Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The use of new CRISPR tools in cardiovascular research and medicine

Abstract

Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR–Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.

Key points

  • New CRISPR-based tools with various functions provide an increasing number of options to study disease mechanisms and cure genetic diseases.

  • CRISPR screens to identify causative genes are becoming more common and can be combined with new CRISPR tools.

  • New CRISPR tools, particularly base editors, have potential for therapeutic genome editing.

  • In cardiovascular medicine, the focus of therapeutic genome editing is on the liver to reduce blood LDL-cholesterol levels.

  • The high efficiency and specificity of new CRISPR tools could enable therapeutic genome editing of inherited cardiac and vascular diseases.

  • Therapeutic genome editing requires further investigation of in vivo off-target effects and improved delivery methods.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: New CRISPR technologies.
Fig. 2: A wide variety of new CRISPR tools.
Fig. 3: New CRISPR technologies as research tools.
Fig. 4: Unbiased genetic screening with CRISPR tools.
Fig. 5: Therapeutic genome editing in cardiovascular disease.

References

  1. Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

    CAS  PubMed  Google Scholar 

  2. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    CAS  PubMed  Google Scholar 

  4. Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).

    CAS  PubMed  Google Scholar 

  5. Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).

    CAS  PubMed  Google Scholar 

  6. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, X. & Qi, L. S. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431, 34–47 (2019).

    CAS  PubMed  Google Scholar 

  12. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    CAS  PubMed  Google Scholar 

  13. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    CAS  PubMed  Google Scholar 

  15. Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishizu, T. et al. Targeted genome replacement via homology-directed repair in non-dividing cardiomyocytes. Sci. Rep. 7, 9363 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Kohama, Y. et al. Adeno-associated virus-mediated gene delivery promotes S-phase entry-independent precise targeted integration in cardiomyocytes. Sci. Rep. 10, 15348 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS  PubMed  Google Scholar 

  20. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandegar, M. A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Limpitikul, W. B. et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ. Res. 120, 39–48 (2017).

    CAS  PubMed  Google Scholar 

  25. Chowdhury, T. A. et al. Temporal and spatial post-transcriptional regulation of zebrafish tie1 mRNA by long noncoding RNA during brain vascular assembly. Arterioscler. Thromb. Vasc. Biol. 38, 1562–1575 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Krause, M. D. et al. Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics. Proc. Natl Acad. Sci. USA 115, E11349–E11358 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Savage, A. M. et al. tmem33 is essential for VEGF-mediated endothelial calcium oscillations and angiogenesis. Nat. Commun. 10, 732 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Stolze, L. K. et al. Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits. Am. J. Hum. Genet. 106, 748–763 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  35. Dal-Pra, S., Hodgkinson, C. P. & Dzau, V. J. Induced cardiomyocyte maturation: cardiac transcription factors are necessary but not sufficient. PLoS ONE 14, e0223842 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schoger, E. et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ. Res. 126, 6–24 (2020).

    CAS  PubMed  Google Scholar 

  37. Sano, T., Ito, T., Ishigami, S., Bandaru, S. & Sano, S. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2020.05.040 (2020).

    Article  PubMed  Google Scholar 

  38. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    CAS  PubMed  Google Scholar 

  39. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

    CAS  PubMed  Google Scholar 

  43. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Nakamura, M., Ivec, A. E., Gao, Y. & Qi, L. S. Durable CRISPR-based epigenetic silencing. BioDesign Res. 2021, 9815820 (2021).

    Google Scholar 

  46. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  48. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J. M. et al. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 43, 8868–8883 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kwon, D. Y., Zhao, Y. T., Lamonica, J. M. & Zhou, Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 8, 15315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, H. et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao, Y., Han, M., Shang, S., Wang, H. & Qi, L. S. Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR-dCas9. Mol. Cell 81, 4287–4299 (2021).

    CAS  PubMed  Google Scholar 

  56. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    PubMed  Google Scholar 

  58. Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing screens. Cell 184, 1081–1097 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080 (2021).

    CAS  PubMed  Google Scholar 

  60. Chadwick, A. C., Wang, X. & Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37, 1741–1747 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).

    CAS  PubMed  Google Scholar 

  62. Liu, Z. et al. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 9, 2717 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Ryu, S. M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    CAS  PubMed  Google Scholar 

  64. Xu, L. et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat. Commun. 12, 3719 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chemello, F. et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 7, abg4910 (2021).

    Google Scholar 

  66. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma, S. et al. Efficient correction of a hypertrophic cardiomyopathy mutation by ABEmax-NG. Circ. Res. 129, 895–908 (2021).

    CAS  PubMed  Google Scholar 

  69. Bose, S. K. et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat. Commun. 12, 4291 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    CAS  PubMed  Google Scholar 

  72. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    CAS  PubMed  Google Scholar 

  76. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, P. et al. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. 22, 83 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Anton, T., Bultmann, S., Leonhardt, H. & Markaki, Y. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5, 163–172 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Yang, L. Z. et al. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 76, 981–997 (2019).

    CAS  PubMed  Google Scholar 

  86. Wang, H. et al. CRISPR-mediated live imaging of genome editing and transcription. Science 365, 1301–1305 (2019).

    CAS  PubMed  Google Scholar 

  87. Fujita, T., Yuno, M., Suzuki, Y., Sugano, S. & Fujii, H. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cell 22, 506–520 (2017).

    CAS  Google Scholar 

  88. Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kitagawa, A. et al. CRISPR-mediated single nucleotide polymorphism modeling in rats reveals insight into reduced cardiovascular risk associated with Mediterranean G6PD variant. Hypertension 76, 523–532 (2020).

    CAS  PubMed  Google Scholar 

  90. Lambert, M. et al. Characterization of Kcnk3-mutated rat, a novel model of pulmonary hypertension. Circ. Res. 125, 678–695 (2019).

    CAS  PubMed  Google Scholar 

  91. Waghulde, H. et al. Attenuation of microbiotal dysbiosis and hypertension in a CRISPR/Cas9 gene ablation rat model of GPER1. Hypertension 72, 1125–1132 (2018).

    CAS  PubMed  Google Scholar 

  92. Zhao, Y. et al. Hyperlipidemia induces typical atherosclerosis development in Ldlr and Apoe deficient rats. Atherosclerosis 271, 26–35 (2018).

    CAS  PubMed  Google Scholar 

  93. Chen, Y. et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum. Mol. Genet. 24, 3764–3774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    CAS  PubMed  Google Scholar 

  95. Strong, A. & Musunuru, K. Genome editing in cardiovascular diseases. Nat. Rev. Cardiol. 14, 11–20 (2017).

    CAS  PubMed  Google Scholar 

  96. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    CAS  PubMed  Google Scholar 

  97. Lee, J. et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 572, 335–340 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  99. Chen, I. Y., Matsa, E. & Wu, J. C. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat. Rev. Cardiol. 13, 333–349 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sayed, N., Liu, C. & Wu, J. C. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J. Am. Coll. Cardiol. 67, 2161–2176 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Tapia, N. & Scholer, H. R. Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell 19, 298–309 (2016).

    CAS  PubMed  Google Scholar 

  102. Magdy, T. et al. RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell 28, 2076–2089 (2021).

    CAS  PubMed  Google Scholar 

  103. Chang, Y. J. et al. CRISPR base editing in induced pluripotent stem cells. Methods Mol. Biol. 2045, 337–346 (2019).

    CAS  PubMed  Google Scholar 

  104. Lee, S. et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Sci. Adv. 6, eaba1773 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nishiga, M., Qi, L. S. & Wu, J. C. CRISPRi/a screening with human iPSCs. Methods Mol. Biol. 2320, 261–281 (2021).

    PubMed  Google Scholar 

  106. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS  PubMed  Google Scholar 

  109. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, aah7111 (2017).

    PubMed  Google Scholar 

  110. Liu, Y. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758–771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pierce, S. E., Granja, J. M. & Greenleaf, W. J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat. Commun. 12, 2969 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, C., Lu, T., Emanuel, G., Babcock, H. P. & Zhuang, X. Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization. Proc. Natl Acad. Sci. USA 116, 10842–10851 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, J. et al. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cell 38, 741–755 (2020).

    CAS  Google Scholar 

  121. Sapp, V. et al. Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity. Sci. Rep. 11, 13866 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Parvez, S. et al. MIC-Drop: a platform for large-scale in vivo CRISPR screens. Science 373, 1146–1151 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. VanDusen, N. J. et al. Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 4442 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Juang, J. J. et al. GSTM3 variant is a novel genetic modifier in Brugada syndrome, a disease with risk of sudden cardiac death. EBioMedicine 57, 102843 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. VanDusen, N. J. et al. Author Correction: massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 5105 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nishiga, M., Qi, L. S. & Wu, J. C. Therapeutic genome editing in cardiovascular diseases. Adv. Drug Deliv. Rev. 168, 147–157 (2021).

    CAS  PubMed  Google Scholar 

  128. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS  PubMed  Google Scholar 

  129. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  130. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, X. et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo — brief report. Arterioscler. Thromb. Vasc. Biol. 36, 783–786 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    CAS  PubMed  Google Scholar 

  134. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    CAS  PubMed  Google Scholar 

  135. Fairclough, R. J., Wood, M. J. & Davies, K. E. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat. Rev. Genet. 14, 373–378 (2013).

    CAS  PubMed  Google Scholar 

  136. Iftikhar, M., Frey, J., Shohan, M. J., Malek, S. & Mousa, S. A. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 220, 107719 (2021).

    CAS  PubMed  Google Scholar 

  137. Long, C. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    CAS  PubMed  Google Scholar 

  139. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    CAS  PubMed  Google Scholar 

  140. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    CAS  PubMed  Google Scholar 

  141. Young, C. S. et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18, 533–540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Long, C. et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 4, eaap9004 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zeng, Y. et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 26, 2631–2637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hulot, J. S., Ishikawa, K. & Hajjar, R. J. Gene therapy for the treatment of heart failure: promise postponed. Eur. Heart J. 37, 1651–1658 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Zsebo, K. et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ. Res. 114, 101–108 (2014).

    CAS  PubMed  Google Scholar 

  149. Bohm, S. et al. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation. Sci. Adv. 6, eaba5614 (2020).

    PubMed  PubMed Central  Google Scholar 

  150. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Amrani, N. et al. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19, 214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ibraheim, R. et al. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol. 19, 137 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726 (2019).

    CAS  PubMed  Google Scholar 

  154. Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01030-2 (2021).

    Article  PubMed  Google Scholar 

  156. Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).

    CAS  PubMed  Google Scholar 

  157. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the American Heart Association (AHA) 17MERIT33610009 (J.C.W.) and 19CDA34760019 (C.L.), Leducq Foundation 18CVD05 (J.C.W.), National Institutes of Health (NIH) R01 HL126527, R01 HL123968, R01 HL141371, R01 HL141851, R01 HL150693 (J.C.W.) and U01 DK127405 (L.S.Q.), National Science Foundation CAREER Award 2046650 (L.S.Q.), Li Ka Shing Foundation (L.S.Q.) and Tobacco-Related Disease Research Program (TRDRP) postdoctoral fellowship T31FT1758 (M.N.).

Author information

Authors and Affiliations

Authors

Contributions

M.N. and C.L. researched data for the article, and M.N., C.L. and J.C.W. discussed its content. M.N., C.L., L.S.Q. and J.C.W. wrote the manuscript, and all the authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Masataka Nishiga or Joseph C. Wu.

Ethics declarations

Competing interest

L.S.Q. is a co-founder of Epicrispr Biotechnologies and Refuge Biotechnologies, and J.C.W. is a co-founder of Greenstone Biosciences. The work presented here is completely independent of these companies. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks Joseph Miano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinVar database: https://www.ncbi.nlm.nih.gov/clinvar/

Supplementary information

Glossary

Non-homologous end-joining

(NHEJ). An endogenous cellular mechanism to repair double-strand breaks (DSBs), in which the ends at a cut site are directly ligated to each other.

Microhomology-mediated end-joining

(MMEJ). An endogenous cellular mechanism to repair DSBs, in which microhomologous sequences at both ends of a cut site are used to align the ends, resulting in the removal of the flanking region.

Homology-directed repair

(HDR). An endogenous cellular mechanism to repair DSBs, in which the sequence at a cut site is replaced by a sequence specified in a donor template, typically via homologous recombination.

Protospacer adjacent motif

(PAM). A short, specific DNA sequence (2–6 nucleotides) that follows the DNA sequence targeted by a CRISPR system and is required for a Cas nuclease to bind to the target region.

Induced pluripotent stem cell

(iPSC). A type of stem cell that can be generated directly from somatic cells, such as fibroblasts or blood cells, by introducing specific sets of genes.

Adeno-associated virus

(AAV). A small, non-pathogenic virus that can infect many types of human cell and is often used as a vector for the delivery of gene therapy.

Doxorubicin

A chemotherapy drug that is effective for many different types of cancer, including breast cancer and leukaemias, with a well-known adverse effect of cardiac toxicity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishiga, M., Liu, C., Qi, L.S. et al. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 19, 505–521 (2022). https://doi.org/10.1038/s41569-021-00669-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00669-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing