Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications

Abstract

Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.

Key points

  • The main routes of communication between the brain and the cardiovascular system are the brain circumventricular organs, the autonomic nervous system and the hypothalamus–pituitary–adrenal axis.

  • Immune organs are densely innervated by the peripheral nervous system.

  • The nervous system might contribute to cardiovascular disease either directly through innervation of the cardiovascular system or indirectly by influencing the immune responses involved in cardiovascular pathology.

  • Innovative approaches that are based on bioelectronic or ultrasound-driven modulation of immune organs are emerging options for the treatment of cardiovascular disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes of communication between the brain and peripheral organs.
Fig. 2: Neural control of immune organs.
Fig. 3: Neuroimmune interactions contribute to the onset of cardiovascular risk factors and progression of cardiovascular disease.
Fig. 4: Emerging clinical perspectives for neuroimmune modulation in cardiovascular disease.

Similar content being viewed by others

References

  1. Joseph, P. et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ. Res. 121, 677–694 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Leong, D. P. et al. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease. Circ. Res. 121, 695–710 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Tzoulaki, I., Elliott, P., Kontis, V. & Ezzati, M. Worldwide exposures to cardiovascular risk factors and associated health effects: current knowledge and data gaps. Circulation 133, 2314–2333 (2016).

    Article  PubMed  Google Scholar 

  4. Malpas, S. C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev. 90, 513–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve — an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  6. Reardon, C., Murray, K. & Lomax, A. E. Neuroimmune communication in health and disease. Physiol. Rev. 98, 2287–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Felten, D. L. et al. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol. Rev. 100, 225–260 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Bellinger, D. L., Lorton, D., Felten, S. Y. & Felten, D. L. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int. J. Immunopharmacol. 14, 329–344 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Felten, D. L., Felten, S. Y., Carlson, S. L., Olschowka, J. A. & Livnat, S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135 (Suppl. 2), 755–765 (1985).

    Google Scholar 

  10. Felten, D. L. et al. Sympathetic innervation of lymph nodes in mice. Brain Res. Bull. 13, 693–699 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Tabarowski, Z., Gibson-Berry, K. & Felten, S. Y. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem. 98, 453–457 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Ballabh, P., Braun, A. & Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Banks, W. A. The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav. Immun. 44, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Cancelliere, N. M., Black, E. A. & Ferguson, A. V. Neurohumoral integration of cardiovascular function by the lamina terminalis. Curr. Hypertens. Rep. 17, 93 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Johnson, A. K. & Gross, P. M. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 7, 678–686 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Siso, S., Jeffrey, M. & Gonzalez, L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 120, 689–705 (2010).

    Article  PubMed  Google Scholar 

  17. Krause, E. G. et al. Angiotensin type 1 receptors in the subfornical organ mediate the drinking and hypothalamic-pituitary-adrenal response to systemic isoproterenol. Endocrinology 149, 6416–6424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenkei, Z., Palkovits, M., Corvol, P. & Llorens-Cortes, C. Distribution of angiotensin type-1 receptor messenger RNA expression in the adult rat brain. Neuroscience 82, 827–841 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Frazier, C. J. et al. An angiotensin-responsive connection from the lamina terminalis to the paraventricular nucleus of the hypothalamus evokes vasopressin secretion to increase blood pressure in mice. J. Neurosci. 41, 1429–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, A. K. & Xue, B. Central nervous system neuroplasticity and the sensitization of hypertension. Nat. Rev. Nephrol. 14, 750–766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Z. & Ferguson, A. V. Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am. J. Physiol. 265, R302–R309 (1993).

    CAS  PubMed  Google Scholar 

  22. Kawano, H. & Masuko, S. Region-specific projections from the subfornical organ to the paraventricular hypothalamic nucleus in the rat. Neuroscience 169, 1227–1234 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Stein, M. K. & Loewy, A. D. Area postrema projects to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei: brainstem sites implicated in sodium appetite regulation. Brain Res. 1359, 116–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Guyenet, P. G. et al. C1 neurons: the body’s EMTs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R187–R204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Andrea, I. et al. Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling. EMBO Mol. Med. 7, 904–917 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 39, 240–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Klose, C. S. N. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral tissues. Eur. J. Immunol. 51, 1602–1614 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Huh, J. R. & Veiga-Fernandes, H. Neuroimmune circuits in inter-organ communication. Nat. Rev. Immunol. 20, 217–228 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Osborn, J. W. & Kuroki, M. T. Sympathetic signatures of cardiovascular disease: a blueprint for development of targeted sympathetic ablation therapies. Hypertension 59, 545–547 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Esler, M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp. Physiol. 96, 611–622 (2011).

    PubMed  Google Scholar 

  32. Coffman, T. M. Under pressure: the search for the essential mechanisms of hypertension. Nat. Med. 17, 1402–1409 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Kingwell, B. A. et al. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 90, 234–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Grassi, G., Colombo, M., Seravalle, G., Spaziani, D. & Mancia, G. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 31, 64–67 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Esler, M. et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11, 3–20 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Anderson, E. A., Sinkey, C. A., Lawton, W. J. & Mark, A. L. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension 14, 177–183 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Carnevale, D. et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7, 13035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carnevale, L. et al. Celiac vagus nerve stimulation recapitulates angiotensin II-induced splenic noradrenergic activation, driving egress of CD8 effector cells. Cell Rep. 33, 108494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kressel, A. M. et al. Identification of a brainstem locus that inhibits tumor necrosis factor. Proc. Natl Acad. Sci. USA 117, 29803–29810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butts, C. L. & Sternberg, E. M. Neuroendocrine factors alter host defense by modulating immune function. Cell Immunol. 252, 7–15 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Selye, H. Variations in organ size caused by chronic treatment with adrenal cortical compounds: an example of a dissociated adaptation to a hormone. J. Anat. 76, 94 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Marvar, P. J. & Harrison, D. G. Stress-dependent hypertension and the role of T lymphocytes. Exp. Physiol. 97, 1161–1167 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Foster, K. E. et al. EphB-ephrin-B2 interactions are required for thymus migration during organogenesis. Proc. Natl Acad. Sci. USA 107, 13414–13419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nance, D. M., Hopkins, D. A. & Bieger, D. Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav. Immun. 1, 134–147 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Bulloch, K., Hausman, J., Radojcic, T. & Short, S. Calcitonin gene-related peptide in the developing and aging thymus. An immunocytochemical study. Ann. NY Acad. Sci. 621, 218–228 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Tollefson, L. & Bulloch, K. Dual-label retrograde transport: CNS innervation of the mouse thymus distinct from other mediastinum viscera. J. Neurosci. Res. 25, 20–28 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Vizi, E. S., Orso, E., Osipenko, O. N., Hasko, G. & Elenkov, I. J. Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience 68, 1263–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Trotter, R. N., Stornetta, R. L., Guyenet, P. G. & Roberts, M. R. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton. Neurosci. 131, 9–20 (2007).

    Article  PubMed  Google Scholar 

  49. de Leeuw, F. E. et al. The neural and neuro-endocrine component of the human thymus. I. Nerve-like structures. Brain Behav. Immun. 6, 234–248 (1992).

    Article  PubMed  Google Scholar 

  50. Pilipovic, I. et al. Catecholaminergic signalling through thymic nerve fibres, thymocytes and stromal cells is dependent on both circulating and locally synthesized glucocorticoids. Exp. Physiol. 97, 1211–1223 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Denes, A. et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134, 947–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Bajayo, A. et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc. Natl Acad. Sci. USA 109, 15455–15460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jung, W. C., Levesque, J. P. & Ruitenberg, M. J. It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Semin. Cell Dev. Biol. 61, 60–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Maestroni, G. J. Catecholaminergic regulation of hematopoiesis in mice. Blood 92, 2971 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fink, T. & Weihe, E. Multiple neuropeptides in nerves supplying mammalian lymph nodes: messenger candidates for sensory and autonomic neuroimmunomodulation? Neurosci. Lett. 90, 39–44 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Novotny, G. E. & Kliche, K. O. Innervation of lymph nodes: a combined silver impregnation and electron-microscopic study. Acta Anat. 127, 243–248 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Sloan, E. K. et al. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. J. Neurosci. 27, 8857–8865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Druzd, D. et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki, K., Hayano, Y., Nakai, A., Furuta, F. & Noda, M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 213, 2567–2574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakai, A., Hayano, Y., Furuta, F., Noda, M. & Suzuki, K. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. J. Exp. Med. 211, 2583–2598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vida, G., Pena, G., Deitch, E. A. & Ulloa, L. alpha7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J. Immunol. 186, 4340–4346 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Carnevale, D. et al. The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity 41, 737–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Bellinger, D. L., Felten, S. Y., Lorton, D. & Felten, D. L. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 3, 291–311 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Ackerman, K., Felten, S., Bellinger, D. & Felten, D. Noradrenergic sympathetic innervation of the spleen: III. Development of innervation in the rat spleen. J. Neurosci. Res. 18, 49–54 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Bellinger, D. L., Felten, S. Y., Collier, T. J. & Felten, D. L. Noradrenergic sympathetic innervation of the spleen: IV. Morphometric analysis in adult and aged F344 rats. J. Neurosci. Res. 18, 55–63 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Felten, S. Y. & Olschowka, J. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. J. Neurosci. Res. 18, 37–48 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Williams, J. M. & Felten, D. L. Sympathetic innervation of murine thymus and spleen: a comparative histofluorescence study. Anat. Rec. 199, 531–542 (1981).

    Article  CAS  PubMed  Google Scholar 

  74. Nance, D. M. & Sanders, V. M. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav. Immun. 21, 736–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Straub, R. H. Complexity of the bi-directional neuroimmune junction in the spleen. Trends Pharmacol. Sci. 25, 640–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, H. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Ding, X. et al. Panicle-shaped sympathetic architecture in the spleen parenchyma modulates antibacterial innate immunity. Cell Rep. 27, 3799–3807.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Lucas, T. A., Zhu, L. & Buckwalter, M. S. Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia 69, 1799–1815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Griffin, J. W. & Thompson, W. J. Biology and pathology of nonmyelinating Schwann cells. Glia 56, 1518–1531 (2008).

    Article  PubMed  Google Scholar 

  80. Cano, G., Sved, A. F., Rinaman, L., Rabin, B. S. & Card, J. P. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol. 439, 1–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Randall, T. D. & Mebius, R. E. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol. 7, 455–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Carragher, D. M., Rangel-Moreno, J. & Randall, T. D. Ectopic lymphoid tissues and local immunity. Semin. Immunol. 20, 26–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bienenstock, J., Croitoru, K., Ernst, P. B. & Stanisz, A. M. Nerves and neuropeptides in the regulation of mucosal immunity. Adv. Exp. Med. Biol. 257, 19–26 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blackshaw, L. A. & Gebhart, G. F. The pharmacology of gastrointestinal nociceptive pathways. Curr. Opin. Pharmacol. 2, 642–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate peyer’s patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180, 33–49.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Ghosh, S., Steere, A. C., Stollar, B. D. & Huber, B. T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol. 174, 2860–2869 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Rupprecht, T. A. et al. The chemokine CXCL13 (BLC): a putative diagnostic marker for neuroborreliosis. Neurology 65, 448–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Mazzucchelli, L. et al. BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J. Clin. Invest. 104, R49–R54 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baddoura, F. K. et al. Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am. J. Transpl. 5, 510–516 (2005).

    Article  Google Scholar 

  92. Thaunat, O. et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl Acad. Sci. USA 102, 14723–14728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez, A. B. et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep. 36, 109422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Houtkamp, M. A., de Boer, O. J., van der Loos, C. M., van der Wal, A. C. & Becker, A. E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol. 193, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Lotzer, K. et al. Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler. Thromb. Vasc. Biol. 30, 395–402 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mohanta, S. K. et al. Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis. Circ. Res. 114, 1772–1787 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42, 1100–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol. 7, 344–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Olivier, B. J. et al. Vagal innervation is required for the formation of tertiary lymphoid tissue in colitis. Eur. J. Immunol. 46, 2467–2480 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Chavan, S. S., Pavlov, V. A. & Tracey, K. J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46, 927–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ebringer, A. & Doyle, A. E. Raised serum IgG levels in hypertension. Br. Med. J. 2, 146–148 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hilme, E., Herlitz, H., Soderstrom, T. & Hansson, L. Increased secretion of immunoglobulins in malignant hypertension. J. Hypertens. 7, 91–95 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. Suryaprabha, P., Padma, T. & Rao, U. B. Increased serum IgG levels in essential hypertension. Immunol. Lett. 8, 143–145 (1984).

    Article  CAS  PubMed  Google Scholar 

  106. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Seniuk, A. et al. B6.Rag1 knockout mice generated at the Jackson laboratory in 2009 show a robust wild-type hypertensive phenotype in response to Ang II (Angiotensin II). Hypertension 75, 1110–1116 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Ji, H. et al. Loss of resistance to angiotensin II-induced hypertension in the jackson laboratory recombination-activating gene null mouse on the C57BL/6J background. Hypertension 69, 1121–1127 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Abboud, F. M. The Walter B. Cannon Memorial Award Lecture, 2009. Physiology in perspective: The wisdom of the body. In search of autonomic balance: the good, the bad, and the ugly. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1449–R1467 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Abboud, F. M., Harwani, S. C. & Chapleau, M. W. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 59, 755–762 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Ganta, C. K. et al. Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am. J. Physiol. Heart Circ. Physiol. 289, H1683–H1691 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Marvar, P. J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107, 263–270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Perrotta, M. et al. Deoxycorticosterone acetate-salt hypertension activates placental growth factor in the spleen to couple sympathetic drive and immune system activation. Cardiovasc. Res. 114, 456–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Ahmari, N. et al. Elevated bone marrow sympathetic drive precedes systemic inflammation in angiotensin II hypertension. Am. J. Physiol. Heart Circ. Physiol. 317, H279–H289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Johansson, M. E. et al. α7 Nicotinic acetylcholine receptor is expressed in human atherosclerosis and inhibits disease in mice — brief report. Arterioscler. Thromb. Vasc. Biol. 34, 2632–2636 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Christoffersson, G., Ratliff, S. S. & von Herrath, M. G. Interference with pancreatic sympathetic signaling halts the onset of diabetes in mice. Sci. Adv. 6, eabb2878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ramkhelawon, B. et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat. Med. 20, 377–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carnevale, D. & Lembo, G. Neuroimmune interactions in cardiovascular diseases. Cardiovasc. Res. 117, 402–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Vasamsetti, S. B. et al. Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity 49, 93–106.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597, 410–414 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Lambert, E. et al. Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure. J. Hypertens. 28, 543–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Lambert, E. A. & Lambert, G. W. Stress and its role in sympathetic nervous system activation in hypertension and the metabolic syndrome. Curr. Hypertens. Rep. 13, 244–248 (2011).

    Article  PubMed  Google Scholar 

  128. Marvar, P. J. et al. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol. Psychiatry 71, 774–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arsenault, B. J. & Despres, J. P. Cardiovascular disease prevention: lifestyle attenuation of genetic risk. Nat. Rev. Cardiol. 14, 187–188 (2017).

    Article  PubMed  Google Scholar 

  132. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364, 937–952 (2004).

    Article  PubMed  Google Scholar 

  133. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lymperopoulos, A., Rengo, G. & Koch, W. J. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ. Res. 113, 739–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Triposkiadis, F. et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J. Am. Coll. Cardiol. 54, 1747–1762 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  PubMed  Google Scholar 

  138. Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. 24, 711–720 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fujiu, K. et al. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat. Med. 23, 611–622 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zaman, R. et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 54, 2057–2071.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Wong, N. R. et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 54, 2072–2088.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Coote, J. H. & Chauhan, R. A. The sympathetic innervation of the heart: important new insights. Auton. Neurosci. 199, 17–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Ziegler, K. A. et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc. Res. 114, 291–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Gupta, J. et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 7, 1938–1946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Griffin, K. A. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension 70, 687–694 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Schlaich, M. P. Sympathetic activation in chronic kidney disease: out of the shadow. Hypertension 57, 683–685 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Yeboah, M. M. et al. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int. 74, 62–69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chatterjee, P. K. et al. Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity. PLoS ONE 7, e35361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gigliotti, J. C. et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J. Am. Soc. Nephrol. 24, 1451–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tanaka, S. et al. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc. Natl Acad. Sci. USA 118, e2021758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Banek, C. T. et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68, 1415–1423 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Banek, C. T. et al. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R883–R891 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Banek, C. T., Gauthier, M. M., Van Helden, D. A., Fink, G. D. & Osborn, J. W. Renal inflammation in DOCA-salt hypertension. Hypertension 73, 1079–1086 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Veelken, R. et al. Autonomic renal denervation ameliorates experimental glomerulonephritis. J. Am. Soc. Nephrol. 19, 1371–1378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim, J. & Padanilam, B. J. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J. Am. Soc. Nephrol. 24, 229–242 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Nation, D. A. et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Carnevale, L. et al. Brain MRI fiber-tracking reveals white matter alterations in hypertensive patients without damage at conventional neuroimaging. Cardiovasc. Res. 114, 1536–1546 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Carnevale, D. et al. Hypertension induces brain beta-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension 60, 188–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Toth, P. et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow Metab. 33, 1732–1742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Carnevale, L., Perrotta, M. & Lembo, G. A focused review of neural recording and stimulation techniques with immune-modulatory targets. Front. Immunol. 12, 689344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pavlov, V. A., Chavan, S. S. & Tracey, K. J. Bioelectronic medicine: from preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment. Cold Spring Harb. Perspect. Med. 10, a034140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Martelli, D., Farmer, D. G. S., McKinley, M. J., Yao, S. T. & McAllen, R. M. Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R235–R242 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Martelli, D., McKinley, M. J. & McAllen, R. M. The cholinergic anti-inflammatory pathway: a critical review. Auton. Neurosci. 182, 65–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Martelli, D., Yao, S. T., McKinley, M. J. & McAllen, R. M. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 592, 1677–1686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Donega, M. et al. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc. Natl Acad. Sci. USA 118, e2025428118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cotero, V. et al. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat. Commun. 10, 952 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zachs, D. P. et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nat. Commun. 10, 951 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Ulloa, L., Quiroz-Gonzalez, S. & Torres-Rosas, R. Nerve stimulation: immunomodulation and control of inflammation. Trends Mol. Med. 23, 1103–1120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Liu, S. et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature 598, 641–645 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Yeboah, M. et al. Cholinergic agonists attenuate renal ischemia–reperfusion injury in rats. Kidney Int. 74, 62–69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gigliotti, J. C. et al. Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J. Am. Soc. Nephrol. 26, 2470–2481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Schmued, L. C. & Fallon, J. H. Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res. 377, 147–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  186. Glover, J. C., Petursdottir, G. & Jansen, J. K. Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J. Neurosci. Methods 18, 243–254 (1986).

    Article  CAS  PubMed  Google Scholar 

  187. Lanciego, J. L. et al. Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section. J. Neurosci. Methods 103, 127–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Aston-Jones, G. & Card, J. P. Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J. Neurosci. Methods 103, 51–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Loewy, A. D. Viruses as transneuronal tracers for defining neural circuits. Neurosci. Biobehav. Rev. 22, 679–684 (1998).

    Article  CAS  PubMed  Google Scholar 

  190. Jansen, A. S. & Loewy, A. D. Viral tracing of innervation. Science 265, 121–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  191. Strack, A. M. & Loewy, A. D. Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J. Neurosci. 10, 2139–2147 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by the European Research Council (ERC-StG-GA759921), the European ERA-CVD Joint Transnational Call 2018 (NEMO-IMMUNEagainstHF) and 2019 (Gut-Brain-Immune-HHD), the Italian Ministry of University and Research (FARE-MIUR-R18RLRPS2R), and the Italian Ministry of Health (Ricerca Corrente). The author thanks G. Lembo, M. Perrotta and L. Carnevale from the laboratory for helpful discussion and inspiration for preparing the figures before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Carnevale.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks John Osborn, Janine van Gils and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Angiotensin II

A biologically generated peptide hormone of the renin–angiotensin–aldosterone system, with potent vasoconstrictor effects and signalling functions, also used to induce hypertension in experimental models.

Optogenetics

A technology that uses light to control and sense neurons that have been genetically modified to express channelrhodopsin 2, a light-gated cation channel.

Deoxycorticosterone acetate

(DOCA). A mineralocorticoid that is used together with salt in drinking water in a well-established preclinical model to recapitulate moderate-to-severe, salt-sensitive hypertension.

6-Hydroxydopamine

A hydroxylated analogue of dopamine used as a neurotoxic synthetic organic compound that can selectively destroy dopaminergic and noradrenergic neurons in the brain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnevale, D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 19, 379–394 (2022). https://doi.org/10.1038/s41569-022-00678-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00678-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing