Kassiotis, C. et al. Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 120, S191–S197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Willis, M. S. et al. Muscle ring finger 1 mediates cardiac atrophy in vivo. Am. J. Physiol. Heart Circ. Physiol. 296, H997–H1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Baskin, K. K. et al. MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. J. Mol. Cell. Cardiol. 72, 168–176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Razeghi, P. et al. Mechanical unloading of the heart activates the calpain system. J. Mol. Cell. Cardiol. 42, 449–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Hariharan, N. et al. Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. PLoS One 8, e51632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hall, J. L. et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol. Genomics 17, 283–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Yang, D. K. et al. Gene profiling during regression of pressure overload-induced cardiac hypertrophy. Physiol. Genomics 30, 1–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Melman, Y. F. et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation 131, 2202–2216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, S. B., Murray, C. I., Chung, H. S. & Van Eyk, J. E. Redox regulation of mitochondrial ATP synthase. Trends Cardiovasc. Med. 23, 14–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Agnetti, G. et al. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ. Cardiovasc. Genet. 3, 78–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Cho, H., Barth, A. S. & Tomaselli, G. F. Basic science of cardiac resynchronization therapy: molecular and electrophysiological mechanisms. Circ. Arrhythm. Electrophysiol. 5, 594–603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Vanderheyden, M. et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy. Responders versus nonresponders. J. Am. Coll. Cardiol. 51, 129–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Hosen, M. R. et al. Circulating microRNA-122-5p is associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of cardiomyocytes through extracellular vesicles. Circulation https://doi.org/10.1161/CIRCULATIONAHA.122.060258 (2022).

    Article  PubMed  Google Scholar 

  218. Khamis, T., Alsemeh, A. E. & Abdullah, D. M. Sacubitril/valsartan (LCZ696) ameliorates hyperthyroid-induced cardiac hypertrophy in male rats through modulation of miR-377, let-7b, autophagy, and fibrotic signaling pathways. Sci. Rep. 12, 14654 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Muehleman, D. L., Crocini, C., Swearingen, A. R., Ozeroff, C. D. & Leinwand, L. A. Regression from pathological hypertrophy in mice is sexually dimorphic and stimulus specific. Am. J. Physiol. Heart Circ. Physiol. 322, H785–H797 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Mondaca-Ruff, D. et al. Hydrochlorothiazide reduces cardiac hypertrophy, fibrosis and rho-kinase activation in DOCA-salt induced hypertension. J. Cardiovasc. Pharmacol. Ther. 26, 724–735 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Garfinkel, A. C., Seidman, J. G. & Seidman, C. E. Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Fail. Clin. 14, 139–146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Dal Ferro, M. et al. Association between mutation status and left ventricular reverse remodelling in dilated cardiomyopathy. Heart 103, 1704–1710 (2017).

    Article  PubMed  Google Scholar 

  223. Escobar-Lopez, L. et al. Association of genetic variants with outcomes in patients with nonischemic dilated cardiomyopathy. J. Am. Coll. Cardiol. 78, 1682–1699 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Verdonschot, J. A. J. et al. Clinical phenotype and genotype associations with improvement in left ventricular function in dilated cardiomyopathy. Circ. Heart Fail. 11, e005220 (2018).

    Article  PubMed  Google Scholar 

  225. Tobita, T. et al. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci. Rep. 8, 1998 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Petto, J. et al. Reverse myocardial remodeling in hypertrophic cardiomyopathy: little explored benefit of exercise. Int. J. Exerc. Sci. 14, 1018–1026 (2021).

    PubMed  PubMed Central  Google Scholar 

  227. Snir, A. W., Connelly, K. A., Goodman, J. M., Dorian, D. & Dorian, P. Exercise in hypertrophic cardiomyopathy: restrict or rethink. Am. J. Physiol. Heart Circ. Physiol. 320, H2101–H2111 (2021).

