Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate change and cardiovascular disease: implications for global health

Abstract

Climate change is the greatest existential challenge to planetary and human health and is dictated by a shift in the Earth’s weather and air conditions owing to anthropogenic activity. Climate change has resulted not only in extreme temperatures, but also in an increase in the frequency of droughts, wildfires, dust storms, coastal flooding, storm surges and hurricanes, as well as multiple compound and cascading events. The interactions between climate change and health outcomes are diverse and complex and include several exposure pathways that might promote the development of non-communicable diseases such as cardiovascular disease. A collaborative approach is needed to solve this climate crisis, whereby medical professionals, scientific researchers, public health officials and policymakers should work together to mitigate and limit the consequences of global warming. In this Review, we aim to provide an overview of the consequences of climate change on cardiovascular health, which result from direct exposure pathways, such as shifts in ambient temperature, air pollution, forest fires, desert (dust and sand) storms and extreme weather events. We also describe the populations that are most susceptible to the health effects caused by climate change and propose potential mitigation strategies, with an emphasis on collaboration at the scientific, governmental and policy levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The DPSEEA framework.
Fig. 2: The effect of climate change on the development of cardiovascular disease.
Fig. 3: Pathophysiological pathways involved in mediating the effects of temperature on cardiovascular disease.
Fig. 4: The effect of heat exposure on inflammatory and procoagulant cascades.
Fig. 5: Integrative climate change strategy.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change. Climate change 2021: the physical science basis–the Working Group I contribution to the sixth assessment report (IPCC, 2021).

  2. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization. Protecting health from climate change: vulnerability and adaptation assessment. World Health Organization https://apps.who.int/iris/handle/10665/104200 (2013).

  4. Zanobetti, A. & Peters, A. Disentangling interactions between atmospheric pollution and weather. J. Epidemiol. Community Health 69, 613–615 (2015).

    Article  PubMed  Google Scholar 

  5. Fu, T.-M. & Tian, H. Climate change penalty to ozone air quality: review of current understandings and knowledge gaps. Curr. Pollut. Rep. 5, 159–171 (2019).

    Article  CAS  Google Scholar 

  6. Shi, L., Liu, P., Zanobetti, A. & Schwartz, J. Climate penalty: climate-driven increases in ozone and PM2.5 levels and mortality. Eviron. Epidemiol. 3, 365 (2019).

    Google Scholar 

  7. Fann, N. et al. Ch. 3: Air quality impacts. The impacts of climate change on human health in the United States: A scientific assessment. https://doi.org/10.7930/J0GQ6VP6 (2016).

  8. Stavros, E. N., McKenzie, D. & Larkin, N. The climate-wildfire-air quality system: interactions and feedbacks across spatial and temporal scales. WIREs Clim. Change 5, 719–733 (2014).

    Article  Google Scholar 

  9. Basu, R., Dominici, F. & Samet, J. M. Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods. Epidemiology 16, 58–66 (2005).

    Article  PubMed  Google Scholar 

  10. Jaakkola, J. J. K. Case-crossover design in air pollution epidemiology. Eur. Respir. J. Suppl. 40, 81s–85s (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Zafeiratou, S. et al. A systematic review on the association between total and cardiopulmonary mortality/morbidity or cardiovascular risk factors with long-term exposure to increased or decreased ambient temperature. Sci. Total. Environ. 772, 145383 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Shi, L., Kloog, I., Zanobetti, A., Liu, P. & Schwartz, J. D. Impacts of temperature and its variability on mortality in New England. Nat. Clim. Chang. 5, 988–991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shi, L. et al. Chronic effects of temperature on mortality in the Southeastern USA using satellite-based exposure metrics. Sci. Rep. 6, 30161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajagopalan, S. & Landrigan, P. J. Pollution and the heart. N. Engl. J. Med. 385, 1881–1892 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2054–2070 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Münzel, T. et al. Environmental risk factors and cardiovascular diseases: a comprehensive review. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wyzga, R. E. & Rohr, A. C. Long-term particulate matter exposure: attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 65, 523–543 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary (WHO, 2021).

  19. Jacob, D. J. & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).

    Article  CAS  Google Scholar 

  20. Camalier, L., Cox, W. & Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 41, 7127–7137 (2007).

    Article  CAS  Google Scholar 

  21. Di, Q. et al. Association of short-term exposure to air pollution with mortality in older adults. JAMA 318, 2446–2456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fann, N. et al. The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030. J. Air Waste Manag. Assoc. 65, 570–580 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Münzel, T. et al. Environmental stressors and cardio-metabolic disease: part I–epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur. Heart J. 38, 550–556 (2017).

    PubMed  Google Scholar 

  24. Münzel, T. et al. Environmental stressors and cardio-metabolic disease: part II-mechanistic insights. Eur. Heart J. 38, 557–564 (2017).

    PubMed  Google Scholar 

  25. Rajagopalan, S. & Brook, R. D. Air pollution and type 2 diabetes: mechanistic insights. Diabetes 61, 3037–3045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, B.-Y. et al. Ambient air pollution and diabetes: a systematic review and meta-analysis. Environ. Res. 180, 108817 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Liang, R. et al. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J. Hypertens. 32, 2130–2140 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Giorgini, P. et al. Air pollution exposure and blood pressure: an updated review of the literature. Curr. Pharm. Des. 22, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Cai, Y. et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension 68, 62–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, B.-Y. et al. Global association between ambient air pollution and blood pressure: a systematic review and meta-analysis. Environ. Pollut. 235, 576–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Qin, P. et al. Long-term association of ambient air pollution and hypertension in adults and in children: a systematic review and meta-analysis. Sci. Total. Environ. 796, 148620 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Byrd, J. B. et al. Acute increase in blood pressure during inhalation of coarse particulate matter air pollution from an urban location. J. Am. Soc. Hypertens. 10, 133–139.e4 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, R. et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J. Am. Coll. Cardiol. 65, 2279–2287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thurston, G. D. et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 124, 484–490 (2016).

    Article  PubMed  Google Scholar 

  35. Pinault, L. L. et al. Associations between fine particulate matter and mortality in the 2001 Canadian census health and environment cohort. Environ. Res. 159, 406–415 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Yin, P. et al. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ. Health Perspect. 125, 117002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Orellano, P., Reynoso, J., Quaranta, N., Bardach, A. & Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: systematic review and meta-analysis. Environ. Int. 142, 105876 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Meng, X. et al. Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities. BMJ 372, n534 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Turner, M. C. et al. Long-term ozone exposure and mortality in a large prospective study. Am. J. Respir. Crit. Care Med. 193, 1134–1142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kazemiparkouhi, F., Eum, K.-D., Wang, B., Manjourides, J. & Suh, H. H. Long-term ozone exposures and cause-specific mortality in a US Medicare cohort. J. Expo. Sci. Environ. Epidemiol. 30, 650–658 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Mustafic, H. et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 307, 713–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Wolf, K. et al. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet. Health 5, e620–e632 (2021).

    Article  PubMed  Google Scholar 

  43. Alexeeff, S. E., Liao, N. S., Liu, X., Van Den Eeden, S. K. & Sidney, S. Long-term PM2.5 exposure and risks of ischemic heart disease and stroke events: review and meta-analysis. J. Am. Heart Assoc. 10, e016890 (2021).

    Article  PubMed  Google Scholar 

  44. Yang, S. et al. PM2.5 concentration in the ambient air is a risk factor for the development of high-risk coronary plaques. Eur. Heart J. Cardiovasc. Imaging 20, 1355–1364 (2019).

    Article  PubMed  Google Scholar 

  45. Shah, A. S. V. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai, L. et al. Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: a population-based study of 5.1 million Canadian adults living in Ontario. Environ. Int. 132, 105004 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, M. et al. Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehaa1031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Niu, Z., Liu, F., Yu, H., Wu, S. & Xiang, H. Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: an updated systematic review and meta-analysis of more than 23 million participants. Environ. Health Prev. Med. 26, 15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stafoggia, M. et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ. Health Perspect. 122, 919–925 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shao, Q. et al. Association between air pollution and development of atrial fibrillation: a meta-analysis of observational studies. Heart Lung 45, 557–562 (2016).

    Article  PubMed  Google Scholar 

  51. Peralta, A. A. et al. Exposure to air pollution and particle radioactivity with the risk of ventricular arrhythmias. Circulation 142, 858–867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rich, D. Q. et al. Association of short-term ambient air pollution concentrations and ventricular arrhythmias. Am. J. Epidemiol. 161, 1123–1132 (2005).

    Article  PubMed  Google Scholar 

  53. Folino, F. et al. Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): a multicentre longitudinal study. Lancet Planet. Health 1, e58–e64 (2017).

    Article  PubMed  Google Scholar 

  54. Zhang, Z. et al. Long-term particulate matter exposure and incidence of arrhythmias: a cohort study. J. Am. Heart Assoc. 9, e016885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, J. et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart 101, 1966–1972 (2015).

    Article  PubMed  Google Scholar 

  56. Baccini, M. et al. Heat effects on mortality in 15 European cities. Epidemiology 19, 711–719 (2008).

    Article  PubMed  Google Scholar 

  57. Silveira, I. H., Oliveira, B. F. A., Cortes, T. R. & Junger, W. L. The effect of ambient temperature on cardiovascular mortality in 27 Brazilian cities. Sci. Total. Environ. 691, 996–1004 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  59. Romanello, M. et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 398, 1619–1662 (2021).

    Article  PubMed  Google Scholar 

  60. Zhao, Q. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet. Health 5, e415–e425 (2021).

    Article  PubMed  Google Scholar 

  61. Benziger, C. P., Roth, G. A. & Moran, A. E. The global burden of disease study and the preventable burden of NCD. Glob. Heart 11, 393–397 (2016).

    Article  PubMed  Google Scholar 

  62. Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 1, e360–e367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Basu, R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ. Health 8, 40 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yu, W. et al. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. Int. J. Biometeorol. 56, 569–581 (2012).

    Article  PubMed  Google Scholar 

  66. Gikas, A. et al. Seasonal variation in fasting glucose and HbA1c in patients with type 2 diabetes. Prim. Care Diabetes 3, 111–114 (2009).

    Article  PubMed  Google Scholar 

  67. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, P. et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686–3698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanssen, M. J. W. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Valdés, S. et al. Ambient temperature and prevalence of diabetes and insulin resistance in the Spanish population: Di@bet.es study. Eur. J. Endocrinol. 180, 273–280 (2019).

    Article  PubMed  Google Scholar 

  72. Speakman, J. R. & Heidari-Bakavoli, S. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci. Rep. 6, 30409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blauw, L. L. et al. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open Diabetes Res. Care 5, e000317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sharma, P. & Brook, R. D. Echoes from Gaea, Poseidon, Hephaestus, and Prometheus: environmental risk factors for high blood pressure. J. Hum. Hypertens. 32, 594–607 (2018).

    Article  PubMed  Google Scholar 

  75. Wang, Q. et al. Environmental ambient temperature and blood pressure in adults: a systematic review and meta-analysis. Sci. Total Environ. 575, 276–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Fedecostante, M. et al. Summer does not always mean lower: seasonality of 24 h, daytime, and night-time blood pressure. J. Hypertens. 30, 1392–1398 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Brook, R. D. et al. Can personal exposures to higher nighttime and early-morning temperatures increase blood pressure? J. Clin. Hypertens. 13, 881–888 (2011).

    Article  Google Scholar 

  78. Brook, R. D. The environment and blood pressure. Cardiol. Clin. 35, 213–221 (2017).

    Article  PubMed  Google Scholar 

  79. Halonen, J. I., Zanobetti, A., Sparrow, D., Vokonas, P. S. & Schwartz, J. Outdoor temperature is associated with serum HDL and LDL. Environ. Res. 111, 281–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Bunker, A. et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine 6, 258–268 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gasparrini, A., Armstrong, B., Kovats, S. & Wilkinson, P. The effect of high temperatures on cause-specific mortality in England and Wales. Occup. Environ. Med. 69, 56–61 (2012).

    Article  PubMed  Google Scholar 

  82. Alahmad, B. et al. Cardiovascular mortality and exposure to heat in an inherently hot region: implications for climate change. Circulation 141, 1271–1273 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chen, R. et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ 363, k4306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet 349, 1341–1346 (1997).

    Article  Google Scholar 

  85. Huang, C., Barnett, A. G., Wang, X. & Tong, S. Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia. Circ. Cardiovasc. Qual. Outcomes 5, 609–614 (2012).

    Article  PubMed  Google Scholar 

  86. Wolf, K. et al. Air temperature and the occurrence of myocardial infarction in Augsburg, Germany. Circulation 120, 735–742 (2009).

    Article  PubMed  Google Scholar 

  87. Bhaskaran, K. et al. Short term effects of temperature on risk of myocardial infarction in England and Wales: time series regression analysis of the myocardial ischaemia national audit project (MINAP) registry. BMJ 341, c3823 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Peters, A. & Schneider, A. Cardiovascular risks of climate change. Nat. Rev. Cardiol. 18, 1–2 (2021).

    Article  PubMed  Google Scholar 

  89. Chen, K. et al. Temporal variations in the triggering of myocardial infarction by air temperature in Augsburg, Germany, 1987-2014. Eur. Heart J. 40, 1600–1608 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Sun, Z., Chen, C., Xu, D. & Li, T. Effects of ambient temperature on myocardial infarction: a systematic review and meta-analysis. Environ. Pollut. 241, 1106–1114 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Inglis, S. C. et al. Hot summers and heart failure: seasonal variations in morbidity and mortality in Australian heart failure patients (1994-2005). Eur. J. Heart Fail. 10, 540–549 (2008).

    Article  PubMed  Google Scholar 

  92. Stewart, S., McIntyre, K., Capewell, S. & McMurray, J. J. V. Heart failure in a cold climate. J. Am. Coll. Cardiol. 39, 760–766 (2002).

    Article  PubMed  Google Scholar 

  93. Boulay, F., Berthier, F., Sisteron, O., Gendreike, Y. & Gibelin, P. Seasonal variation in chronic heart failure hospitalizations and mortality in France. Circulation 100, 280–286 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Qiu, H. et al. Is greater temperature change within a day associated with increased emergency hospital admissions for heart failure? Circ. Heart Fail. 6, 930–935 (2013).

    Article  PubMed  Google Scholar 

  95. Kim, J. & Kim, H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. Int. J. Biometeorol. 61, 407–416 (2017).

    Article  PubMed  Google Scholar 

  96. McGuinn, L. et al. Ambient temperature and activation of implantable cardioverter defibrillators. Int. J. Biometeorol. 57, 655–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Zanobetti, A. et al. Fine-scale spatial and temporal variation in temperature and arrhythmia episodes in the VA Normative Aging Study. J. Air Waste Manag. Assoc. 67, 96–104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fries, R. P., Heisel, A. G., Jung, J. K. & Schieffer, H. J. Circannual variation of malignant ventricular tachyarrhythmias in patients with implantable cardioverter-defibrillators and either coronary artery disease or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 79, 1194–1197 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Pimentel, M., Grüdtner, L. & Zimerman, L. I. Seasonal variation of ventricular tachycardia registered in 24-hour Holter monitoring. Arq. Bras. Cardiol. 87, 403–406 (2006).

    Article  PubMed  Google Scholar 

  100. Lian, H., Ruan, Y., Liang, R., Liu, X. & Fan, Z. Short-term effect of ambient temperature and the risk of stroke: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 12, 9068–9088 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zorrilla-Vaca, A., Healy, R. J. & Silva-Medina, M. M. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis. Int. J. Biometeorol. 61, 821–832 (2017).

    Article  PubMed  Google Scholar 

  102. Wang, X. et al. Ambient temperature and stroke occurrence: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 13, 698 (2016).

    Article  PubMed Central  Google Scholar 

  103. Song, X. et al. Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci. Total. Environ. 586, 241–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B. & Tong, S. Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ. Int. 89–90, 193–203 (2016).

    Article  PubMed  Google Scholar 

  105. Guo, Y. et al. Heat wave and mortality: a multicountry, multicommunity study. Environ. Health Perspect. 125, 087006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cheng, J. et al. Cardiorespiratory effects of heatwaves: a systematic review and meta-analysis of global epidemiological evidence. Environ. Res. 177, 108610 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Kaiser, R. et al. The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality. Am. J. Public. Health 97 (Suppl. 1), S158–S162 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Semenza, J. C., McCullough, J. E., Flanders, W. D., McGeehin, M. A. & Lumpkin, J. R. Excess hospital admissions during the July 1995 heat wave in Chicago. Am. J. Prev. Med. 16, 269–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Dematte, J. E. et al. Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann. Intern. Med. 129, 173–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Semenza, J. C. et al. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335, 84–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Kovats, R. S. & Kristie, L. E. Heatwaves and public health in Europe. Eur. J. Public. Health 16, 592–599 (2006).

    Article  PubMed  Google Scholar 

  112. Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171–178 (2008).

    Article  PubMed  Google Scholar 

  113. Grumm, R. H. The Central European and Russian heat event of July–August 2010. Bull. Am. Meteor. Soc. 92, 1285–1296 (2011).

    Article  Google Scholar 

  114. Shaposhnikov, D. et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 25, 359–364 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. García-Lledó, A. et al. Heat waves, ambient temperature, and risk of myocardial infarction: an ecological study in the Community of Madrid. Rev. Esp. Cardiol. 73, 300–306 (2020).

    Article  PubMed  Google Scholar 

  116. Ryti, N. R. I., Guo, Y. & Jaakkola, J. J. K. Global association of cold spells and adverse health effects: a systematic review and meta-analysis. Environ. Health Perspect. 124, 12–22 (2016).

    Article  PubMed  Google Scholar 

  117. Sartini, C. et al. Effect of cold spells and their modifiers on cardiovascular disease events: evidence from two prospective studies. Int. J. Cardiol. 218, 275–283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pope, C. A. Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am. J. Public. Health 79, 623–628 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pope, C. A., Dockery, D. W., Spengler, J. D. & Raizenne, M. E. Respiratory health and PM10 pollution. a daily time series analysis. Am. Rev. Respir. Dis. 144, 668–674 (1991).

    Article  PubMed  Google Scholar 

  120. Vanos, J. K., Warland, J. S., Gillespie, T. J. & Kenny, N. A. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 54, 319–334 (2010).

    Article  PubMed  Google Scholar 

  121. McGregor, G. R. & Vanos, J. K. Heat: a primer for public health researchers. Public. Health 161, 138–146 (2018).

    Article  PubMed  Google Scholar 

  122. Armstrong, B. et al. The role of humidity in associations of high temperature with mortality: a multicountry, multicity study. Environ. Health Perspect. 127, 97007 (2019).

    Article  PubMed  Google Scholar 

  123. Fonseca-Rodríguez, O., Sheridan, S. C., Lundevaller, E. H. & Schumann, B. Effect of extreme hot and cold weather on cause-specific hospitalizations in Sweden: a time series analysis. Environ. Res. 193, 110535 (2021).

    Article  PubMed  Google Scholar 

  124. Stewart, S., Keates, A. K., Redfern, A. & McMurray, J. J. V. Seasonal variations in cardiovascular disease. Nat. Rev. Cardiol. 14, 654–664 (2017).

    Article  PubMed  Google Scholar 

  125. Liu, C., Yavar, Z. & Sun, Q. Cardiovascular response to thermoregulatory challenges. Am. J. Physiol. Heart Circ. Physiol. 309, H1793–H1812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rohrer, M. J. & Natale, A. M. Effect of hypothermia on the coagulation cascade. Crit. Care Med. 20, 1402–1405 (1992).

    Article  CAS  PubMed  Google Scholar 

  127. Karjalainen, J. & Viitasalo, M. Fever and cardiac rhythm. Arch. Intern. Med. 146, 1169–1171 (1986).

    Article  CAS  PubMed  Google Scholar 

  128. Kunes, J., Tremblay, J., Bellavance, F. & Hamet, P. Influence of environmental temperature on the blood pressure of hypertensive patients in Montréal. Am. J. Hypertens. 4, 422–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Hata, T. et al. The seasonal variation of blood pressure in patients with essential hypertension. Clin. Exp. Hypertens. A 4, 341–354 (1982).

    CAS  PubMed  Google Scholar 

  130. Rose, G. Seasonal variation in blood pressure in man. Nature 189, 235 (1961).

    Article  CAS  PubMed  Google Scholar 

  131. Katayama, Y. et al. Increased plaque rupture forms peak incidence of acute myocardial infarction in winter. Int. J. Cardiol. 320, 18–22 (2020).

    Article  PubMed  Google Scholar 

  132. Gaudio, F. G. & Grissom, C. K. Cooling methods in heat stroke. J. Emerg. Med. 50, 607–616 (2016).

    Article  PubMed  Google Scholar 

  133. Epstein, Y. & Yanovich, R. Heatstroke. N. Engl. J. Med. 380, 2449–2459 (2019).

    Article  PubMed  Google Scholar 

  134. Lim, Y.-H., Park, M.-S., Kim, Y., Kim, H. & Hong, Y.-C. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden. Int. J. Biometeorol. 59, 1035–1043 (2015).

    Article  PubMed  Google Scholar 

  135. Heidari, L. et al. Susceptibility to heat-related fluid and electrolyte imbalance emergency department visits in Atlanta, Georgia, USA. Int. J. Environ. Res. Public Health 13, 982 (2016).

    Article  PubMed Central  Google Scholar 

  136. Prec, O., Rosenman, R., Braun, K., Rodbard, S. & Katz, L. N. The cardiovascular effects of acutely induced hypothermia. J. Clin. Invest. 28, 293–300 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Covino, B. G. & D’Amato, H. E. Mechanism of ventricular fibrillation in hypothermia. Circ. Res. 10, 148–155 (1962).

    Article  CAS  PubMed  Google Scholar 

  138. Vassallo, S. U., Delaney, K. A., Hoffman, R. S., Slater, W. & Goldfrank, L. R. A prospective evaluation of the electrocardiographic manifestations of hypothermia. Acad. Emerg. Med. 6, 1121–1126 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Darocha, T. et al. Electrocardiographic changes caused by severe accidental hypothermia. J. Cardiothorac. Vasc. Anesth. 29, e83–e86 (2015).

    Article  PubMed  Google Scholar 

  140. Xu, R. et al. Wildfires, global climate change, and human health. N. Engl. J. Med. 383, 2173–2181 (2020).

    Article  PubMed  Google Scholar 

  141. Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future https://doi.org/10.1029/2019EF001210 (2019).

    Article  Google Scholar 

  142. Rappold, A. G., Reyes, J., Pouliot, G., Cascio, W. E. & Diaz-Sanchez, D. Community vulnerability to health impacts of wildland fire smoke exposure. Environ. Sci. Technol. 51, 6674–6682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Reid, C. E. et al. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cascio, W. E. Wildland fire smoke and human health. Sci. Total Environ. 624, 586–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. DeFlorio-Barker, S., Crooks, J., Reyes, J. & Rappold, A. G. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. Environ. Health Perspect. 127, 37006 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Henderson, S. B., Brauer, M., Macnab, Y. C. & Kennedy, S. M. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environ. Health Perspect. 119, 1266–1271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moore, D. et al. Population health effects of air quality changes due to forest fires in British Columbia in 2003. Can. J. Public. Health 97, 105–108 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hanigan, I. C., Johnston, F. H. & Morgan, G. G. Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996–2005: a time-series study. Environ. Health 7, 42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Delfino, R. J. et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 66, 189–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Mott, J. A. et al. Cardiorespiratory hospitalizations associated with smoke exposure during the 1997, Southeast Asian forest fires. Int. J. Hyg. Environ. Health 208, 75–85 (2005).

    Article  PubMed  Google Scholar 

  151. Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Middleton, N. & Kang, U. Sand and dust storms: impact mitigation. Sustainability 9, 1053 (2017).

    Article  Google Scholar 

  153. Wu, Y., Wen, B., Li, S. & Guo, Y. Sand and dust storms in Asia: a call for global cooperation on climate change. Lancet Planet. Health 5, e329–e330 (2021).

    Article  PubMed  Google Scholar 

  154. Zhang, X. et al. A systematic review of global desert dust and associated human health effects. Atmosphere 7, 158 (2016).

    Article  Google Scholar 

  155. Hashizume, M. et al. Health effects of Asian dust: a systematic review and meta-analysis. Environ. Health Perspect. 128, 66001 (2020).

    Article  PubMed  Google Scholar 

  156. Tobías, A. & Stafoggia, M. Modeling desert dust exposures in epidemiologic short-term health effects studies. Epidemiology 31, 788–795 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Vandentorren, S. et al. August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur. J. Public. Health 16, 583–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Son, J.-Y., Liu, J. C. & Bell, M. L. Temperature-related mortality: a systematic review and investigation of effect modifiers. Environ. Res. Lett. 14, 073004 (2019).

    Article  Google Scholar 

  159. O’Neill, M. S., Zanobetti, A. & Schwartz, J. Modifiers of the temperature and mortality association in seven US cities. Am. J. Epidemiol. 157, 1074–1082 (2003).

    Article  PubMed  Google Scholar 

  160. O’Neill, M. S., Zanobetti, A. & Schwartz, J. Disparities by race in heat-related mortality in four US cities: the role of air conditioning prevalence. J. Urban Health 82, 191–197 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hansen, A., Bi, L., Saniotis, A. & Nitschke, M. Vulnerability to extreme heat and climate change: is ethnicity a factor? Glob. Health Action. 6, 21364 (2013).

    Article  PubMed  Google Scholar 

  162. Moyce, S. C. & Schenker, M. Migrant workers and their occupational health and safety. Annu. Rev. Public. Health 39, 351–365 (2018).

    Article  PubMed  Google Scholar 

  163. Alahmad, B. et al. Extreme temperatures and mortality in Kuwait: who is vulnerable? Sci. Total. Environ. 732, 139289 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Achilleos, S. et al. Acute effects of air pollution on mortality: a 17-year analysis in Kuwait. Environ. Int. 126, 476–483 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. United Nations. The Paris Agreement (UN, 2015).

  166. Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change 150, 391–402 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).

    Article  Google Scholar 

  169. MacNaughton, P. et al. Energy savings, emission reductions, and health co-benefits of the green building movement. J. Expo. Sci. Env. Epidemiol. 28, 307–318 (2018).

    Article  Google Scholar 

  170. Wheeler, S. M. State and municipal climate change plans: the first generation. J. Am. Plan. Assoc. 74, 481–496 (2008).

    Article  Google Scholar 

  171. Martinez, G. S. et al. Heat-health action plans in Europe: challenges ahead and how to tackle them. Environ. Res. 176, 108548 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Toloo, G., FitzGerald, G., Aitken, P., Verrall, K. & Tong, S. Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence. Int. J. Public. Health 58, 667–681 (2013).

    Article  PubMed  Google Scholar 

  173. Haddock-Fraser, J. E. & Tourelle, M. Corporate motivations for environmental sustainable development: exploring the role of consumers in stakeholder engagement. Bus. Strat. Environ. 19, 527–542 (2010).

    Article  Google Scholar 

  174. Rajagopalan, S. et al. Personal-level protective actions against particulate matter air pollution exposure: a scientific statement from the American Heart Association. Circulation 142, e411–e431 (2020).

    Article  PubMed  Google Scholar 

  175. Philipsborn, R. P. et al. Climate change and the practice of medicine: essentials for resident education. Acad. Med. 96, 355–367 (2021).

    Article  PubMed  Google Scholar 

  176. Kotcher, J. et al. Views of health professionals on climate change and health: a multinational survey study. Lancet Planet. Health 5, e316–e323 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Mora, C., Counsell, C. W. W., Bielecki, C. R. & Louis, L. V. Twenty-seven ways a heat wave can kill you: deadly heat in the era of climate change. Circ. Cardiovasc. Qual. Outcomes 10, e004233 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are funded by the Kuwait Foundation for the Advancement of Sciences-KFAS (CR19-13NH-01), the Medical Research Council UK (MR/R013349/1), the Natural Environment Research Council UK (NE/R009384/1) and the European Union’s Horizon 2020 Project Exhaustion (820655). This work was carried out on behalf of the Environmental Cardiovascular Collaborative (EnCC) Group.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and A.A. researched data for the article. H.K., B.A., R.L.O. Jr, M.A., S.G.A.-K., A.G. and S.R. contributed to the discussion of its content. H.K., B.A., R.L.O. Jr., A.A., N.V., M.M.C., A.Z. and S.R. wrote the manuscript. H.K., B.A., R.L.O. Jr., A.A., M.A., M.M.C., S.G.A.-K., A.Z., A.G. and S.R. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Haitham Khraishah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Guoxing Li, Annette Peters and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khraishah, H., Alahmad, B., Ostergard, R.L. et al. Climate change and cardiovascular disease: implications for global health. Nat Rev Cardiol 19, 798–812 (2022). https://doi.org/10.1038/s41569-022-00720-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00720-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing