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Abstract

Cardiovascular disease is the leading cause of death globally. An advanced 
understanding of cardiovascular disease mechanisms is required to 
improve therapeutic strategies and patient risk stratification. State-
of-the-art, large-scale, single-cell and single-nucleus transcriptomics 
facilitate the exploration of the cardiac cellular landscape at an 
unprecedented level, beyond its descriptive features, and can further 
our understanding of the mechanisms of disease and guide functional 
studies. In this Review, we provide an overview of the technical 
challenges in the experimental design of single-cell and single-nucleus 
transcriptomics studies, as well as a discussion of the type of inferences 
that can be made from the data derived from these studies. Furthermore, 
we describe novel findings derived from transcriptomics studies for each 
major cardiac cell type in both health and disease, and from development 
to adulthood. This Review also provides a guide to interpreting the 
exhaustive list of newly identified cardiac cell types and states, and 
highlights the consensus and discordances in annotation, indicating 
an urgent need for standardization. We describe advanced applications 
such as integration of single-cell data with spatial transcriptomics to 
map genes and cells on tissue and define cellular microenvironments 
that regulate homeostasis and disease progression. Finally, we discuss 
current and future translational and clinical implications of novel 
transcriptomics approaches, and provide an outlook of how these 
technologies will change the way we diagnose and treat heart disease.
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transcriptomics provides information on gene expression prevalence 
and heterogeneity as well as co-expression of genes at the individual 
cell level to facilitate a cell-centric outlook. This approach involves 
the definition of novel cell markers and transcriptional signatures to 
delineate cell types (well-established cellular lineages) and cell states 
(encompassing subtypes or transient, functional cellular transcriptom-
ics signatures) with high accuracy, either manually or using automated 
computational pipelines13–15. Analysis of gene sets enriched in cell types 
or states allows functional inferences on intracellular regulatory net-
works and on intercellular pathways across specific cells by focusing 
on genes encoding ligand–receptor pairs16,17. Such analyses highlight 
the processes underlying coordinated cellular communication that 
are otherwise masked in bulk analysis.

In this Review, we discuss the latest findings obtained using single-
cell transcriptomics that advance our understanding of cardiac biology, 
development and disease. We explain how we can maximize the imple-
mentation of these technologies to study cardiac disease and provide 
an outlook on multimodal integration with spatial transcriptomics 
and epigenetics.

Successes and challenges in experimental design
The implementation of single-cell transcriptomics consists of several 
steps, from tissue processing for cell isolation to single-cell capture, 
reverse transcription, complementary DNA amplification and library 
construction, which are followed by sequencing and computational 
analysis12,18,19. In this section, we describe the most successful experi-
mental designs utilized to profile cardiac cells, discuss their advantages 
and disadvantages, and highlight the need for careful experimental 
planning and validation options.

Cell types of interest dictate protocol choice
Most single-cell capturing methods including flow cytometry, microflu-
idics and microdroplet-based systems have an upper size limit for cells 
of ~25–40 µm20,21. Therefore, if the study focuses on cardiac stromal, 
vascular and immune cell compartments with no major size limita-
tions, these capturing techniques can be used to select single cells for 
RNA sequencing22–26 (Fig. 1). However, in the mammalian adult heart, 
cardiomyocytes pose a major challenge because they are large, rod-
shaped cells of approximatively 20 µm in width and 100 µm in length27. 
Micromanipulation or laser capture of cardiomyocytes is possible, 
but these approaches are limited by low throughput and are operator- 
dependent7. Flow cytometry sorting of cardiomyocytes has been 
reported, although the length of sorted cardiomyocytes was ~50 µm, 
suggesting a bias for smaller cells or contracted cells during process-
ing28,29. The sorting of cardiomyocytes with preserved RNA quality and 
function has been achieved using a specialized fluorescence-activated 
cell sorting (FACS) instrument with a large 500 µm nozzle. However, 
this type of instrument is not routinely available. Furthermore, the 
complexity and length of the cardiomyocyte isolation process can 
potentially affect the resulting transcriptional signature30. Single-cell 
RNA sequencing (scRNA-seq) technologies are limited not only by inef-
ficiency in capturing adult cardiomyocytes, but also by the fact that 
adipocytes cannot be captured using single-cell isolation protocols. 
Moreover, an under-representation of cells such as pericytes and fibro-
blasts is also common in scRNA-seq27,31. Therefore, if the aim of the study 
is to assess and capture all cardiac cell types, profiling single nuclei by 
using single-nucleus RNA sequencing (snRNA-seq) is the most effective 
method27,32–37. Importantly, snRNA-seq generates largely overlapping 
molecular signatures with scRNA-seq in the adult human heart27 and 

Key points

 • A good experimental design requires a matching of the protocol 
workflow to the cells of interest and scientific goals.

 • The generation of reference heart cell atlases and standardized 
annotations is necessary for cross-study comparisons and accurate 
data interpretation.

 • Emerging disease gene signatures reveal cell-state-specific changes, 
which will facilitate the generation of novel putative biomarkers and 
therapeutic targets.

 • The definition of cellular microenvironments requires deconvolution 
with spatial and multi-omics approaches.

 • The density of information from these novel omics approaches will 
contribute to the design of computational models to predict disease, 
stratify patients and facilitate drug discovery.

Introduction
The human heart is a dynamic organ composed of four morphologi-
cally and functionally distinct chambers, as well as highly specialized 
subdomains including the conduction system and valvular apparatus, 
all working in synchrony due to the perfectly coordinated actions of 
billions of cells. In each chamber and anatomical subdomain, diverse 
stimuli converge on the local cells, priming gene expression patterns 
that drive phenotypic and functional adaptations, cumulatively 
determining organ function. Indeed, this fine cellular orchestration 
facilitates not only continuous contraction and relaxation of cardio-
myocytes, but also the effective responses to haemodynamic changes 
during prenatal and postnatal development, and adulthood.

During embryonic development, the cellular progenies of first 
and second heart fields are primed in utero, and exposure to haemo-
dynamic changes contributes to their gene expression programmes 
and maturation after birth1,2. In disease states, perturbations to the 
normal cellular repertoire and microenvironments caused by noxious 
stimuli, such as mechanical, electrical, chemical or ischaemic damage, 
can disrupt the transcriptional landscape3–6. Gene expression is not 
merely an epiphenomenon, but rather an essential step in the imple-
mentation and amplification of pathogenetic circuits3,7. Therefore, 
studying cellular transcriptional signatures is essential for gaining a 
robust understanding of organ and tissue function.

Cardiovascular disease remains the leading cause of death glob-
ally8. Ischaemic heart disease, more specifically, is the foremost cause 
of death in both men and women, despite robust efforts in the field of 
preventative cardiology. Furthermore, heart failure (HF), a cardiac 
functional impairment secondary to many aetiologies, is a rising global 
epidemic and, despite a growing number of treatments9–11, transplanta-
tion remains the only definitive cure. Therefore, an urgent need exists 
for novel effective and targeted therapies with more precise risk strati-
fication, which necessitates a deeper understanding of the underlying 
molecular mechanisms driving the progression of cardiac disease.

Single-cell omics technologies, and especially transcriptomics, 
have revolutionized the way we investigate organs and organisms, 
allowing an unprecedented level of resolution in the assessment 
of cell demographics during both health and disease12. Single-cell 
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during cardiomyocyte differentiation in vitro38. Furthermore, unlike 
snRNA-seq, single-cell isolation for scRNAseq requires fresh tissue, and 
enzymatic and mechanical methods used for single-cell dissociation 
can risk inducing stress-related transcriptional artefacts, especially 
when performed at 37 °C for >1 h39. The testing of RNA quality from a 
fresh or frozen tissue sample is recommended. Of note, there are also 
some caveats in the use of snRNA-seq. snRNA-seq is not ideal for cells 
such as neurons, in which crucial mRNA trafficking along the axon to the 
synapse would be missed40. Likewise, with snRNA-seq, data from binu-
cleated or multinucleated cardiomyocyte nuclei and data from single-
nucleated cardiomyocyte nuclei cannot be distinguished. Additionally, 
under-representation of endothelial cells in snRNA-seq studies has 
been reported, which varies according to the protocol used27,31. Taken 
together, snRNA-seq is an effective tool for obtaining comprehensive 
data from cardiac tissue, and its integration with scRNA-seq maximizes 
the coverage of cell types and states27.

Purification and enrichment
The assessment of large numbers of cells that are present at low fre-
quency, such as immune cells, requires antibody-based approaches for 
enrichment by flow cytometry or immunomagnetic beads. In animal 
models, specific cell lineages or rare cells, including epicardial cells, 

can be enriched using methods involving cell tracers such as genetic 
fate mapping, which involves insertion of a heritable gene encoding 
a fluorescent protein41–43. After isolation, the nuclei are purified to 
remove the cytoplasmic debris resulting from deliberate disruption 
of the cytoplasm to release the nucleus. This filtering step can be per-
formed by FACS27,37,44–46, differential centrifugation or straining33,47, or 
by density gradient separation48 (Fig. 1). The effectiveness of differential 
centrifugation depends on pipetting skills, and the use of filters with a 
pore size as small as 10 µm can introduce bias47. Indeed, the nuclei of 
mammalian cells have an estimated size of 8–12 µm37, or even larger 
under certain conditions such as in hypertrophic cardiomyocytes49. The 
use of a strainer alone can let through small tissue fragments and debris 
that can increase background noise33. Density gradient centrifugation 
is also highly operator-dependent and is unsuitable for small volumes 
with few nuclei50. Although FACS purification requires specialized 
instruments and expertise, this approach ensures good purification of 
nuclei given that the nozzles are typically ≥70 µm32,33,47. Visual inspec-
tion of nuclei to confirm nuclear membrane integrity and absence of  
blebbing and tissue debris is recommended after purification37.  
Of note, a FACS protocol based on immunolabelling of the cardio-
myocyte-specific protein pericentriolar material 1 and Hoechst 
staining for DNA content allow the isolation and profiling of diploid 
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Fig. 1 | Workflow for single-cell and single-nucleus transcriptomics. The 
design and execution of single-cell experiments involves a multistep process 
that requires careful planning. The assessment of cardiomyocytes is challenging 
given that they are too large to be selected as single cells using fluorescence-
activated cell sorting (FACS) or most microfluidics-based methods. If all cardiac 
cell types need to be analysed, the isolation of single nuclei from frozen samples 
is currently the most commonly used approach, given that this technique allows 
capture of all known cardiac cell types at the highest throughput. Nucleus 
isolation requires enzymatic and mechanical dissociation, often with the use 
of a Dounce homogenizer to help release the nuclei. Before proceeding to 
library preparation, nuclei can be purified by filtering and then by FACS, or 
less-stringent protocols include differential centrifugation before filtering and 
alternatively density gradient centrifugation. If only non-cardiomyocyte cells 
are needed, mechanical and enzymatic tissue dissociation of fresh samples 
allows the recovery of stromal and interstitial cells. For rare cell types of interest, 

the potential enrichment for specific populations can be achieved via antibody 
labelling of cell surface markers, followed by magnetic bead-based enrichment 
or flow cytometry sorting. These enriching methods can also be used to select 
cells expressing fluorescent proteins, such as in lineage-tracing experiments. 
After the isolation and purification steps, single cells and nuclei are captured, 
labelled (by barcoding) and incorporated into a library preparation using 
a variety of single-cell platforms: droplet-based approaches, such as the 
Chromium Controller from 10× Genomics, which have a high throughput; 
nanowell-based methods, such as: the ICELL8 instrument from Takara Bio, which 
allows the selection of a wide range of cell sizes with low-to-medium throughput; 
microfluidics approaches, such as the Fluidigm C1 platform; multiwell plate-
based protocols, such as Smart-seq3xpress; and methods based on multiple 
rounds of splitting and pooling of cells, such as SPLiT-seq, which allow the 
barcoding of single cells without the need for physical separation. scRNA-seq, 
single-cell RNA sequencing; snRNA-seq, single-nucleus RNA sequencing.
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versus tetraploid nuclei, a key step in defining the transcriptional 
changes occurring in neonatal proliferating cardiomyocytes48,51. 
However, certain dyes used for nuclei sorting can intercalate between 
DNA base pairs and disrupt chromatin structure52. Therefore, when 
downstream analysis includes single-nucleus assay for transposase- 
accessible chromatin sequencing (snATAC-seq), a recommended dye 
such as 7-aminoactinomycin D should be used. In addition, during 
FACS, nuclei shear stress, high hydrodynamic pressure and osmotic 
changes could induce chromatin rearrangement53. By contrast, these 
effects are unlikely to influence gene expression when the nuclei are 
isolated from frozen tissue and experiments are performed at 4 °C, 
which prevents the activation of transcription27,37,44–46.

Available single-cell or single-nucleus platforms
After choosing the best protocol for cell and nucleus isolation, the 
next crucial decision is the optimal method for single-cell and single-
nucleus capture and library construction20,54,55 (Fig. 1). Microfluidic 
systems (such as the Fluidigm C1 platform) were among the first sys-
tems used to study heart cells; however, a low-to-medium throughput 
and high costs have limited their use20,23. In droplet-based platforms 
(such as 10× Genomics and Drop-seq technologies), thousands of iso-
lated single cells or nuclei are moved through advanced microfluidic 
devices, where they are individually partitioned with uniquely barcoded 
beads into nanolitre-sized gel emulsions56,57. These platforms allow 
the capture of typically 5,000–10,000 cells or nuclei per sample with 
low costs, enabling a wide representation of cell populations, includ-
ing rare cell types. Technologies based on full-length transcriptome 
sequencing, such as Smart-seq3, allow the characterization of transcript 
isoforms facilitating the detection of a larger number of transcripts per 
cell than droplet-based approaches, but at higher costs per cell and 
with lower throughput58. However, protocol updates in the past year 
(Smart-seq3xpress) have substantially increased the throughput while 
maintaining high sensitivity59. Nanowell-based technologies include 
ICELL8 (Takara), a mid-throughput platform that combines imaging 
and dispensing of single cells into nanowells to capture hundreds of 
cells with a wide range of sizes, including cardiomyocytes60–62. Finally, 
SPLiT-seq is an alternative affordable method based on combinatorial 
barcoding that does not require single-cell capture, is compatible with 
fixed cells and nuclei, and can be used for large cardiomyocytes63.

Capturing anatomical diversity
Designing cardiac single-cell or single-nucleus transcriptomics experi-
ments requires careful consideration of the multiple (sub)anatomical 
regions of the heart, which consists of highly specialized structures with 
a diverse cellular composition. The most comprehensive human heart 
reference cell atlas involved the collection and analysis of six anatomical 
regions: the right ventricle (RV) and left ventricle (LV) free wall, apex, 
interventricular septum, and right and left atria27. According to snRNA-
seq data, the atria and ventricles of donor hearts have different cellular 
compositions, with an inverse correlation between the proportion of 
fibroblasts and cardiomyocytes, in accordance with the role of the 
ventricles as the primary pumping chambers27. Analysis of the aortic 
valve and aorta was challenging, owing to the paucicellular nature of 
the tissue and its richness in extracellular matrix (ECM)64,65. Although 
some studies have explored anatomical differences during mouse 
development to define progenitor cells beyond the known first and 
second heart fields23,41,42,66, an unmet need exists for a systematic analy-
sis of chamber differences in the adult mouse heart. Indeed, analyses 
with higher precision and broader spectrum of anatomical regions 

are needed for consistent comparisons across studies, species and 
disease phenotypes.

Power calculations
Two additional aspects are crucial in the design of scRNA-seq and snRNA-
seq experiments: the number of single cells or nuclei to be analysed 
per sample and the depth of sequencing, which influences the number 
of genes obtained per cell. Most experiments are designed to obtain 
data from thousands of single cells with relatively shallow sequenc-
ing, or from hundreds of cells with deeper sequencing. The choice of 
approach can be qualitatively assessed in exploratory studies or on the 
basis of emerging tools for power calculations. The web-based single-cell 
one-sided probability interactive tool (SCOPIT) estimates the necessary 
number of cells to be sequenced to resolve cell types present at different 
frequencies67, whereas the statistical framework scPower models the 
relationship between the number of cells per individual, sequencing 
depth, sample size and power of differentially expressed genes within 
cell types to compare a multitude of experimental designs and to opti-
mize the design within a limited budget68. In general, the sequencing 
of a large number of cells at a lower depth leads to higher power com-
pared with sequencing fewer cells at a higher depth68. Nevertheless, 
deeper sequencing of hundreds of cells can be useful to characterize 
prospectively sorted rare populations. Regarding biological replicates, 
proof-of-feasibility experiments have largely been conducted with a 
low number of replicates22,26, but now the field has reached a phase in 
which variability can be predicted for both animal and human studies. 
In human cardiomyopathies involving pathogenic variants affecting the 
same gene, a cohort of five individuals has been shown to be sufficient 
to highlight statistically significant differences in gene expression and 
other related parameters, including cellular composition69.

The importance of metadata
For best practice, to reduce the risk of technical bias, studies should, 
if possible, incorporate cells or nuclei obtained with the same proto-
col, especially when performing comparisons across different treat-
ment groups or diseases and controls. Indeed, the various protocols 
for the isolation and purification of cells and nuclei can have different 
effects on the proportions of the types and states of cells retrieved, as 
well as on their transcriptional and epigenetic signatures. Moreover, 
substantial structural changes in pathological tissue or analysis of dif-
ferent anatomical regions of the heart, such as highly fibrotic tissue, 
could affect the release of certain cell types, even when using the same 
protocol. Therefore, reporting technical metadata and histopathologi-
cal evaluation of the tissue microstructure for each sample is important 
to facilitate accurate data interpretation and integration across stud-
ies. Consequently, cell annotation and compositional analysis need 
to be evaluated in the context of the experimental design, and require 
validation with multiple platforms, including high-resolution spatial 
transcriptomics.

Overview of the computational workflow
Computational analysis of scRNA-seq or snRNA-seq data is a complex 
multistep process that requires specialized expertise (Fig. 2). In this 
section, we provide an overview of the crucial steps70.

Quality control and data integration
Analysis pipelines for processing raw data, such as Cell Ranger57, SEQC71 
and zUMIs72, perform initial quality checks73 on the sequencing reads, 
demultiplex data by assigning reads to their cellular barcodes and 
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mRNA molecules of origin, and facilitate genome alignment and quan-
tification. In droplet-based scRNA-seq and snRNA-seq analyses, the 
degree of contaminating ambient transcripts released into the cell or 
nucleus suspension during tissue dissociation can vary according to the 
dominant cell types and might lead to misinterpretation of the results. 
In the human heart, cardiomyocyte nuclei are the major contributors 
to ambient contamination. Software tools, such as CellBender, SoupX 
and DecontX, can minimize technical artefacts in data74–76. For example, 
CellBender can estimate ambient RNA from empty droplets and correct 
the expression metrics by removing counts related to ambient RNA 
molecules and even random barcode swapping74–76.

Standard quality control includes establishing minimum and maxi-
mum numbers of reads and genes per cell or nucleus, and determining a 
threshold for the highest percentage of genes encoding ribosomal pro-
teins and mitochondria per cell or nucleus, above which a cell is defined 
as poor quality or unhealthy73. Single-cell analysis of cardiomyocytes 
needs to take into consideration the high proportion of mitochondria 
normally present in cardiomyocytes compared with other cells77. Two 
or more cells or nuclei that are attached, captured within the same 
droplet or microwell, and represented by the same barcode can gener-
ate a hybrid transcriptome, an artefact that violates the fundamental 
principle of single-cell technology and results in incorrect inferences. 
Doublet or multiplet detection is best performed using unbiased meth-
ods such as Scrublet and SOLO, which involve simulation of doublets 
or multiplets to create a training set for a machine learning classi-
fier70,78,79. Correct and precise identification of doublets is necessary 

to avoid the risk of confusing artefactual chimeric hybrids derived 
from two (or more) cells adhered together with transitional cell states.

To overcome batch effects and unwanted technical variation while 
retaining biological differences, multiple integration methods can be 
applied80,81. The assembly of one of the largest human donor heart cell 
atlases involved the successful integration of data from single nuclei and 
cells from 14 donor hearts, in which differences between ventricles 
and atria were retained, as well as left and right specificities27. Successful 
data integration was also observed in two studies of human hearts from 
individuals with HF that included analyses of >800,000 nuclei47,69.

Defining cell types and states
The annotation of cell types and states is a complex task that is neces-
sary for data interpretation. The major cardiovascular cell types include 
cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells 
(SMCs), pericytes, immune cells, neuronal and glial cells, and adipo-
cytes. Most of these cell types have multiple identifiable cell states with 
anatomical specificities22–24,27,33,82. Cell annotation requires unbiased 
clustering and the analysis of the expression of known marker genes 
and novel gene signatures. Unbiased clustering is a key step, the results 
of which depend on algorithm resolution and the number of droplets 
analysed: a high resolution will determine a high number of cell states or 
types, whereas lower granularity will be obtained with lower resolution. 
Each study will apply a given resolution with a subjective final decision 
that influences the results, which together with the effectiveness of data 
integration, doublet exclusion and ambient contamination subtraction 
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Fig. 2 | Computational analysis workflow. After the sequencing of libraries, 
the overall bioinformatics pipeline is largely the same, regardless of which 
sampling procedure was chosen. After aligning the reads to a reference genome, 
comprehensive single-cell packages (such as Scanpy and Seurat) are used for 
quality control, batch correction and data integration. A key step in this process 
is the clustering and annotation of cell types and states, which is performed 
on the basis of the expression of known marker genes and the interpretation 
of the transcriptional signatures of each cluster. Of note, deep learning-based 

approaches are emerging for automated annotation. Comprehensive 
annotation facilitates increased resolution in complex downstream analyses, 
such as: compositional analysis (the proportion of various cell types present 
in a tissue across various conditions); differential expression analysis 
between different diseases or treatments; and inferences on intercellular 
communication on the basis of the expression of genes encoding ligand 
receptors in different cell types and states. FC, fold change; SMCs, smooth 
muscle cells.
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can affect the accuracy of comparisons across studies. Computational 
tools that can be used to estimate the best resolution include SCCAF83 
and MultiK84. However, it is imperative to assess whether differentially 
expressed genes across the various clusters are clearly defined and are 
biologically meaningful. The annotation of the identified cell clusters 
(each of which represents a cell type or state) is mostly performed 
manually on the basis of transcriptional signatures. However, owing 
to the availability of open reference data, label transfer approaches 
are possible for some tissue systems such as immune cells. CellTypist 
and scNym can automatically annotate cell types or states in a query 
dataset by mapping them onto a reference13,85. The creation of data-
bases and collaborative initiatives will be needed to form a consensus 
on the optimal approach to the annotation of cardiac cell types and 
states for accurate comparisons across studies. Furthermore, the use 
of novel deep learning strategies such as scArches, which is based on 
transfer learning, enables efficient building and sharing of reference 
atlasing data and to retain disease variation when mapping to a health 
reference, as shown for coronavirus disease 2019 (COVID-19) datasets86. 
Such approaches will be key to ensuring the efficient use of the human 
cardiac reference atlas to improve our understanding of disease and to 
create model organism atlases that will facilitate functional validations.

Integration of multimodal omics approaches
The integration of data across multiple modalities such as scRNA-seq 
and snRNA-seq, ATAC-seq or proteomics can generate standardized 
cell state labels87–89. Computational tools such as cell2location and 
Giotto allow mapping of newly defined cell types and states onto the 
physical 2D space by combined analysis of scRNA-seq or snRNA-seq 
data with spatial transcriptomics (analysis of gene expression on tis-
sue sections)27,90–92. This integration is needed because of the intrinsic 
nature of current spatial transcriptomics technologies that are based 
on the analysis of microtiles of tissue typically encompassing 5–15 cells, 
although this number varies depending on the size of the tile and the 
size of the cells captured, resulting in microbulk gene expression data. 
Integration tools allow the deconvolution of this microbulk information 
and the mapping of specific cells in space, which guides the definition 
of cellular niches. One typical spatial transcriptomics method, such 
as the commercially available Visium by 10x Genomics, is based on 
positioning tissue samples on slides covered with unique barcoded 
mRNA-binding oligonucleotides, which facilitates the capture of RNA 
from the tissue with high spatial resolution (protocols are available 
for frozen sections and formalin-fixed paraffin-embedded (FFPE) 
sections)93,94. Alternatively, individual RNA molecules can be directly 
profiled using the Nanostring GeoMx Digital Spatial Profiler, which 
assigns fluorescently labelled barcoded probes to genes of interest 
that are hybridized on the tissue and subsequently counted by a com-
puterized optical lens without the need for amplification (compatible 
with FFPE sections)95. Non-commercially available protocols such as 
Slide-seq have also been developed, which involve the use of barcodes 
to capture RNA with a resolution of 10 µm94.

Together, the assembly of large atlases from publicly available 
datasets representing tens to hundreds of individuals will contribute 
to the definition of consensus cardiac cellular maps by characterizing 
common signatures across multiple studies96. Larger multi-organ stud-
ies such as the Tabula Sapiens97 overcame difficulties of integrating 
data from diverse organs, including the heart, paving the way to a new 
series of studies focusing on the definition of shared and organ-specific 
molecular signatures of cells present across the whole body, such as 
fibroblasts, vascular cells and immune cells98. This step is crucial for 

the definition of putative organ-specific and tissue-specific cellular 
therapeutic targets. Likewise, the computational analysis of scRNA-seq 
and snRNA-seq data and its integration with other modalities is a fun-
damental and demanding step that requires interdisciplinary expertise 
for accurate hypothesis generation and functional inferences.

Cardiomyocyte profiling in health and disease
Isolating large numbers of rod-shaped cardiomyocytes from cardiac 
tissue is inherently difficult and requires manual micropipetting or 
dispenser approaches using a large nozzle size. Consequently, only a 
few studies have characterized gene expression by scRNA-seq in single, 
freshly isolated adult human cardiomyocytes7,61.

Cardiomyocytes in the healthy heart
snRNA-seq has emerged as a successful high-throughput transcrip-
tomics approach for profiling adult human cardiomyocytes27,32,33 and 
has revealed previously unknown inter-compartmental and intra- 
compartmental cardiomyocyte heterogeneity between cardiac regions 
of donor hearts27,33 (Table 1). Although the transcriptional diversity 
between atrial and ventricular cardiomyocytes probably reflects dif-
ferent developmental origins and electromechanical stimulations, 
distinct genomic signatures of cardiomyocyte subpopulations within 
anatomical regions suggest additional functional diversity that might 
correspond to specific tissue microenvironments. Such subpopula-
tions include cardiomyocytes enriched for retinoic acid-responsive 
genes and stress-response-related genes, as well as cardiomyocytes 
enriched for nuclear-encoded mitochondrial genes indicative of a 
high energetic state, which suggests that these cardiomyocytes are 
equipped for a higher workload27. Interestingly, these cardiomyocyte 
states have been found in both atrial and ventricular cardiomyocytes27. 
However, whether their localization is enriched in areas of increased 
wall stress within the ventricle or atrium and how they vary under dif-
ferent pathological conditions, such as mitral or tricuspid valve disease, 
remains unknown. Likewise, the differences between the transcrip-
tional signatures specific to the cardiomyocytes of the spirally oriented 
ventricular muscle fibres that constrict the chamber and those of the 
trabecular cardiomyocytes remain unclear99. A novel cardiomyocyte 
state enriched for Myoz2, which encodes the calcineurin inhibitor 
myozenin 2, was localized just below the epicardial surface of the mouse 
heart28, supporting the hypothesis that specific cardiomyocyte states 
localize to defined microenvironments.

Prenatal cardiomyocyte development
Analysis of human fetal hearts at 5–25 weeks of gestation has led to the 
identification of cell clusters composed of trabecular, ventricular and 
atrial compact myocardium100. Key transcription factors, such as HAND2 
and NR2F1 (encoding heart and neural crest derivative-expressed pro-
tein 2 and COUP transcription factor 1, respectively), were identified 
in atrial cardiomyocytes, whereas HAND1 and HEY2 (encoding hairy/
enhancer-of-split related with YRPW motif protein 2) were found in 
ventricular muscle cells. At 5 weeks, proliferating cardiomyocytes were 
observed, as well as muscle cells with key left-side specification genes 
(IRX3, encoding iroquois-class homeodomain protein IRX 3 in ventricu-
lar compartments, and PITX2 encoding pituitary homeobox 2 in atrial 
compartments)100. At 19–22 weeks, a population of proliferating cardio-
myocytes showed high expression of TOP2A (encoding DNA topoi-
somerase 2α) and MKI67 (encoding proliferation marker protein Ki-67), 
as well as a lack of expression of TCAP (encoding telethonin, a protein 
needed for the assembly of mature myofibrils)101. An understanding 
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of the gene expression signatures present in proliferating cells is key 
to identifying cardiomyocytes with a predisposition to divide and to 
define potential therapeutic strategies for heart regeneration. In this 
regard, a comparison of gene expression signatures across different 
time points in prenatal and postnatal periods is needed.

Of note, a comparison of the cardiac cellular landscape in human 
versus that in mouse fetal hearts suggested differences in gene 
expression signatures between the two species23,100,102,103. Although 
cardiomyocytes were the most similar among all cell types, ventricu-
lar cardiomyocytes in humans expressed ECM-encoding genes ear-
lier and more abundantly than those in mice. RELN (encoding reelin) 
expression was specific to human atrial trabecular cardiomyocytes 
and was absent in mice23,100,102,103. Furthermore, CITED2 (encoding 
Cbp/p300-interacting transactivator 2) and CITED4 were enriched in 
developing human cardiomyocytes, whereas Cited1 was enriched in the 
mouse counterpart23,100,102,103 (Fig. 3).

Cardiomyocytes in disease
Myocardial infarction. In a mouse model of myocardial infarction 
(MI), scRNA-seq identified a cardiomyocyte subset with upregulated 
expression of β2 microglobulin in response to ischaemic damage29. 
In vitro experiments suggested that this upregulation drives fibroblast 
activation. Furthermore, a multimodal approach combining snRNA-
seq, snATAC-seq and spatial transcriptomics was used to study cardiac 
samples from hearts explanted 2–5 days after the onset of clinical symp-
toms of MI, before the patients received a total artificial heart104. This 
integrated method allowed the investigators to map putative enhanc-
ers controlling gene expression within distinct cardiomyocyte niches 
of injury, repair and remodelling, revealing a regional influx of immune 
cells in response to localized induction of cytokines, and defined RUNX1 
(encoding runt-related transcription factor 1) as a potential driver of 
myofibroblast differentiation104. The inclusion of spatial transcriptom-
ics helped to determine localized differences at the site of ischaemic 
injury. ANKRD1 (encoding the transcriptional repressor ankyrin repeat 
domain 1, the overexpression of which has been shown to impair cardio-
myocyte function105) and NPPB (encoding natriuretic peptide B, which 
is widely used as a marker for cardiac disease and is upregulated in the 

border zone after MI in mice106,107) were defined as markers for two 
niches of stressed cardiomyocytes104. Importantly, integration with 
snATAC-seq facilitated the identification of T-box protein 3 (TBX3) and 
myocyte-specific enhancer factor 2D as regulators of an ANKRD1+NPPB− 
pre-stressed cell state, and cyclic AMP-dependent transcription factor 
ATF3 as a driver of the ANKRD1+NPPB+ state104.

Cardiac hypertrophy. A multimodal approach including epigenetic, 
morphological and functional assessment and co-expression network 
analysis of mouse and human single cardiomyocyte transcriptomes 
has facilitated the delineation of conserved mechanisms of pressure 
overload responses7. In early hypertrophy, cardiomyocytes were found 
to activate mitochondrial translation and oxidative phosphorylation, 
which correlated with morphological hypertrophy7. Subsequently, 
sustained overload induced p53 activation, leading to the disrup-
tion of adaptive hypertrophy transcriptional programmes and the 
promotion of HF7. This observation confirms that cardiomyocyte 
identity and morphological and functional phenotypes are encoded 
in transcriptional programmes.

A snRNA-seq study on pathological cardiac hypertrophy caused 
by aortic stenosis highlighted the downregulation of ephrins, the 
largest family of receptor tyrosine kinases, in cardiomyocyte hyper-
trophy46. In particular, a downregulation of EPHB1 (encoding ephrin 
type B receptor 1) observed in the human hypertrophic heart was con-
firmed in a transverse aortic constriction (TAC) mouse model of pres-
sure overload46. In vitro treatment of cells with EFNB2, the ligand for 
EPHB1, rescued the hypertrophic phenotype46. A TAC mouse model 
was used to mimic the progression towards pathological hypertrophy 
and led to the identification of early metabolic cardiomyocyte adap-
tation, which was evidenced by an upregulation in the expression of 
glycolysis-related genes, a continuous increase in the expression of the 
hypertrophy-related genes Nppa and Nppb, and a decrease in calcium 
handling-related genes108. In addition, the number of cardiomyocytes 
enriched for ERBB4 (encoding receptor tyrosine protein kinase erbB4) 
and FGF12 (encoding fibroblast growth factor 12) was reduced in hyper-
trophied human hearts compared with healthy hearts46. To advance our 
understanding of pathological cardiac hypertrophy, the cardiomyocyte 

Table 1 | Cardiomyocyte gene signatures identified with omics technology

Setting Mouse Human

Health Neonatal: Cited1 and proliferative markers such as 
Nrg1, Erbb2, Nfya and Nfe2l1
Adult: Myoz2+ (subepicardial)

Neonatal: CITED2, CITED4, HAND2, NR2F1, PITX2 and RELN (localized to the atria); HAND1, 
HEY2, IRX3, and ECM-related genes (localized to the ventricles)
Adult: stress-response-related genes and nuclear-encoded mitochondrial genes 
(in cardiomyocytes)

Ischaemic injury B2m (myocardial infarction model) ↑ Expression of genes related to targeting of proteins to the endoplasmic reticulum 
and energy metabolism
↑ Expression of genes localized at the injury zone (ANKRD1+NPPB+) and the middle of the 
border zone (ANKRD1+NPPB–)

HCM ↑ Expression of Nppa, Nppb and genes related to 
glycolysis and p53 signalling
↓ Expression of calcium handling-related genes, 
metabolism-related genes and Ephb1 (TAC model)

↓ Expression of EPHB1, ERBB4 and FGF12

DCM Not reported Gene programmes related to contractility and glycolysis
Genotype-specific changes: ↑ expression of SH3RF2 (in patients with no pathogenic 
variants) and ↑ expression of FNIP2 (in patients with variants in LMNA)

CHD Not reported Gene programmes related to EGFR signalling and FOXO signalling
↑ CRIM1 to CORIN ratio

CHD, congenital heart disease; DCM, dilated cardiomyopathy; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; FOXO, forkhead box protein O; HCM, hypertrophic 
cardiomyopathy; TAC, transverse aortic constriction.
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profile from patients with cardiac hypertrophy of different aetiolo-
gies, such as hypertension and hypertrophic cardiomyopathy, should 
be assessed. Similarly, the specific cardiomyocyte states present in 
these diseases and their distribution within the tissue remains largely 
unexplored.

Cardiomyopathy. A convergence of cardiomyocyte transcriptomic 
changes is thought to be present in the setting of HF associated with 
dilated cardiomyopathy (DCM)45. An analysis of 61 patients with DCM 
or arrhythmogenic cardiomyopathy (ACM) with defined genetic 
mutations showed a substantial proportion (20–40%) of differen-
tially expressed genes, suggesting a degree of divergence even in late-
stage failing hearts69. Specific expression profiles included a general 
downregulation of MYH6 (encoding myosin 6) and cell-state-specific 
upregulation of SH3RF2 (encoding the anti-apoptotic protein E3 ubiqui-
tin protein ligase SH3RF2) in patients with no known pathological gene 
variant, and an upregulation of FNIP2 (encoding folliculin-interacting 
protein 2, which is involved in the inhibition of oxidative metabolism) in 
patients with variants in LMNA (encoding prelamin A/C) or PKP2 (encod-
ing plakophilin 2), but not in patients with variants in TTN (encoding 
titin) or RBM20 (encoding RNA-binding protein 20)69. Different HF aeti-
ologies also lead to different cardiomyocyte transcriptomic signatures, 
suggesting a divergence of pathogenic mechanisms. Cardiomyocytes 

from failing hearts due to ischaemic cardiomyopathy (ICM) show 
dysregulation of different gene ontologies from cardiomyocytes from 
hearts with DCM62. For example, ICM causes cardiomyocyte changes 
in energy metabolism and protein targeting to the endoplasmic 
reticulum, whereas DCM causes cardiomyocyte changes in muscle 
contraction62.

Congenital heart disease. Single-cell transcriptomics has also pro-
vided new insights into congenital heart disease. A study of hearts 
from nine paediatric patients with different aetiologies of congenital 
heart disease and four control individuals found that age had a minimal 
contribution to the cardiomyocyte transcriptome compared with 
disease status109. A disease-specific cell state was identified in patients 
with congenital heart disease, which was characterized by increased 
EGF receptor (EGFR) and forkhead box protein O signalling, as well as 
insulin resistance. These transcriptomic changes were validated by 
scATAC-seq data that showed an increase in chromatin accessibility 
in 84–90% of differentially expressed genes. The expression of CORIN 
(encoding atrial natriuretic peptide-converting enzyme) was also 
strongly associated with healthy cardiomyocytes, whereas CRIM1 
(encoding cysteine-rich motor neuron 1 protein) was enriched in dis-
eased cardiomyocytes. This observation was validated by RNA in situ 
hybridization, which showed that the CRIM1 to CORIN ratio was higher 
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Fig. 3 | Single-cell and single-nucleus analysis revealed previously unknown 
complexities within fibroblasts. Fibroblasts are key in homeostasis as well as in 
disease progression, given that fibrosis is a common feature of the response to 
injury. Single-cell and single-nucleus RNA sequencing have provided insights into 

the role of fibroblasts in the ageing heart and in different disease settings, such as 
myocardial infarction (MI) and dilated cardiomyopathy (DCM). A list of fibroblast 
populations annotated using single-cell and single-nucleus studies is shown in 
Table 2. COVID-19, coronavirus disease 2019; TAC, transverse aortic constriction.
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in cardiomyocytes from patients with congenital heart disease than in 
those from controls109.

Cardiac regeneration. The regeneration potential of adult mammalian 
hearts is very limited and the response after injury is inadequate to 
reconstitute ventricular cardiomyocyte numbers110. However, an analy-
sis of mouse and human failing and non-failing adult hearts revealed 
subpopulations of cardiomyocytes with cardiac regeneration poten-
tial, underpinned by a capacity to dedifferentiate and upregulate cell 
cycle regulators after stress34. In a zebrafish model of heart regenera-
tion after cryoinjury, scRNA-seq defined a subset of cardiomyocytes 
from the border zone that could partially dedifferentiate, shift their 
metabolism towards glycolysis and proliferate111. Neuregulin 1–ErbB2 
signalling contributed to the switch to glycolysis and promotion of 
cell division in mice and zebrafish111. Subsequent snRNA-seq studies 
of mouse hearts during the early postnatal regenerative window iden-
tified immature cardiomyocytes that enter the cell cycle after injury 
but disappear as the heart loses its regenerative capacity48. According 
to findings from gain-of-function experiments, the unique transcrip-
tional signature of these proliferative cardiomyocytes is related to the 
activity of nuclear transcription factor Y subunit α and serum response 
factor48. In addition, the endoplasmic reticulum membrane sensors 
NFE2L1 and NFEL2 drive cardiomyocyte protection48. The identifica-
tion of proliferative cardiomyocytes provides novel inroads for future 
regenerative therapies.

Fibroblasts in health and disease
Cardiac fibroblasts are dynamic components of the heart’s cellular 
ecosystem that act as lineage progenitors, master conductors of ECM 
synthesis and remodelling, intercellular signalling hubs and electrome-
chanical transducers112. Fibroblasts are also the central component in 
cardiac fibrosis, which is observed in most forms of cardiac pathology 
(Fig. 3a). Although initially protective, unresolved fibrosis leads to 
chamber stiffening and HF, as well as sudden death due to arrhyth-
mias112. Many anti-fibrotic drugs have not been successful in improving 

end points in clinical trials, probably owing to factors such as biological 
differences between rodent and human hearts, and therapeutic target 
pleiotropy leading to adverse effects. Therefore, the identification of 
novel therapeutic targets in cardiac fibrosis is a priority113–118. Single-
cell genomics have begun to unravel diverse quiescent and activated 
fibroblast populations in adult hearts22,24,27,28,119–121 (Table 2).

Human fibroblasts
In the human donor heart cell atlas, in a study with one of the highest 
number of cells and nuclei assembled to date, five fibroblast popula-
tions were identified, including chamber-specific ECM-producing 
fibroblasts and fibroblasts enriched for cytokine receptor genes such 
as OSMR (encoding oncostatin-M-specific receptor subunit β) and Il6ST 
(encoding IL-6 receptor subunit β), which might modulate immune 
responses27. This cell atlas identified activated fibroblasts that were 
shown to express pro-fibrotic genes27; however, other studies did not 
show activated fibroblasts in healthy hearts33,47. Shifts in the proportion 
of specific fibroblast populations and their gene signatures in disease 
states have been observed, including an increase in myofibroblasts 
enriched for ELN (encoding elastin) in patients with DCM45,122 or ICM122, 
as well as an increase in lipogenic fibroblasts enriched for DLK1 (encod-
ing protein delta homologue 1) in the RV of patients with DCM and 
in non-ischaemic areas of the LV in patients with ICM122. In addition, 
a decrease in ‘resting’ fibroblasts (enriched for PLA2G2A, encoding 
membrane-associated phospholipase A2) was observed in patients 
with DCM45,122 or ICM122. Activated fibroblasts, which are character-
ized by the expression of POSTN (encoding periostin) and FAP (encod-
ing fibroblast activation protein), are also consistently increased in 
HF45,47,69,122. However, the extent of the increase in activated fibroblasts 
might depend on patient genotype, given that the increase was less 
evident in patients with variants in LMNA and RBM20 compared with 
patients with TTN variants or no known pathogenic variants69. In a study 
of patients with DCM or HCM47, the best marker of activated fibro-
blasts was expression of COL22A1 (encoding collagen α1 (XXII) chain), 
which was variably detected in patients with DCM or HCM47. This finding 

Table 2 | Fibroblast populations annotated using single-cell and single-nucleus studies

Fibroblast population Human Mouse

Healthy Disease Healthy Disease

Quiescent Annotated Annotated Annotated Annotated

Progenitor-like (Ly6ahigh in mouse) ? ? Annotated Annotated

WntX (Wif1+Dkk3+) Not detected ? Annotated Annotated

Transitory Not annotated ? Annotated Annotated

Activated (Postn+) Annotated Annotated Annotated Annotated

Interferon-responsive Not detected ? Annotated Annotated

Lipogenic (DLK1+) Annotated Annotated ? ?

Responsive to cytokines or chemokines Annotated ? ? ?

Injury response Not detected ? Not detected Annotated

Pre-proliferative Not detected ? Not detected Annotated

Proliferative Not detected Annotated Not detected Annotated

Myofibroblasts Not detected Annotated Not detected Annotated

Matrifibrocytes Not detected ? Not detected Annotated

?, indicates states that need to be further explored.
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should be interpreted cautiously, considering that a separate study of 
patients with DCM or ACM showed genotype-specific upregulation 
of different collagens, such as COL4A1 and COL4A2, in patients with 
pathogenic variants in LMNA, TTN or PKP2, and COL4A5 and COL24A1 
in patients with no known pathogenic variants69. Overall, these find-
ings highlight unexpected nuances in the gene signatures of activated 
fibroblasts, and a need to further understand the relationship between 
different fibroblast states and their distribution in cardiovascular dis-
eases. A CRISPR-based knockout screen of several genes expressed in 
cardiomyopathy-associated fibroblast populations uncovered several 
new regulators of fibrosis, such as PRELP and JAZF1 (encoding prolargin 
and juxtaposed with another zinc finger protein 1, respectively)47.

Single-cell and single-nucleus transcriptomics studies of devel-
oping, healthy, diseased and partially recovered (unloaded) adult 
human hearts have confirmed the presence of fibroblast cell state 
heterogeneity and have highlighted additional regulators of fibro-
blast differentiation27,61,100,104,112,123. Co-localization of myofibroblasts 
with phagocytic macrophages after MI has also been demonstrated 
using spatial transcriptomics104. Finally, increased expression of ACE2 
(encoding angiotensin-converting enzyme 2) was observed in the 
fibroblasts of hearts from patients with COVID-19 compared with 
healthy controls124, in addition to an enrichment in fibroblasts with pro-
thrombotic, ECM-producing, ECM-organizing and immune cell-related 
signatures27,124–129.

Mouse fibroblasts
In mouse ventricles, a predominant quiescent fibroblast subtype 
(PDGFRA+SCA1high fibroblasts, termed F-SH24; also described as progen-
itor-like state fibroblasts25) exists across all organs130–134, and is enriched 
in cells with progenitor characteristics such as hypoxic niche and poten-
tial for multilineage differentiation, suggesting that these fibroblasts 
might be a lineage reserve for mobilization after injury131–133,135,136. F-Act 
fibroblasts24,132, an activated fibroblast population expressing Meox1 
(encoding homeobox protein MOX1 (MEOX1), a transcriptional regula-
tor involved in fibroblast activation during cardiac dysfunction137) and 
Cilp (encoding cartilage intermediate layer protein 1), are present at 
low levels in uninjured hearts, but expand to account for 20–50% of 
all cardiac fibroblasts by day 3 after MI24,132, seemingly deriving from 
more quiescent fibroblasts, or their pre-proliferative and proliferat-
ing counterparts24. F-Act fibroblasts lack expression of the α-smooth 
muscle actin gene Acta2, and thus might correspond more closely 
to previously characterized ‘proto-myofibroblasts’112. Interestingly, 
Cilp1-knockout mice have better cardiac function after MI and a reduced 
number of myofibroblasts than control mice138, supporting a key role 
of Cilp1 in fibroblast activation and differentiation. F-Act fibroblasts 
resemble the human POSTN+FAP+ fibroblasts mentioned above, but 
their functional similarity needs validation112. Another minor activated 
fibroblast population in mice, F-WntX24, expresses genes encoding 
secreted antagonists of WNT signalling and other pro-fibrotic regu-
lators, one of which, WIF1, is essential for restricting the response of 
inflammatory monocytes after MI24,139.

scRNA-seq has enabled investigators to define fibroblast-
dependent cytokine pathways that contribute to the inflammatory 
phase of MI repair140. The levels of a fibroblast subpopulation known 
as injury response cells (IR) peak on day 1 after MI, before decreas-
ing rapidly, and this cell subtype is likely to be involved in the early 
inflammatory response25. IR cells might be similar to pro-inflammatory 
fibroblasts, previously described in a cardiac pressure overload model, 
which recruit Ly6Chigh monocytes via NF-κB signalling and expression 

of genes encoding monocyte chemoattractants such as CC-motif 
chemokine 2 (CCL2) and CCL5 (ref.141).

The number of myofibroblasts, the most distinctive injury-
related fibroblast subtype, peaks at about day 7 after MI in mice25. 
Myofibroblasts can derive from the F-Act pool and/or other activated 
populations and as they differentiate show downregulation of stem cell 
markers and massive upregulation of ECM-related and contraction-
related genes25,142. However, myofibroblast subgroups have different 
pro-fibrotic or anti-fibrotic regulatory gene signatures, suggesting that 
fibrosis is self-limiting24. Accordingly, myofibroblasts transition to a 
deactivated, post-proliferative cell type known as matrifibrocytes143, 
which are associated with osteogenic and chondrogenic ECM signa-
tures and persist within the scar, probably to direct its maintenance 
and remodelling25,143. Activated fibroblasts that accumulate late in 
angiotensin II-induced cardiac hypertrophy also resemble matrifibro-
cytes144, suggesting a role for matrifibrocytes in non-ischaemic heart 
disease, in which perivascular and interstitial fibrosis predominates.

scRNA-seq analyses of other mouse models of heart disease have 
highlighted the presence of inflammatory, angiogenic and osteogenic 
fibroblast signatures82,121,134,137,145,146, which are more abundant with 
advanced age and might compromise fibroblast–endothelial intercel-
lular signalling82. In mice, deletion of Hif1a (encoding hypoxia-inducible 
factor 1α) in fibroblasts leads to excessive fibrosis after MI132, whereas 
conditional deletion of Lats1 and Lats2 (encoding mechanosensitive 
Hippo pathway-related serine/threonine protein kinases) in fibroblasts 
leads to their spontaneous transition to myofibroblasts in uninjured 
hearts, and formation of a pervasive, non-compacted scar after MI 
via a mechanism involving the transcription factors YAP and TEAD121. 
Underlining the context-specific effect of the Hippo pathway, epicar-
dial-specific deletion of Lats1 and Lats2 in mice was embryonically 
lethal, leading to defective coronary vasculature remodelling and an 
impairment in the differentiation of epicardial progenitors into cardiac 
fibroblasts121. scRNA-seq and scATAC-seq analyses in a mouse model of 
pressure overload, with and without pharmacological inhibition of epi-
genetic factors, have demonstrated that activated fibroblasts are capa-
ble of reverting to quiescent fibroblasts, and MEOX1 was revealed as 
a key regulator of fibroblast activation137. Taken together, these find-
ings show that the annotation of cardiac fibroblast states and infer-
ences of their function is at present more granular in mouse hearts 
than in human hearts, and that for several mouse cell states, a human 
equivalent has not yet been identified.

Vascular cell signatures in health and disease
Cardiac vascular cell compartments include those within coronary 
arteries, capillaries and the endocardium, and have different develop-
mental origins, structures and functions. Importantly, the myocardial 
microvasculature is the most abundant and capillary endothelial cells 
are in close contact with cardiomyocytes147. Although this microarchi-
tecture infers a close regulatory relationship between endothelial cells 
and cardiomyocytes, much remains to be understood about the drivers 
of vascular remodelling in cardiovascular disease.

Endothelial cells
In adult organ donor hearts, the transcriptional signatures of all major 
cardiac endothelial cell populations have been reported, including cap-
illary, arterial, venous, endocardial and lymphatic endothelial cells27. 
The highest heterogeneity was observed in capillary endothelial cells, 
which express RGCC (encoding a regulator of the cell cycle) and AQP1 
(encoding aquaporin 1) (Fig. 4a), with several new cell states identified. 
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One of these cell states was characterized by high expression of genes 
encoding transcription factors (ATF3, FOS and JUN)148, which could be 
induced by endoplasmic reticulum stress149 (as seen in atherosclero-
sis150) and other stimuli such as DNA damage151 and oxidative stress152. 
A second cell state showed enrichment for cytokine-related genes, 
such as CX3CL1, CCL2 and Il16, and interferon-related genes, suggest-
ing that these cells regulate the local immune response27. This analy-
sis remains the most in-depth study of endothelial cell populations, 
particularly for capillary endothelial cells, with other studies being 
limited by the numbers of cells and nuclei available, and conserva-
tive choices of clustering resolution33,47. Indeed, although lymphatic 
and endocardial endothelial cells have been identified33,47, the whole 
range of vascular endothelial cells have not yet been recapitulated47. 

Some of the inconsistencies in endothelial cell states between studies 
are related to differences in annotations or markers used. For example, 
the annotation of a DKK2+ population47 probably corresponds to arte-
rial endothelial cells45. This example again highlights the importance 
of standardizing annotations to facilitate more accurate comparison 
across studies.

SnRNA-seq analysis of patients with DCM have highlighted dif-
ferences in the transcriptional signatures of venous, capillary and 
especially endocardial endothelial cells compared with healthy con-
trols45. The transforming growth factor-β (TGFβ) signalling pathway is 
enriched in both venous and capillary endothelial cells45. Differential 
gene expression analysis identified major changes in the endocardium 
with upregulation of BMP4 and BMP6 (encoding bone morphogenetic 
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protein 4 (BMP4) and BMP6, respectively) between healthy hearts and 
DCM hearts and a shift in expression from NRG3 (encoding membrane-
bound pro-neuregulin 3 (NRG3)) in healthy hearts to NRG1 in DCM 
hearts45,69, which mediates the compensatory response to stress153,154. 
In addition, a genotype stratification study of samples of hearts with 
DCM and ACM demonstrated that BMP and NRG signalling does not 
change uniformly in all cardiomyopathies, but that genotype-specific 
and chamber-specific disruptions of these intercellular signalling 
pathways are driven by the endocardium69. Indeed, in the LV, NRG1 and 
BMP6 are upregulated in the genotypes associated with DCM (variants 
in LMNA, TTN or RBM20, or no pathogenic variants), but not in ACM 
(variants in PKP2)69. However, patients with variants in PKP2 showed 
upregulation of NRG1 and BMP6 in the RV, whereas patients with no 
known pathogenic variants did not69. Of note, Nrg1 was described as 
an endocardial marker in healthy mouse hearts155, suggesting potential 
species-specific differences in the role and transcriptional profile of 
the endocardium (Fig. 4b). By contrast, NRP3 expression is conserved 
in both the human and mouse endocardium28,118,122. Finally, a poten-
tially angiogenic capillary endothelial cell population that expressed 
TMEM163 (encoding transmembrane protein 163) and KIT (encoding 
mast/stem cell growth factor receptor KIT) was shown to increase in 
both DCM and HCM, suggesting an increase in the formation of small 
vessels to compensate for impaired cardiac function47.

In mice, endothelial cells showed increased expression of genes 
encoding cytokines such as CXCL2 and CCL9 on day 3 after MI, and a 
proliferative signature on day 7 after MI156 (Fig. 4c), which was accom-
panied by an increase in cells enriched for interferon signalling157. 
Upregulation of Plvap (encoding plasmalemma vesicle-associated 
protein (PLVAP), a membrane protein that contributes to perme-
ability) and an increase in endothelial fenestration, stomata of cave-
olae and transendothelial channel formation was also detected157. 
In human hearts, increased PLVAP expression was found in venous 
endothelial cells and the endocardium, and widespread localiza-
tion of PLVAP was observed in ischaemic hearts, especially in fibrotic 
areas27,157. Together, these data suggest a potential phenotypic shift 
in endothelial cells after injury away from the previously described 
continuous capillary cardiac endothelium147. In addition, in a TAC 
mouse model, scRNA-seq of cadherin 5 lineage-traced cells showed 
an increase in VEGF, WNT, EGFR and MAPK pathways in a cell state that 
was enriched for genes related to angiogenesis158. Of note, in the adult 
human heart, expression of VWF (encoding von Willebrand factor 
(vWF)) is detected in most endothelial cell states except lymphatic 
endothelial cells27. By contrast, in the mouse heart, Vwf is enriched 
only in endocardial and venous endo thelial cells155,159 (Fig. 4b). Given 
the role of vWF in haemostasis, inflammation, vascular permeability 
and angiogenesis, this finding could have important implications 
in the interpretation of mouse models of disease for clinical trans-
lational purposes160,161. Likewise, single-cell and single-nucleus data 
identified ACKR1 (encoding a chemokine-scavenging receptor) as 
a venous endothelial cell marker in the human heart. However, this 
gene has not been reported in the mouse heart, suggesting a different 
modulation of chemokine bioavailability and, consequently, leukocyte 
recruitment across species.

Finally, a single-cell analysis of 4,000 cardiac cells from human 
fetuses (aged 5–25 weeks) identified four main states of endothelial 
cells: endocardial, valvular, coronary and vascular100. Of note, CDH11 
(encoding cadherin 11) is broadly expressed in human endocardial cells, 
whereas in equivalent stages of mouse development, its expression is 
restricted to the endocardium of the valves64,100. Expression of RNASE1 

(encoding ribonuclease pancreatic, shown to protect endothelial cells 
during inflammation162) was found in human cardiac fetal endothelial 
cells only, whereas expression of Icam2 (encoding intercellular adhe-
sion molecule 2, which is involved in regulating vascular permeability163) 
was specific to the mouse embryo100 (Fig. 4b). A separate study that 
analysed 17,000 cardiac from cells human fetuses (aged 19–22 weeks)  
defined six different endothelial states, including two endocardial popu-
lations enriched in NPR3 (encoding natriuretic peptide receptor 3)101. 
One of these populations co-expressed INHBA (encoding inhibin-βa 
chain, which is selectively expressed in adult endo cardium27,64,100) and 
MEIS2 (encoding meis homeobox 2, a transcriptional regulator essen-
tial for cardiac neural crest development164). The expression of MEIS2 
might reflect a more immature subset of endocardial cells or a different 
subset of cells that disappears in adulthood.

Smooth muscle cells and pericytes
SMCs from human adult donor hearts include cells expressing clas-
sic gene markers such as MYH11 and ACTA2 and a second population 
with high expression of CNN1 (encoding calponin 1), which prob-
ably represents arterial SMCs27,165. Pericyte subtypes include typical 
ABCC9+ and KCNJ8+ cells, and a population enriched for AGT (encod-
ing angiotensinogen), the expression of which is downregulated in 
DCM and indicative of dysregulated vasoconstriction27,45. scRNA-seq 
analysis of vascular SMCs (VSMCs) defined a synthetic state enriched 
in coronary artery SMCs compared with aorta and pulmonary artery 
SMCs166, which might indicate a specific adaptation of coronary arteries 
that are constantly exposed to local pressure changes due to cardiac 
contraction and relaxation. A proliferative VSMC state expressing 
FABP4 (encoding a fatty acid-binding protein) was identified and the 
numbers were found to be expanded in atherosclerosis166. scRNA-seq 
of atherosclerotic lesions showed that VSMCs undergo phenotypic 
modulation to transform into unique fibroblast-like cells (fibromyo-
cytes) that contribute to the lesion and fibrous cap in both humans 
and mice167. Loss-of-function and gain-of-function validation studies 
in mouse models showed that TCF21 (encoding transcription factor 21) 
is essential for this phenotypic modulation and that higher levels of 
TCF21 are associated with decreased risk of coronary artery disease in 
humans167. Interestingly, in a study of human hearts with DCM or ACM, 
SMCs and pericytes showed an upregulation in the long non-coding 
RNA ADAMTS9-AS2 and simultaneous downregulation in ADAMTS9 
(encoding disintegrin and metalloproteinase with thrombospondin 
motifs 9, which is involved in ECM remodelling)69. In addition, genotype-
specific changes were also observed. For example, NOTCH3 (encoding 
neurogenic locus notch homologue protein 3) was downregulated 
in the pericytes of patients with pathogenic variants in TTN or PKP2, 
whereas SLIT3 (encoding slit homologue 3 protein, a ligand that regu-
lates fibroblast activity) was upregulated in ELN+ SMCs from patients 
with variants in PKP2 or LMNA69.

The integration of fate mapping with Wnt1–Cre and scRNA-seq 
helped establish the heterogeneity of cardiac neural crest cell (CNCC)-
derived cardiac cell populations from embryonic day (E) 10.5 to postna-
tal day 7 in mice168. As expected, on postnatal day 7, most of the CNCCs 
localized to the aorta, pulmonary arteries and the coronary vasculature. 
Nine VSMC populations were identified, in addition to microvascular 
SMC (mVSMC) and pericyte states. An analysis of lineage trajecto-
ries (computational inference of differentiation paths) using RNA 
velocity revealed a transition from pericytes to mVSMCs with Notch3, 
Tbx2, Fosb (encoding protein FoxB) and Klf2 (encoding Krueppel- like 
factor 2 (KLF2)) as potential key regulators168–170. Importantly, when 
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analysing potential differentiation paths, the inferred latent time based 
on RNA velocity was similar to the developmental time. The identifica-
tion of several differentiation paths included one rooted on a Crabp1+ 
(encoding cellular retinoic acid-binding protein 1) cell population, 
branching into both mesenchymal cells and VSMCs168, and highlighting 
previously unknown lineage relationships.

Dynamic adaptations of immune cells
Previous studies have shown that healthy adult human and mouse 
hearts contain major immune cell populations of both lymphocytes 
and myeloid cells27,171. Resident immune cells, such as cardiac macro-
phages, are interspersed across the heart between cardiomyocytes, 
the epicardium, the endocardium, valves and the nodes, where they 
contribute to organ homeostasis.

Myeloid cells
Myeloid cells in the healthy adult human heart comprise monocytes, 
dendritic cells and several subtypes of macrophages, such as LYVE1+ 
macrophages (which include MHC-IIhigh and MHC-IIlow populations), 
MHC-II+TREM2+ macrophages, fibroblast-interacting macrophages 
and monocyte-derived macrophages27. In addition, comparisons with 
skeletal muscle and kidneys revealed that cardiac myeloid cells, includ-
ing LYVE1+ macrophages, have cardiac-specific features, which might 
be attributable to the tissue-specific adaptability of myeloid cells27,31,172. 
scRNA-seq findings in mice showed that cardiac macrophages are 
enriched for ion channels and facilitate electrical conduction through 
the distal atrioventricular node173.

Several cardiac monocyte or macrophage populations have been 
described, with different origins, mechanisms of self-replenishment 
and distinct functions in the context of inflammation, fibrosis and 
tissue repair174–176. scRNA-seq studies based on mouse models of MI 
defined a gene expression signature to discriminate a self-renewing 
macrophage population that originated partly from monocytes 
(Ccr2−MHCIIhigh), in addition to the previously described monocyte-
derived macrophages (Ccr2+MHC-IIhigh) and self-renewing tissue-
resident macrophages (Ccr2−MHC-IIlowLyve1+Timd4+)177,178. Further 
analysis revealed a homeostatic and reparative function of tissue-
resident macrophages, whereas Ccr2+ macrophages are enriched for 
classic inflammatory pathways178. In mouse models, monocytes and 
monocyte-derived macrophages present at the early stages after MI 
were found to be recruited via pro-inflammatory circuits24,177. Loss-of-
function and scRNA-seq studies demonstrated a crucial homeostatic 
and anti-inflammatory role of tissue-resident macrophages, whereby 
depletion of these macrophages increased monocyte recruitment and 
worsened ventricular dysfunction after cardiac injury and hyperten-
sion177–179. In addition, a putative self-renewing population of tissue-
resident macrophages (MHC-IIlowLyve1+) was shown to contribute to the 
formation of the lymphatic network in a pressure-overload HF model 
and during heart development in mice180,181.

scRNA-seq also revealed immune biphasic cell recruitment in 
mice after MI24. Diffusion map analysis showed a trajectory from 
early infiltrating monocyte-derived macrophages to inflammatory 
macrophages, which led to a later peak of tissue-resident repara-
tive macrophages with a pro-regenerative upregulation of Igf1 
(encoding insulin-like growth factor 1)24. Combining snRNA-seq and 
spatial transcriptomics to study samples from patients with MI-induced 
cardiogenic shock helped to uncover an accumulation of CCR2+ macro-
phages in the injury zone, which predicted the localization of specific 
fibroblasts and TGFβ2 pathway activity104. Specifically, SPP1+ (encoding 

osteopontin) macrophages were enriched in ischaemic tissue samples 
and colocalized with myofibroblasts, whereas CCL18+ macrophages 
were enriched in fibrotic tissue samples. Finally, in a TAC mouse model, 
activation of pro-inflammatory macrophages was identified as a key 
event during the transition from normal to reduced cardiac function108. 
At 5 weeks, macrophages showed upregulation of several chemokines 
of the CCL subclass, and treating cardiomyocytes in vitro with the con-
ditioned medium of macrophages from the 5-week post-MI samples 
led to an increase in Nppa and Nppb expression, typical stress-related 
genes that are upregulated in HF.

Lymphoid cells
Lymphocytes comprise various subtypes in the healthy adult human 
heart, including T cell subsets, natural killer (NK) cells and B cells27. CD4+ 
T cells can be classified into naive, effector and regulatory CD4+ T cells, 
whereas CD8+ T cells include a population of cytotoxic cells charac-
terized by high expression of granzymes and perforin. Cell-mediated 
cytotoxicity and CD4+ effector T cells have been implicated in the 
pathogenesis of cardiomyopathy and myocarditis182–184. In a snRNA-seq 
study of HCM and DCM hearts, an increase in lymphocytes expressing 
LINGO2 (encoding leucine-rich repeat and immunoglobulin-like domain- 
containing nogo receptor-interacting protein 2) and several known NK 
cell markers was identified, but their function remains unclear47. NK cells 
have been shown to have a protective effect against cardiac fibrosis185, 
suggesting a potential immune-mediated protective mechanisms dur-
ing HF. To summarize, enrichment of immune cells before scRNA-seq 
analysis will help to capture these highly diverse and dynamic cells and 
improve our understanding of their role in homeostasis and disease.

Functionally important rare cell types
Conduction system and neuronal cells
Neuronal cells represent approximately 1% of human cardiac nuclei 
and are defined by expression of NRXN1 (encoding neurexin 1) which 
is involved in the formation of synaptic contacts27. Given that these 
cells also express PLP1 (encoding myelin proteolipid protein, a well-
known Schwann cell marker), they might plausibly include glial cells 
or represent doublets of neurons and glial cells27,186. In mice, scRNA-seq 
identified neuronal-like cells based on the expression of Kcna1 (encod-
ing potassium voltage-gated channel subfamily A member 1) which is 
involved in regulating nerve signalling25. An analysis of 3,961 human 
cardiac neuronal cells revealed that 80% of these cells are prototypic 
neurons27. Furthermore, a cell state enriched for the WNT signalling 
receptor gene LGR5 (encoding leucine-rich repeat-containing G pro-
tein coupled receptor 5) and genes encoding myelin constituents was 
identified as potential Schwann cells27.

To define the transcriptional signature of the conduction system, 
specific anatomical regions should be profiled. A multi-species study 
involving mice, rabbits and cynomolgus monkeys characterized the 
cells of the mammalian sinoatrial node187. Vsnl1 (encoding the calcium-
sensing protein visinin-like protein 1) was defined as a core marker of 
pacemaker cells in the three species studied. Indeed, disruption of this 
gene led to reduced beating rates in human induced pluripotent stem 
cell-derived cardiomyocytes (hiPSC-CMs) and decreased heart rate 
in mice187. Of note, Kcnj8 was highly expressed in pacemaker cells of 
cynomolgus monkeys, but not in mice or rabbits. Moreover, analysis 
of the sinoatrial node from mouse hearts at E16.5 showed that 25% of 
genes previously reported to be sinoatrial node-specific by bulk RNA 
sequencing were in fact expressed in cells other than pacemaker cells188, 
confirming the value of single-cell approaches188. Studying the human 
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conduction system at the single-cell level is a crucial next step that is 
currently hampered by limited availability of tissue.

Adipose cells
Adipocytes identified by snRNA-seq analysis using classic markers 
such as ADIPOQ (encoding an adipokine involved in the control of fat 
metabolism and insulin sensitivity) and GPAM (encoding mitochondrial 
glycerol-3-phosphate acyltransferase 1) represent 0.2–0.5% of the drop-
lets obtained from human hearts27. A potential fibrogenic adipocyte 
precursor expressing ECM-related genes, as well as a cytokine-enriched 
population were reported; however, the distinction between white 
and brown cardiac adipocytes cannot yet be made27. A disease-specific 
population of adipocytes identified in DCM and ACM samples is char-
acterized by changes in the expression of genes related to fatty acid 
metabolism and is enriched in patients with pathogenic variants in 
PKP2, LMNA or RBM20 (ref.69). Given the potential role of adipocytes 
in diseases such as metabolic syndrome and arrhythmia, efforts should 
be intensified to study this cell population.

Epicardial cells
Epicardial cells are identifiable by their expression of known mark-
ers such as MSLN and WT1 (encoding mesothelin and Wilms tumour 
protein, respectively27), and are one of the rarest cell populations in 
the human heart, thus necessitating enrichment for a full explora-
tion of its complexity. Using a Wt1 lineage tracing system in a mouse 
model of MI, two Wt1+ epicardial cell populations were identified, one of 
which was enriched for Msln and keratin-encoding genes, whereas the 
other was characterized by a proliferation-associated gene signature43. 
Interestingly a Cd44+Wt1− epicardial population was also described, 
suggesting a heterogeneity that goes beyond Wt1+ cells43. Furthermore, 
in a mouse model of neonatal heart regeneration, a combination of 
scRNA-seq and scATAC-seq analyses revealed an increase in epicar-
dial cells after MI that was accompanied by increased transcriptional 
activation155. Transcription factor motifs were preferentially enriched 
in cis-regulatory elements of epicardial MI-induced genes, including 
the KLF14 motif specific to the regenerative phase and FOS-related or 
JUN-related motifs enriched in the non-regenerative phase155.

Using scRNA-seq, it was possible to assess the cellular heteroge-
neity of the cardiac crescent in E7.5–E8.0 mouse embryos66. Findings 
from this study led to the identification of a new cardiac field, denoted 
as the juxtacardiac field, which is characterized by the expression of 
Mab21l2. Mab21l2 fate mapping showed that the juxtacardiac field 
contains a pool of progenitor cells for cardiomyocytes and epicardial 
cells66. Although enrichment of rare cell types can be easily achieved 
in mouse models using lineage tracing tools, in human hearts, it is 
necessary to select specific anatomical microdomains or identify novel 
surface markers for prospective sorting.

Cellular networks
Intercellular communication in the heart contributes to development, 
maintenance of homeostasis and disease progression. Novel com-
putational tools facilitate the mapping of cell states identified using 
single-cell and single-nucleus transcriptomics integrated with spatial 
transcriptomics, allowing the unbiased discovery of cellular microen-
vironments and the prioritization of cell–cell interactions based on 
niches containing specific cell types or states90,189 (Fig. 5).

In the adult human heart, CellPhoneDB, a public repository of 
ligand receptors and their interactions, was used to predict inter-
cellular communications within NOTCH pathways between vascular 

endothelial cells and VSMCs, uncovering venous-specific and arterial-
specific interactions27. Furthermore, interactions between fibroblasts 
and macrophages were predicted, including one that depended on the 
macrophage migration inhibitory factor (MIF)–CD74 receptor–ligand 
interaction, which was confirmed by co-expression in spatial transcrip-
tomics27. A 2022 study of pressure overload-induced hypertrophy used 
CellPhoneDB and CellChat to investigate changes in signalling between 
cardiomyocytes and other cell types46. A downregulation in the expres-
sion of EPHB1 and EFNB2 was observed in cardiomyocytes and endothe-
lial cells, respectively. A validation study using rat cardiomyocytes in 
2D cultures and hiPSC-CM organoids with gain-of-function or loss- 
of-function approaches confirmed that EFNB2–EPHB1 signalling 
in cardio myocytes regulates hypertrophy, contraction and stress 
responses, implicating EPHB1 as a putative therapeutic target in HCM46. 
In a large study of patients with DCM and ACM with different pathogenic 
variants, an analysis of cell–cell interactions was crucial in identifying 
genotype and chamber-dependent signalling pathways involved in dis-
ease pathogenesis69. For example, endothelin signalling originating from 
the endocardium was increased in the LV of patients with pathogenic vari-
ants in LMNA and in the RV of patients with pathogenic variants in PKP2, 
but not in patients with other genotypes. Of note, the dynamics of some 
pathways are cell type-dependent. For example, in the LV of patients with 
pathogenic variants in LMNA, the predicted BMP signalling from SMCs 
and pericytes to cardiomyocytes is decreased, whereas signalling from 
endothelial cells to cardiomyocytes is increased69.

In the adult mouse heart, analysis of non-cardiomyocyte cell popu-
lations identified fibroblasts as a crucial intercellular communication 
hub22. After MI, among the non-cardiomyocyte populations, myofibro-
blasts have the highest number of differentially expressed ligands (con-
sisting mostly of ECM-related genes24,156), followed by macrophages24. 
Unexpectedly, endothelial cells express the highest number of dif-
ferentially expressed receptors, suggesting a role as downstream 
effectors of paracrine and juxtacrine mechanisms after injury24,156. 
In neonatal mouse hearts, the epicardium was defined as a source of 
paracrine signalling during both regenerating and non-regenerating 
phases155. As confirmed by in vitro experiments, epicardial induction 
of Rspo1 (encoding R-spondin 1, a potent activator of the WNT–β-
catenin signalling pathway) is a likely driver of pro-angiogenic signal-
ling. Moreover, given the epicardial upregulation of Ltbp3 (encoding 
latent-transforming growth factor-β-binding protein 3 (LTBP3)) and 
the increased proportion of fibroblasts in the S-phase after treat-
ment with recombinant LTBP3 in vitro, epicardium-derived signalling 
was suggested to contribute to fibroblast proliferation155. Finally, in 
a TAC mouse model, loss of protective signalling from fibroblasts to 
cardiomyocytes and increased macrophage–cardiomyocyte interac-
tions were suggested to contribute to the initiation and progression 
of hypertrophy24,108,156.

During cardiac development in the human fetus (age 5–25 weeks), 
a cardiomyocyte-to-endothelial cell BMP paracrine signalling pattern 
was predicted on the basis of increased cardiomyocyte expression of 
BMP5 and BMP7 and enrichment for BMP receptor genes in endothelial 
cells, suggesting a potential role for BMP in driving endothelial-to- 
mesenchymal transition during endocardial cushion formation100. 
In mouse embryonic development, a MIF–CXCR2 interaction was 
predicted in the second heart field of embryos at E8.5 (ref.190). Inhibi-
tion of MIF and CXCR2 using small-molecule compounds impaired 
the elongation of the outflow tract and RV, probably due to defective 
cell migration. Taken together, to prioritize validation among hun-
dreds of predicted receptor–ligand pairs, filtering criteria require 
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computational tools, which take into consideration the activation of 
downstream cascades in the cells receiving the signalling cues90,189.

Future directions for omics approaches
Transforming diagnosis and therapy
Single-cell, single-nucleus and spatial transcriptomics accompanied 
by machine learning-based analysis is likely to contribute to the identi-
fication of markers for diagnostic and prognostic evaluation of cardio-
vascular diseases. In particular, these technologies can provide new 

insights into cell states (including those of rare cells) and cell-type 
composition of diseased hearts, and define cell-specific theraputic 
targets45,46,191. An early scRNA-seq study identified the source of IL-11, 
a novel anti-fibrotic target for the cardiovascular system145, demon-
strating the potential of single-cell omics approaches in developing 
innovative therapies. 

Capturing the earliest and most specific therapeutic cellular tar-
gets among the numerous maladaptive cardiomyocyte responses 
driving HF is crucial in hereditary DCM compared with HCM, in which 
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Fig. 5 | Integrating scRNA-seq and snRNA-seq data with spatial 
transcriptomics analysis to define cellular microenvironments and their 
dynamic intercellular signalling networks. Single-cell RNA sequencing 
(scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) allow the 
definition of cell states and the prediction of cellular interactions based on the 
expression of genes encoding ligands and receptors. However, these data do not 
provide information about cellular proximity. Spatial transcriptomics allows 

the mapping of gene expression within tissue sections across microtiles that 
represent microbulk transcriptomics data. By mapping scRNA-seq and snRNA-
seq data onto spatial data using computational tools such as cell2location and 
Giotto, it is possible to predict the localization of cell types and states within 
microtiles and microanatomical niches. The cellular proximity within the defined 
cellular niches facilitates inferences on the most probable cellular interactions 
and the identification of putative functional microenvironments.
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variants in the same culprit gene can lead to opposite phenotypes192. 
Although a study of patients with end-stage HCM or DCM showed 
changes in cellular composition across the two groups, only minimal 
differences were detected at the transcriptional level47, highlighting a 
need to stratify patients on the basis of aetiology and to study earlier 
stages of disease progression. Indeed, analysis of genotype-stratified 
DCM samples identified specific transcriptional changes in different 
pathogenic variants groups, in addition to  shared gene signatures. The 
number of differentially expressed genes was sufficient to develop a 
deep learning method that could predict the genotype on the basis of 
gene expression signatures of cardiomyocytes, endothelial cells, fibro-
blasts and myeloid cells69. This finding indicates that even at later stages 
of HF, the underlying cellular landscape and implicitly maladaptive 
mechanisms differ depending on the underlying cause. To understand 
the mechanisms involved in progression of DCM to HF, multimodal 
omics analysis should be performed in both early and late phases of dis-
ease, and patients should be stratified according to disease aetiology. 
Likewise, in ICM, understanding the cellular changes occurring before 
the onset of HF will be crucial to the stratification of patients in mini-
mizing the current heterogeneity in response to therapy and towards 
personalized medicine approaches. Taken together, such information 
can improve our understanding of the pathobiological mechanisms 
underlying HF and guide the identification of prognostic biomarkers 
and novel druggable targets for cell-targeted interceptive medicine193.

hiPSC-derived cardiovascular cells
HiPSC-derived cardiovascular cells and cardiovascular cells derived 
from direct reprogramming hold great promise, not only for cardio-
vascular regeneration but also for drug screening and disease model-
ling, which is especially relevant for cardiomyocytes, given the lack of 
reliable cell lines and the challenges in working with large numbers 
of primary cells for an extended amount of time. To ensure the repli-
cability of hiPSC-CMs as in vitro models, the maturation process needs 
to be improved and the phenotypic heterogeneity of the cells needs to 
be functionally evaluated. This latter step is necessary to establish 
precise models of the cellular subtypes identified in vivo by single-
cell and single-nucleus approches. Indeed some of these cell states 
might be better therapeutic targets than others or even therapeutic 
products for cell therapy. The integration of single-cell and single-
nucleus transcriptomics data from human hearts from all stages of 
development with those from hiPSC-derived cardiovascular cells 
contributes to our understanding of the variability in differentiation 
and maturity occurring in vitro compared with the processes occur-
ring within the cardiac cellular landscape in vivo124,194–198. One such 
study described the role of the progesterone receptor in driving sex-
specific metabolic programmes and maturation of cardiomyocytes199. 
Importantly, transcriptomics and epigenomic single-cell analyses have 
guided improvements in protocols for differentiation and maturation 
of cardiovascular lineages such as cardiomyocytes and endothelial cells 
in hiPSC-based 2D and 3D platforms, as well as in direct reprogramming 
approaches38,200–203. Furthermore, single-cell studies of hiPSC-derived 
cardiovascular cells were not only highly informative in reproducing 
the differentiation steps occurring in cardiac development, but also 
contributed to the modelling of congenital and other genetic disor-
ders194,204–206. Such studies provide a comprehensive overview of the 
transcriptional changes that occur in specific cells at various stages of 
differentiation  to facilitate precise mechanistic insights, as seen in stud-
ies showing a dosage-dependent effect of TBX5 in different cell states 
in the setting of congenital heart disease, as well as the convergence of 

cell cycle dysregualtion and autophagy as pathogenic mechanisms of 
hypoplastic heart disease204,207.

Age, sex and comorbidities
As presented throughout this Review, great effort has already been made 
to understand the complexity of the cardiac cellular landscape. How-
ever, some knowledge gaps remain. An urgent need exists for the devel-
opment of a longitudinal heart atlas from the tissues of infants, children, 
adolescents and young adults (aged 20–40 years) that recapitulates 
the substantial morphological and haemodynamic changes occurring 
from birth until adulthood. Understanding sex-related differences in 
health and disease is a developing area in cardiology. A single-cell study 
showed differences in the prevalence of fibroblast subtypes and gene 
expression patterns between male and female mice22,144 and between 
inbred strains25. Furthermore, a study based on limited numbers of 
donor hearts identified the progesterone receptor as a key mediator 
of sex-dependent transcriptional programmes during cardiomyocyte 
maturation199. Therefore, given the effect of biological variables such 
as sex and ancestry on cardiovascular risk, it is imperative to integrate 
datasets from increasing numbers of donors to evaluate the influence 
of these variables on the human cardiac cellular landscape. Moreover, 
patients with cardiovascular disease, especially those of advanced 
age, often have comorbidities such diabetes mellitus, obesity and high 
blood pressure, which will need to be considered in the analysis and 
interpretation. The stratification of patients and organ donors will be 
possible through the integration of data from hundreds of individuals 
and the collection of appropriate clinical metadata.

Conclusions
Single-cell and single-nucleus omics technologies have provided invalu-
able novel insights into the cardiac cellular landscape to facilitate a bet-
ter understanding of disease mechanisms and more tools for accurate 
risk stratification and precision medicine. However, newly defined cell 
states not only require thorough validation, but also cooperative and 
interdisciplinary efforts to standardize definitions and nomenclature 
within and across species, which will facilitate more accurate compari-
son between studies and the optimization of experimental designs for 
disease models. Finally, an urgent need exists to ensure the availability 
of computational resources and training for the new generation of 
scientists and clinicians, to allow improved interrogation of the biology 
and to accelerate the application of these transformative technologies 
to the study and treatment of cardiac disease.
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