    Article  CAS  Google Scholar 

  228. Konhilas, J. P. et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ. Res. 98, 540–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  229. Marin, T. M. et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J. Clin. Invest. 121, 1026–1043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Rau, C. D. et al. Mapping genetic contributions to cardiac pathology induced by beta-adrenergic stimulation in mice. Circ. Cardiovasc. Genet. 8, 40–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Wang, J. J. C. et al. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet. 12, e1006038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Regitz-Zagrosek, V., Oertelt-Prigione, S., Seeland, U. & Hetzer, R. Sex and gender differences in myocardial hypertrophy and heart failure. Circ. J. 74, 1265–1273 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Beale, A. L., Meyer, P., Marwick, T. H., Lam, C. S. P. & Kaye, D. M. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation 138, 198–205 (2018).

    Article  PubMed  Google Scholar 

  234. Lilli, A. et al. Cardiac resynchronization therapy: gender related differences in left ventricular reverse remodeling. Pacing Clin. Electrophysiol. 30, 1349–1355 (2007).

    Article  PubMed  Google Scholar 

  235. Kenigsberg, B. B. et al. Sex-associated differences in cardiac reverse remodeling in patients supported by contemporary left ventricular assist devices. J. Card. Fail. 26, 494–504 (2020).

    Article  PubMed  Google Scholar 

  236. Aimo, A. et al. Effect of sex on reverse remodeling in chronic systolic heart failure. JACC Heart Fail. 5, 735–742 (2017).

    Article  PubMed  Google Scholar 

  237. Stangl, V. et al. Impact of gender on three-month outcome and left ventricular remodeling after transfemoral transcatheter aortic valve implantation. Am. J. Cardiol. 110, 884–890 (2012).

    Article  PubMed  Google Scholar 

  238. García, R. et al. Sex-specific regulation of miR-29b in the myocardium under pressure overload is associated with differential molecular, structural and functional remodeling patterns in mice and patients with aortic stenosis. Cells 9, 833 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Savage, P. S., Campbell, P. C. & Adams, S. A. Gender differences in reverse cardiac remodeling following initiation of sacubitril/valsartan in heart failure with reduced ejection fraction: real world experience [abstract]. Eur. Heart J. 42, (Suppl. 1) ehab724.0900 (2021).

    Article  Google Scholar 

  240. Ibrahim, N. E. et al. Sex-based differences in biomarkers, quality of life, and reverse cardiac remodeling in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. J. Card. Fail. 26, S9 (2020).

    Article  Google Scholar 

  241. Paolini, C. et al. Effects and clinical implications of sacubitril/valsartan on left ventricular reverse remodeling in patients affected by chronic heart failure: a 24-month follow-up. IJC Heart Vasc. 35, 100821 (2021).

    Article  Google Scholar 

  242. Bella, J. N. et al. Sex-related difference in regression of left ventricular hypertrophy with antihypertensive treatment: the LIFE study. J. Hum. Hypertens. 18, 411–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  243. Ruppert, M. et al. Sex similarities and differences in the reverse and anti-remodeling effect of pressure unloading therapy in a rat model of aortic banding and debanding. Am. J. Physiol. Heart Circ. Physiol. 323, H204–H222 (2022).

    Article  CAS  PubMed  Google Scholar 

  244. Barkhudaryan, A., Scherbakov, N., Springer, J. & Doehner, W. Cardiac muscle wasting in individuals with cancer cachexia. Esc. Heart Fail. 4, 458–467 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Vernice, N. A., Meydan, C., Afshinnekoo, E. & Mason, C. E. Long-term spaceflight and the cardiovascular system. Precis. Clin. Med. 3, 284–291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Samarel, A. M., Parmacek, M. S., Magid, N. M., Decker, R. S. & Lesch, M. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits. Circ. Res. 60, 933–941 (1987).

    Article  CAS  PubMed  Google Scholar 

  247. Belloum, Y., Rannou-Bekono, F. & Favier, F. B. Cancer-induced cardiac cachexia: pathogenesis and impact of physical activity (review). Oncol. Rep. 37, 2543–2552 (2017).

    Article  CAS  PubMed  Google Scholar 

  248. Inui, A. Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J. Clin. 52, 72–91 (2002).

    Article  PubMed  Google Scholar 

  249. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  250. Cosper, P. F. & Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 71, 1710–1720 (2011).

    Article  CAS  PubMed  Google Scholar 

  251. Tian, M., Asp, M. L., Nishijima, Y. & Belury, M. A. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Int. J. Oncol. 39, 1321–1326 (2011).

    CAS  PubMed  Google Scholar 

  252. Springer, J. et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur. Heart J. 35, 932–941 (2014).

    Article  CAS  PubMed  Google Scholar 

  253. Manne, N. D. P. K. et al. Altered cardiac muscle mTOR regulation during the progression of cancer cachexia in the ApcMin/+ mouse. Int. J. Oncol. 42, 2134–2140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Murphy, K. T. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am. J. Physiol. Heart Circ. Physiol. 310, H466–H477 (2016).

    Article  PubMed  Google Scholar 

  255. Willis, M. S. et al. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ. Heart Fail. 12, e005234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. MacNamara, J. P. et al. Cardiac effects of repeated weightlessness during extreme duration swimming compared with spaceflight. Circulation 143, 1533–1535 (2021).

    Article  PubMed  Google Scholar 

  257. Perhonen, M. A. et al. Cardiac atrophy after bed rest and spaceflight. J. Appl. Physiol. 91, 645–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  258. Feger, B. J. et al. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci. Rep. 6, 34091 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Liang, L. et al. Calpain activation mediates microgravity-induced myocardial abnormalities in mice via p38 and ERK1/2 MAPK pathways. J. Biol. Chem. 295, 16840–16851 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Walls, S. et al. Prolonged exposure to microgravity reduces cardiac contractility and initiates remodeling in Drosophila. Cell Rep. 33, 108445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kumar, A., Tahimic, C. G. T., Almeida, E. A. C. & Globus, R. K. Spaceflight modulates the expression of key oxidative stress and cell cycle related genes in heart. Int. J. Mol. Sci. 22, 9088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Hu, C., Zhang, X., Teng, T., Ma, Z. G. & Tang, Q. Z. Cellular senescence in cardiovascular diseases: a systematic review. Aging Dis. 13, 103–128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Baba, H. A. et al. Dynamic regulation of MEK/Erks and Akt/GSK-3β in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism. Cardiovasc. Res. 59, 390–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  264. Gopinathannair, R. et al. Device therapy and arrhythmia management in left ventricular assist device recipients: a scientific statement from the American Heart Association. Circulation 139, E967–E989 (2019).

    Article  PubMed  Google Scholar 

  265. Jakovljevic, D. G. et al. Left ventricular assist device as a bridge to recovery for patients with advanced heart failure. J. Am. Coll. Cardiol. 69, 1924–1933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Rodgers, B. D. & Ward, C. W. Myostatin/activin receptor ligands in muscle and the development status of attenuating drugs. Endocr. Rev. 43, 329–365 (2022).

    Article  PubMed  Google Scholar 

  267. Smith, R. C. et al. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength. PLoS One 15, e0230818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Loumaye, A. et al. Role of activin A and myostatin in human cancer cachexia. J. Clin. Endocrinol. Metab. 100, 2030–2038 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Allen, D. L., Cleary, A. S., Lindsay, S. F., Loh, A. S. & Reed, J. M. Myostatin expression is increased by food deprivation in a muscle-specific manner and contributes to muscle atrophy during prolonged food deprivation in mice. J. Appl. Physiol. 109, 692–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  270. Han, H. Q., Zhou, X., Mitch, W. E. & Goldberg, A. L. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int. J. Biochem. Cell Biol. 45, 2333–2347 (2013).

    Article  CAS  PubMed  Google Scholar 

  271. Reis Filho, J. R. A. R., Cardoso, J. N., Cardoso, C. M. R. & Pereira-Barretto, A. C. Reverse cardiac remodeling: a marker of better prognosis in heart failure. Arq. Bras. Cardiol. 104, 502–506 (2015).

    PubMed  Google Scholar 

  272. Boulet, J. & Mehra, M. R. Left ventricular reverse remodeling in heart failure: remission to recovery. Struct. Heart 5, 466–481 (2021).

    Article  Google Scholar 

  273. Picca, M., Bisceglia, J., Zocca, A. & Pelosi, G. Effects of enalapril and amlodipine on left ventricular hypertrophy and function in essential hypertension. Clin. Drug. Investig. 13, 29–35 (1997).

    Article  CAS  Google Scholar 

  274. Greenberg, B. et al. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction results of the SOLVD echocardiography substudy. Circulation 91, 2573–2581 (1995).

    Article  CAS  PubMed  Google Scholar 

  275. Desai, A. S. et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 322, 1077–1084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Seeman, T. et al. Regression of left-ventricular hypertrophy in children and adolescents with hypertension during ramipril monotherapy. Am. J. Hypertens. 20, 990–996 (2007).

    Article  CAS  PubMed  Google Scholar 

  277. Park, K. et al. The impact of a dose of the angiotensin receptor blocker valsartan on post-myocardial infarction ventricular remodelling. Esc. Heart Fail. 5, 354–363 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Degirmenci, H. et al. Comparison of effects of nebivolol, carvedilol and irbesartan on left ventricular hypertrophy associated with hypertension. Eur. Rev. Med. Pharmacol. Sci. 18, 630–637 (2014).

    CAS  PubMed  Google Scholar 

  279. Barrios, V. et al. Regression of left ventricular hypertrophy by a candesartan-based regimen in clinical practice. the VIPE study. J. Renin Angiotensin Aldosterone Syst. 7, 236–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  280. Khan, M. S. et al. Reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with and without diabetes. JACC Heart Fail. 9, 137–145 (2021).

    Article  PubMed  Google Scholar 

  281. Maizels, L. et al. Characterization of heart failure patients with reverse left ventricular remodelling post-angiotensin receptor blockers/neprilysin inhibitors therapy. Esc. Heart Fail. 9, 1682–1688 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Chau, K. H. et al. Regression of left ventricular mass after transcatheter aortic valve replacement: the PARTNER trials and registries. J. Am. Coll. Cardiol. 75, 2446–2458 (2020).

    Article  PubMed  Google Scholar 

  283. Algahim, M. F. et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am. J. Med. 123, 549–555 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Ikonomidis, I. et al. Weight loss after bariatric surgery improves aortic elastic properties and left ventricular function in individuals with morbid obesity: a 3-year follow-up study. J. Hypertens. 25, 439–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  285. Weiss, R. J. & Bent, B. Diltiazem-induced left ventricular mass regression in hypertensive patients. J. Clin. Hypertens. 3, 135–143 (1987).

    CAS  PubMed  Google Scholar 

  286. Awata, N. et al. Regression of left ventricular hypertrophy in hypertensive patients treated with metoprolol. Curr. Ther. Res. Clin. Exp. 50, 175–182 (1991).

    Google Scholar 

  287. Cherchi, A., Sau, F. & Seguro, C. Possible regression of left ventricular hypertrophy during antihypertensive treatment with diuretics and/or beta blockers. J. Clin. Hypertens. 3, 216–225 (1987).

    CAS  PubMed  Google Scholar 

  288. Islim, I. F., Watson, R. D., Ihenacho, H. N. C., Ebanks, M. & Singh, S. P. Amlodipine: effective for treatment of mild to moderate essential hypertension and left ventricular hypertrophy. Cardiology 96, 10–18 (2001).

    Article  PubMed  Google Scholar 

  289. Rosendorff, C., Dubiel, R., Xu, J. & Chavanu, K. J. Comparison of olmesartan medoxomil versus amlodipine besylate on regression of ventricular and vascular hypertrophy. Am. J. Cardiol. 104, 359–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  290. Gu, M. et al. Clinical outcome of cardiac resynchronization therapy in dilated-phase hypertrophic cardiomyopathy. J. Geriatr. Cardiol. 14, 238–244 (2017).

    PubMed  PubMed Central  Google Scholar 

  291. Sugano, A. et al. Optimal cut-off value of reverse remodeling to predict long-term outcome after cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J. Cardiol. 69, 456–461 (2017).

    Article  PubMed  Google Scholar 

  292. Ocaranza, M. P. et al. Reverse remodeling in human heart failure after cardiac resynchronization therapy is associated with reduced RHO-kinase activation. Front. Pharmacol. 12, 565724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Solomon, S. D. et al. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: multicenter automatic defibrillator implantation trial: cardiac resynchronization therapy. Circulation 122, 985–992 (2010).

    Article  PubMed  Google Scholar 

  294. St John Sutton, M. G. et al. Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE). Circulation 113, 266–272 (2006).

    Article  Google Scholar 

  295. Drakos, S. G. et al. Reverse electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. Ann. Thorac. Surg. 91, 764–769 (2011).

    Article  PubMed  Google Scholar 

  296. Muthiah, K. et al. Longitudinal structural, functional, and cellular myocardial alterations with chronic centrifugal continuous-flow left ventricular assist device support. J. Heart Lung Transplant. 36, 722–731 (2017).

    Article  PubMed  Google Scholar 

  297. Gupta, A. et al. Effect of spironolactone on diastolic function in hypertensive left ventricular hypertrophy. J. Hum. Hypertens. 29, 241–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  298. Ori, Y. et al. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol. Dial. Transplant. 28, 1787–1793 (2013).

    Article  CAS  PubMed  Google Scholar 

  299. Kosugi, D. et al. Beneficial effects of sodium glucose cotransporter 2 inhibitors on left ventricular mass in patients with diabetes mellitus. J. Diabetes 13, 847–856 (2021).

    Article  CAS  PubMed  Google Scholar 

  300. Rørth, R. et al. Comparison of BNP and NT-proBNP in patients with heart failure and reduced ejection fraction. Circ. Heart Fail. 2, e006541 (2020).

    Article  Google Scholar 

  301. Ichiki, T., Huntley, B. K. & Burnett, J. C. BNP molecular forms and processing by the cardiac serine protease corin. Adv. Clin. Chem. 61, 1–31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Sutanto, H., Dobrev, D. & Heijman, J. Angiotensin receptor-neprilysin inhibitor (ARNI) and cardiac arrhythmias. Int. J. Mol. Sci. 22, 8994 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. McKie, P. M. & Burnett, J. C. NT-proBNP: the gold standard biomarker in heart failure. J. Am. Coll. Cardiol. 68, 2437–2439 (2016).

    Article  PubMed  Google Scholar 

  304. Pascual-Figal, D. et al. Sacubitril-valsartan, clinical benefits and related mechanisms of action in heart failure with reduced ejection fraction. A review. Front. Cardiovasc. Med. 8, 754499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (T32 HL007822 to T.G.M., T32 GM142607 to M.A.J., and R01HL117138 and R01GM029090 to L.A.L.).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Leslie A. Leinwand.

Ethics declarations

Competing interests

L.A.L. is a co-founder of MyoKardia, acquired by Bristol Myers Squib, and is a paid member of their Scientific Advisory Board. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Junichi Sadoshima, Junjie Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, T.G., Juarros, M.A. & Leinwand, L.A. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 20, 347–363 (2023). https://doi.org/10.1038/s41569-022-00806-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00806-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing