Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology and risk factors of peripartum cardiomyopathy

Abstract

Peripartum cardiomyopathy (PPCM) is a potentially fatal form of idiopathic heart failure with variable prevalence across different countries and ethnic groups. The cause of PPCM is unclear, but environmental and genetic factors and pregnancy-associated conditions such as pre-eclampsia can contribute to the development of PPCM. Furthermore, animal studies have shown that impaired vascular and metabolic function might be central to the development of PPCM. A better understanding of the pathogenic mechanisms involved in the development of PPCM is necessary to establish new therapies that can improve the outcomes of patients with PPCM. Pregnancy hormones tightly regulate a plethora of maternal adaptive responses, including haemodynamic, structural and metabolic changes in the cardiovascular system. In patients with PPCM, the peripartum period is associated with profound and rapid hormonal fluctuations that result in a brief period of disrupted cardiovascular (metabolic) homeostasis prone to secondary perturbations. In this Review, we discuss the latest studies on the potential pathophysiological mechanisms of and risk factors for PPCM, with a focus on maternal cardiovascular changes associated with pregnancy. We provide an updated framework to further our understanding of PPCM pathogenesis, which might lead to an improvement in disease definition.

Key points

  • Physiological cardiovascular changes during pregnancy mediate the development of peripartum cardiomyopathy (PPCM) in women who are predisposed to the disease.

  • Risk factors for PPCM include the presence of genetic variants that are common in other types of cardiomyopathy as well as low socioeconomic status, pre-eclampsia and a history of cancer.

  • PPCM onset typically overlaps with the most extreme fluctuations in hormone levels during pregnancy that occur during the third trimester and at birth.

  • Studies involving mouse models of PPCM demonstrate that the disease results from dysregulated metabolic pathways and angiogenic imbalance, possibly owing to aberrant hormonal signalling.

  • Our understanding of the pathophysiology underlying PPCM is mainly derived from studies on animal models, which require confirmation in patient studies, but these preclinical data form the basis of current clinical guidelines and future experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pregnancy hormone levels correlate with cardiac bioenergetic profile.
Fig. 2: Pregnancy hormones elicit cardiovascular-specific effects.
Fig. 3: Proposed pathogenic pathways in peripartum cardiomyopathy.

Similar content being viewed by others

References

  1. Bauersachs, J. et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 21, 827–843 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Sliwa, K. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 12, 767–778 (2010).

    Article  PubMed  Google Scholar 

  3. Sliwa, K. et al. Risk stratification and management of women with cardiomyopathy/heart failure planning pregnancy or presenting during/after pregnancy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on Peripartum. Eur. J. Heart Fail. 23, 527–540 (2021).

    Article  PubMed  Google Scholar 

  4. Sliwa, K. et al. Clinical presentation, management, and 6-month outcomes in women with peripartum cardiomyopathy: an ESC EORP registry. Eur. Heart J. 41, 3787–3797 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Davis, M. B., Arany, Z., McNamara, D. M., Goland, S. & Elkayam, U. Peripartum cardiomyopathy. J. Am. Coll. Cardiol. 75, 207–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Honigberg, M. C. & Givertz, M. M. Peripartum cardiomyopathy. BMJ 364, k5287 (2019).

    Article  PubMed  Google Scholar 

  7. Moulig, V. et al. Long-term follow-up in peripartum cardiomyopathy patients with contemporary treatment: low mortality, high cardiac recovery, but significant cardiovascular co-morbidities. Eur. J. Heart Fail. 21, 1534–1542 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Sliwa, K. et al. Long-term prognosis, subsequent pregnancy, contraception and overall management of peripartum cardiomyopathy: practical guidance paper from the Heart Failure Association of the European Society of Cardiology Study Group on Peripartum Cardiomyopathy. Eur. J. Heart Fail. 20, 951–962 (2018).

    Article  PubMed  Google Scholar 

  9. Kamiya, C. A. et al. Different characteristics of peripartum cardiomyopathy between patients complicated with and without hypertensive disorders: results from the Japanese nationwide survey of peripartum cardiomyopathy. Circ. J. 75, 1975–1981 (2011).

    Article  PubMed  Google Scholar 

  10. Isogai, T. & Kamiya, C. A. Worldwide incidence of peripartum cardiomyopathy and overall maternal mortality. Int. Heart J. 60, 503–511 (2019).

    Article  PubMed  Google Scholar 

  11. Ersbøll, A. S. et al. Peripartum cardiomyopathy in Denmark: a retrospective, population-based study of incidence, management and outcome. Eur. J. Heart Fail. 19, 1712–1720 (2017).

    Article  PubMed  Google Scholar 

  12. Barasa, A., Rosengren, A., Sandström, T. Z., Ladfors, L. & Schaufelberger, M. Heart failure in late pregnancy and postpartum: incidence and long-term mortality in Sweden from 1997 to 2010. J. Card. Fail. 23, 370–378 (2017).

    Article  PubMed  Google Scholar 

  13. Isezuo, S. A. & Abubakar, S. A. Epidemiologic profile of peripartum cardiomyopathy in a tertiary care hospital. Ethn. Dis. 17, 228–233 (2007).

    PubMed  Google Scholar 

  14. Fett, J. D., Christie, L. G., Carraway, R. D. & Murphy, J. G. Five-year prospective study of the incidence and prognosis of peripartum cardiomyopathy at a single institution. Mayo Clin. Proc. 80, 1602–1606 (2005).

    Article  PubMed  Google Scholar 

  15. Hasan, J. A., Qureshi, A., Ramejo, B. B. & Kamran, A. Peripartum cardiomyopathy characteristics and outcome in a tertiary care hospital. J. Pak. Med. Assoc. 60, 377–380 (2010).

    PubMed  Google Scholar 

  16. Desai, D., Moodley, J. & Naidoo, D. Peripartum cardiomyopathy: experiences at King Edward VIII Hospital, Durban, South Africa and a review of the literature. Trop. Doct. 25, 118–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Koenig, T., Hilfiker-Kleiner, D. & Bauersachs, J. Peripartum cardiomyopathy. Herz 43, 431–437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolte, D. et al. Temporal trends in incidence and outcomes of peripartum cardiomyopathy in the United States: a nationwide population-based study. J. Am. Heart Assoc. 3, e001056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128, 589–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Patten, I. S. et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485, 333–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halkein, J. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest. 123, 2143–2154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stapel, B. et al. Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy. Eur. Heart J. 38, ehw086 (2016).

    Article  Google Scholar 

  23. Ricke-Hoch, M. et al. In peripartum cardiomyopathy plasminogen activator inhibitor-1 is a potential new biomarker with controversial roles. Cardiovasc. Res. 116, 1875–1886 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Hoes, M. F. et al. Human iPSC-derived cardiomyocytes of peripartum patients with cardiomyopathy reveal aberrant regulation of lipid metabolism. Circulation 142, 2288–2291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, L. X. & Arany, Z. Maternal cardiac metabolism in pregnancy. Cardiovasc. Res. 101, 545–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redondo-Angulo, I. et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc. Res. 113, 1574–1584 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Kodogo, V., Azibani, F. & Sliwa, K. Role of pregnancy hormones and hormonal interaction on the maternal cardiovascular system: a literature review. Clin. Res. Cardiol. 108, 831–846 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Bello, N., Rendon, I. S. H. & Arany, Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 62, 1715–1723 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Longo, L. D. Maternal blood volume and cardiac output during pregnancy: a hypothesis of endocrinologic control. Am. J. Physiol. Integr. Comp. Physiol. 245, R720–R729 (1983).

    Article  CAS  Google Scholar 

  30. Clapp, J. F. & Capeless, E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am. J. Cardiol. 80, 1469–1473 (1997).

    Article  PubMed  Google Scholar 

  31. Melchiorre, K., Sharma, R., Khalil, A. & Thilaganathan, B. Maternal cardiovascular function in normal pregnancy: evidence of maladaptation to chronic volume overload. Hypertension 67, 754–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Loerup, L. et al. Trends of blood pressure and heart rate in normal pregnancies: a systematic review and meta-analysis. BMC Med. 17, 167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Green, L. J. et al. Gestation-specific vital sign reference ranges in pregnancy. Obstet. Gynecol. 135, 653–664 (2020).

    Article  PubMed  Google Scholar 

  34. Ducas, R. A. et al. Cardiovascular magnetic resonance in pregnancy: insights from the cardiac hemodynamic imaging and remodeling in pregnancy (CHIRP) study. J. Cardiovasc. Magn. Reson. 16, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. De Haas, S. et al. Cardiac remodeling in normotensive pregnancy and in pregnancy complicated by hypertension: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 50, 683–696 (2017).

    Article  PubMed  Google Scholar 

  36. Umar, S. et al. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J. Appl. Physiol. 113, 1253–1259 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chung, E., Yeung, F. & Leinwand, L. A. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J. Appl. Physiol. 112, 1564–1575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aljabri, M. B. et al. Pregnancy protects against antiangiogenic and fibrogenic effects of angiotensin II in rat hearts. Acta Physiol. 201, 445–456 (2011).

    Article  CAS  Google Scholar 

  39. Peters, F. et al. Peripartum cardiomyopathy associated with left ventricular noncompaction phenotype and reversible rigid body rotation. Circ. Heart Fail. 6, e62–e63 (2013).

    Article  PubMed  Google Scholar 

  40. Lea, B., Bailey, A. L., Wiisanen, M. E., Attili, A. & Rajagopalan, N. Left ventricular noncompaction presenting as peripartum cardiomyopathy. Int. J. Cardiol. 154, e65–e66 (2012).

    Article  PubMed  Google Scholar 

  41. Haghikia, A. et al. Prognostic implication of right ventricular involvement in peripartum cardiomyopathy: a cardiovascular magnetic resonance study. ESC Heart Fail. 2, 139–149 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang, W.-I. et al. Clinical features differentiating Takotsubo cardiomyopathy in the peripartum period from peripartum cardiomyopathy. Heart Vessels 35, 665–671 (2020).

    Article  PubMed  Google Scholar 

  43. Eghbali, M., Wang, Y., Toro, L. & Stefani, E. Heart hypertrophy during pregnancy: a better functioning heart? Trends Cardiovasc. Med. 16, 285–291 (2006).

    Article  PubMed  Google Scholar 

  44. Chung, E., Yeung, F. & Leinwand, L. A. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc. Res. 100, 402–410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saffer, C. et al. Determination of placental growth factor (PlGF) levels in healthy pregnant women without signs or symptoms of preeclampsia. Pregnancy Hypertens. 3, 124–132 (2013).

    Article  PubMed  Google Scholar 

  46. Hunter, A. et al. Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy. Hypertension 36, 965–969 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zeisler, H. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Mebazaa, A. et al. Imbalanced angiogenesis in peripartum cardiomyopathy — diagnostic value of placenta growth factor. Circ. J. 81, 1654–1661 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Young, B. C., Levine, R. J. & Karumanchi, S. A. Pathogenesis of preeclampsia. Ann. Rev. Pathol. Mech. Dis. 5, 173–192 (2010).

    Article  CAS  Google Scholar 

  51. Mizuno, Y. et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism 77, 65–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lain, K. Y. & Catalano, P. M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol. 50, 938–948 (2007).

    Article  PubMed  Google Scholar 

  54. Lof, M. et al. Changes in basal metabolic rate during pregnancy in relation to changes in body weight and composition, cardiac output, insulin-like growth factor I, and thyroid hormones and in relation to fetal growth. Am. J. Clin. Nutr. 81, 678–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Buchanan, T. A., Metzger, B. E., Freinkel, N. & Bergman, R. N. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am. J. Obstet. Gynecol. 162, 1008–1014 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Catalano, P. M., Tyzbir, E. D., Roman, N. M., Amini, S. B. & Sims, E. A. H. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am. J. Obstet. Gynecol. 165, 1667–1672 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Sugden, M. C., Changani, K. K., Bentley, J. & Holness, M. J. Cardiac glucose metabolism during pregnancy. Biochem. Soc. Trans. 20, 195S (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Williams, J. G. et al. Coronary nitric oxide production controls cardiac substrate metabolism during pregnancy in the dog. Am. J. Physiol. Circ. Physiol. 294, H2516–H2523 (2008).

    Article  CAS  Google Scholar 

  59. Liu, L. X. et al. PDK4 inhibits cardiac pyruvate oxidation in late pregnancy. Circ. Res. 121, 1370–1378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281, 785–789 (1963).

    Article  Google Scholar 

  61. Whittaker, P. G., Macphail, S. & Lind, T. Serial hematologic changes and pregnancy outcome. Obstet. Gynecol. 88, 33–39 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Arany, Z. et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 1, 259–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Abbassi-Ghanavati, M., Greer, L. G. & Cunningham, F. G. Pregnancy and laboratory studies. Obstet. Gynecol. 114, 1326–1331 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zafirovic, S. et al. 17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Mol. Cell. Endocrinol. 446, 12–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Caulin-Glaser, T., García-Cardeña, G., Sarrel, P., Sessa, W. C. & Bender, J. R. 17β-Estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ. Res. 81, 885–892 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Simoncini, T., Genazzani, A. R. & Liao, J. K. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation 105, 1368–1373 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Johnson, M. L., Grazul-Bilska, A. T., Redmer, D. A. & Reynolds, L. P. Effects of estradiol-17β on expression of mRNA for seven angiogenic factors and their receptors in the endometrium of ovariectomized (OVX) ewes. Endocrine 30, 333–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Hervé, M. A. J. et al. Regulation of the vascular endothelial growth factor (VEGF) receptor Flk-1/KDR by estradiol through VEGF in uterus. J. Endocrinol. 188, 91–99 (2006).

    Article  PubMed  Google Scholar 

  69. Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. van Eickels, M. et al. 17β-Estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104, 1419–1423 (2001).

    Article  PubMed  Google Scholar 

  71. Satoh, M. et al. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 115, 3197–3204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fortini, F. et al. Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis. J. Biol. Chem. 292, 18178–18191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patten, R. D. et al. 17β-Estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ. Res. 95, 692–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, T. et al. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function. Mol. Cell. Biol. 35, 1281–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morrissy, S., Xu, B., Aguilar, D., Zhang, J. & Chen, Q. M. Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell 9, 799–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Ramírez-Rosas, M. B., Cobos-Puc, L. E., Sánchez-López, A., Gutiérrez-Lara, E. J. & Centurión, D. Pharmacological characterization of the mechanisms involved in the vasorelaxation induced by progesterone and 17β-estradiol on isolated canine basilar and internal carotid arteries. Steroids 89, 33–40 (2014).

    Article  PubMed  Google Scholar 

  77. Amaral, L. M. et al. Progesterone supplementation attenuates hypertension and the autoantibody to the angiotensin II type I receptor in response to elevated interleukin-6 during pregnancy. Am. J. Obstet. Gynecol. 211, 158.e1–6 (2014).

    Article  PubMed  Google Scholar 

  78. Nelson, S. H. et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ. Res. 87, 406–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Atif, F., Yousuf, S., Espinosa-Garcia, C., Sergeeva, E. & Stein, D. G. Progesterone treatment attenuates glycolytic metabolism and induces senescence in glioblastoma. Sci. Rep. 9, 988 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kyo, S. et al. Forkhead transcription factor FOXO1 is a direct target of progestin to inhibit endometrial epithelial cell growth. Clin. Cancer Res. 17, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Freeman, M. E., Kanyicska, B., Lerant, A. & Nagy, G. Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80, 1523–1631 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Mills, D. E. & Ward, R. P. Effect of prolactin on blood pressure and cardiovascular responsiveness in the rat. Exp. Biol. Med. 181, 3–8 (1986).

    Article  CAS  Google Scholar 

  83. Hsieh, D. J.-Y. et al. Prolactin protects cardiomyocytes against intermittent hypoxia-induced cell damage by the modulation of signaling pathways related to cardiac hypertrophy and proliferation. Int. J. Cardiol. 181, 255–266 (2015).

    Article  PubMed  Google Scholar 

  84. Gonzalez, C. et al. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol. Sin. 36, 572–586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cui, Y. et al. Hepatic FGF21 production is increased in late pregnancy in the mouse. Am. J. Physiol. Integr. Comp. Physiol. 307, R290–R298 (2014).

    Article  CAS  Google Scholar 

  86. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Planavila, A. et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun. 4, 2019 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Planavila, A. et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res. 106, 19–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Sutton, E. F., Morrison, C. D., Stephens, J. M. & Redman, L. M. Fibroblast growth factor 21, adiposity, and macronutrient balance in a healthy, pregnant population with overweight and obesity. Endocr. Res. 43, 275 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yuan, D., Wu, B. J., Henry, A., Rye, K.-A. & Ong, K. L. Role of fibroblast growth factor 21 in gestational diabetes mellitus: a mini-review. Clin. Endocrinol. 90, 47–55 (2019).

    Article  CAS  Google Scholar 

  92. Goli, R. et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation 143, 1852–1862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McNamara, D. M. et al. Clinical outcomes for peripartum cardiomyopathy in North America: results of the IPAC Study (Investigations of Pregnancy-Associated Cardiomyopathy). J. Am. Coll. Cardiol. 66, 905–914 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jackson, A. M. et al. Hypertensive disorders in women with peripartum cardiomyopathy: insights from the ESC Peripartum Cardiomyopathy Registry. Eur. J. Heart Fail. 23, 2058–2069 (2021).

    Article  PubMed  Google Scholar 

  95. Cénac, A., Gaultier, Y., Devillechabrolle, A. & Moulias, R. Enterovirus infection in peripartum cardiomyopathy. Lancet 2, 968–969 (1988).

    Article  PubMed  Google Scholar 

  96. Elkayam, U. et al. Pregnancy-associated cardiomyopathy. Circulation 111, 2050–2055 (2005).

    Article  PubMed  Google Scholar 

  97. Pfeffer, T. J. et al. Increased cancer prevalence in peripartum cardiomyopathy. JACC CardioOncol. 1, 196–205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cherubin, S. et al. Systematic review and meta-analysis of prolactin and iron deficiency in peripartum cardiomyopathy. Open Heart 7, e001430 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Forster, O. et al. Reversal of IFN-γ, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy. Eur. J. Heart Fail. 10, 861–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Haghikia, A. et al. Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res. Cardiol. 108, 366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van Spaendonck-Zwarts, K. Y. et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 121, 2169–2175 (2010).

    Article  PubMed  Google Scholar 

  102. Tamrat, R. et al. Women with peripartum cardiomyopathy have normal ejection fraction, but abnormal systolic strain, during pregnancy. ESC Heart Fail. 8, 3382–3386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Morales, A. et al. Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy. Circulation 121, 2176–2182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van Spaendonck-Zwarts, K. Y. et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur. Heart J. 35, 2165–2173 (2014).

    Article  PubMed  Google Scholar 

  105. Ware, J. S. et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 374, 233–241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mazzarotto, F. et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141, 387–398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Verdonschot, J. A. J. et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur. Heart J. 39, 864–873 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Spracklen, T. F. et al. Genetics of peripartum cardiomyopathy: current knowledge, future directions and clinical implications. Genes 12, 103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Horne, B. D. et al. Genome-wide significance and replication of the chromosome 12p11.22 locus near the PTHLH gene for peripartum cardiomyopathy. Circ. Cardiovasc. Genet. 4, 359–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Sliwa, K. et al. EURObservational Research Programme: a worldwide registry on peripartum cardiomyopathy (PPCM) in conjunction with the Heart Failure Association of the European Society of Cardiology Working Group on PPCM. Eur. J. Heart Fail. 16, 583–591 (2014).

    Article  PubMed  Google Scholar 

  111. Karaye, K. M. et al. Incidence, clinical characteristics, and risk factors of peripartum cardiomyopathy in Nigeria: results from the PEACE Registry. ESC Heart Fail. 7, 235–243 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Karaye, K., Yahaya, I., Lindmark, K. & Henein, M. Serum selenium and ceruloplasmin in Nigerians with peripartum cardiomyopathy. Int. J. Mol. Sci. 16, 7644–7654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bomer, N. et al. Selenium and outcome in heart failure. Eur. J. Heart Fail. 22, 1415–1423 (2019).

    Article  PubMed  Google Scholar 

  114. Karaye, K. M. et al. Selenium supplementation in patients with peripartum cardiomyopathy: a proof-of-concept trial. BMC Cardiovasc. Disord. 20, 457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ligowe, I. S. et al. Selenium deficiency risks in sub-Saharan African food systems and their geospatial linkages. Proc. Nutr. Soc. 79, 457–467 (2020).

    Article  CAS  Google Scholar 

  116. Yang, G., Ge, K., Chen, J. & Chen, X. Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev. Nutr. Diet. 55, 98–152 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Mielniczuk, L. M. et al. Frequency of peripartum cardiomyopathy. Am. J. Cardiol. 97, 1765–1768 (2006).

    Article  PubMed  Google Scholar 

  118. Krishnamoorthy, P. et al. Epidemiology and outcomes of peripartum cardiomyopathy in the United States. J. Cardiovasc. Med. 17, 756–761 (2016).

    Article  Google Scholar 

  119. United States Census Bureau. US Census Bureau July 1 2019 Estimates. Retrieved 17 Aug 2021 https://www.census.gov/quickfacts/fact/table/US/PST045219 (2019).

  120. Irizarry, O. C. et al. Comparison of clinical characteristics and outcomes of peripartum cardiomyopathy between African American and non-African American women. JAMA Cardiol. 2, 1256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Goland, S., Modi, K., Hatamizadeh, P. & Elkayam, U. Differences in clinical profile of African-American women with peripartum cardiomyopathy in the United States. J. Card. Fail. 19, 214–218 (2013).

    Article  PubMed  Google Scholar 

  122. Getz, K. D. et al. Neighborhood education status drives racial disparities in clinical outcomes in PPCM. Am. Heart J. 238, 27–32 (2021).

    Article  PubMed  Google Scholar 

  123. Sliwa, K. et al. Clinical characteristics of patients from the worldwide registry on peripartum cardiomyopathy (PPCM). Eur. J. Heart Fail. 19, 1131–1141 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Azibani, F. et al. Outcome in German and South African peripartum cardiomyopathy cohorts associates with medical therapy and fibrosis markers. ESC Heart Fail. 7, 512–522 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Karaye, K. M. et al. Clinical features and outcomes of peripartum cardiomyopathy in Nigeria. J. Am. Coll. Cardiol. 76, 2352–2364 (2020).

    Article  PubMed  Google Scholar 

  126. Ives, C. W., Sinkey, R., Rajapreyar, I., Tita, A. T. N. & Oparil, S. Preeclampsia — pathophysiology and clinical presentations. J. Am. Coll. Cardiol. 76, 1690–1702 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Amos, A. M., Jaber, W. A. & Russell, S. D. Improved outcomes in peripartum cardiomyopathy with contemporary. Am. Heart J. 152, 509–513 (2006).

    Article  PubMed  Google Scholar 

  128. Gunderson, E. P. et al. Epidemiology of peripartum cardiomyopathy: Incidence, predictors, and outcomes. Obstet. Gynecol. 118, 583–591 (2011).

    Article  PubMed  Google Scholar 

  129. Lewey, J., Levine, L. D., Elovitz, M. A., Irizarry, O. C. & Arany, Z. Importance of early diagnosis in peripartum cardiomyopathy. Hypertension 75, 91–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Bültmann, B. D., Klingel, K., Näbauer, M., Wallwiener, D. & Kandolf, R. High prevalence of viral genomes and inflammation in peripartum cardiomyopathy. Am. J. Obstet. Gynecol. 193, 363–365 (2005).

    Article  PubMed  Google Scholar 

  131. Sarojini, A., Sai Ravi Shanker, A. & Anitha, M. Inflammatory markers-serum level of C-reactive protein, tumor necrotic factor-α, and interleukin-6 as predictors of outcome for peripartum cardiomyopathy. J. Obstet. Gynecol. India 63, 234–239 (2013).

    Article  CAS  Google Scholar 

  132. Koczo, A. et al. Proinflammatory TH17 cytokine activation, disease severity and outcomes in peripartum cardiomyopathy. Int. J. Cardiol. 339, 93–98 (2021).

    Article  PubMed  Google Scholar 

  133. McTiernan, C. F. et al. Circulating T-cell subsets, monocytes, and natural killer cells in peripartum cardiomyopathy: results from the multicenter IPAC Study. J. Card. Fail. 24, 33–42 (2018).

    Article  PubMed  Google Scholar 

  134. Haghikia, A. et al. Evidence of autoantibodies against cardiac troponin I and sarcomeric myosin in peripartum cardiomyopathy. Basic Res. Cardiol. 110, 60 (2015).

    Article  PubMed  Google Scholar 

  135. Elkayam, U. et al. Maternal and fetal outcomes of subsequent pregnancies in women with peripartum cardiomyopathy. N. Engl. J. Med. 344, 1567–1571 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Hilfiker-Kleiner, D. et al. Outcome of subsequent pregnancies in patients with a history of peripartum cardiomyopathy. Eur. J. Heart Fail. 19, 1723–1728 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Lampert, M. B. et al. Contractile reserve in patients with peripartum cardiomyopathy and recovered left ventricular function. Am. J. Obstet. Gynecol. 176, 189–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Goland, S. et al. Angiogenic imbalance and residual myocardial injury in recovered peripartum cardiomyopathy patients. Circ. Heart Fail. 9, e003349 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Toescu, V., Nuttall, S. L., Martin, U., Kendall, M. J. & Dunne, F. Oxidative stress and normal pregnancy. Clin. Endocrinol. 57, 609–613 (2002).

    Article  CAS  Google Scholar 

  140. Ricke-Hoch, M. et al. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress. Cardiovasc. Res. 101, 587–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Hoes, M. F. et al. The role of cathepsin D in the pathophysiology of heart failure and its potentially beneficial properties: a translational approach. Eur. J. Heart Fail. 22, 2102–2111 (2019).

    Article  PubMed  Google Scholar 

  142. Yadati, T., Houben, T., Bitorina, A. & Shiri-Sverdlov, R. The ins and outs of cathepsins: physiological function and role in disease management. Cells 9, 1679 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  143. Cruz-Soto, M. E. et al. Cathepsin D is the primary protease for the generation of adenohypophyseal vasoinhibins: cleavage occurs within the prolactin secretory granules. Endocrinology 150, 5446–5454 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Piwnica, D. et al. Cathepsin D processes human prolactin into multiple 16K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol. Endocrinol. 18, 2522–2542 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Triebel, J., Bertsch, T., Martinez de la Escalera, G. & Clapp, C. On the path toward classifying hormones of the vasoinhibin-family. Front. Endocrinol. 6, 16 (2015).

    Article  Google Scholar 

  146. Bajou, K. et al. PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat. Med. 20, 741–747 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Tabruyn, S. P., Nguyen, N.-Q.-N., Cornet, A. M., Martial, J. A. & Struman, I. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0–G1 and the G2–M phases. Mol. Endocrinol. 19, 1932–1942 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Tabruyn, S. P. et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol. Endocrinol. 17, 1815–1823 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Lee, S.-H., Kunz, J., Lin, S.-H. & Yu-Lee, L. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res. 67, 11045–11053 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Feyen, E. et al. ERBB4 and multiple microRNAs that target ERBB4 participate in pregnancy-related cardiomyopathy. Circ. Heart Fail. 14, e006898 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Odiete, O., Hill, M. F. & Sawyer, D. B. Neuregulin in cardiovascular development and disease. Circ. Res. 111, 1376–1385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Koga, K. et al. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J. Clin. Endocrinol. Metab. 88, 2348–2351 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Sliwa, K. et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy. Circulation 121, 1465–1473 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Hilfiker-Kleiner, D. et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur. Heart J. 38, 2671–2679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Podewski, E. K. et al. Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation 107, 798–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Triebel, J., Clapp, C., Martínez de la Escalera, G. & Bertsch, T. Remarks on the prolactin hypothesis of peripartum cardiomyopathy. Front. Endocrinol. 8, 77 (2017).

    Article  Google Scholar 

  158. Khurana, S., Liby, K., Buckley, A. R. & Ben-Jonathan, N. Proteolysis of human prolactin: resistance to cathepsin D and formation of a nonangiostatic, C-terminal 16K fragment by thrombin1. Endocrinology 140, 4127–4132 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Triebel, J. & et al. Matrix metalloproteases and cathepsin d in human serum do not cleave prolactin to generate vasoinhibin. Clin. Lab. 66 https://doi.org/10.7754/Clin.Lab.2019.191017 (2020).

  160. Bello, N. A. & Arany, Z. Molecular mechanisms of peripartum cardiomyopathy: a vascular/hormonal hypothesis. Trends Cardiovasc. Med. 25, 499–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Li, Z. et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 50, 686–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. van der Pol, A. et al. Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH. Sci. Transl. Med. 9, eaam8574 (2017).

    Article  PubMed  Google Scholar 

  164. Schafer, S. et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49, 46–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Stevens, C. M. et al. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca2+-sensitizing mutations. J. Biol. Chem. 292, 11915–11926 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. He, H., Javadpour, M. M., Latif, F., Tardiff, J. C. & Ingwall, J. S. R-92L and R-92W Mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts. Biophys. J. 93, 1834–1844 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gamperl, A. K. & Driedzic, W. R. In Fish Physiology (eds Richards, J.G., Farrell, A.P. & Brauner, C.J.) Vol. 27, 1834–1844 (Academic Press, 2009).

  168. Liu, J. et al. The correlation between peripartum cardiomyopathy and autoantibodies against cardiovascular receptors. PLoS ONE 9, e86770 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Huang, G.-Y., Zhang, L.-Y., Bai, T.-F., Wang, R.-K. & Zhang, X.-S. Effect of inflammation and autoimmunity in peripartum cardiomyopathy. Clin. Res. Geriatr. Cardiol. 7, 106–109 (2010).

    Google Scholar 

  170. Huang, G. Y., Zhang, L. Y., Long-Le, M. A. & Wang, L.-X. Clinical characteristics and risk factors for peripartum cardiomyopathy. Afr. Health Sci. 12, 26–31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sagy, I. et al. Peripartum cardiomyopathy is associated with increased uric acid concentrations: a population based study. Heart Lung 46, 369–374 (2017).

    Article  PubMed  Google Scholar 

  172. Yaqoob, I. et al. Insertion/deletion polymorphism of ACE gene in females with peripartum cardiomyopathy: a case-control study. Indian Heart J. 70, 66–70 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.F.H. was supported by the Dutch Heart Foundation (2021T017). Z.A. is supported by the Department of Defense (grant W81XWH18-1-0503). D.H.-K. is supported by Fondation Leducq and the German Research Foundation (grants HI 842/4-3). M.C.P. is supported by the British Heart Foundation Centre of Research Excellence Award (RE/13/5/30177 and RE/18/6/34217+). K.S. is supported by Hippocrate Foundation Servier. P.v.d.M. is supported by the European Research Council (715732, ERC-2016-STG).

Author information

Authors and Affiliations

Authors

Contributions

M.F.H. wrote the article. All the authors researched data for the article, contributed to discussion of content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Martijn F. Hoes.

Ethics declarations

Competing interests

J.B. has received consulting fees and honoraria for lectures from Abiomed, Amgen, AstraZeneca, Bayer, BMS, Boehringer Ingelheim, Cardior, Corvia, CVRx, Daichii Sankyo, MSD, Novartis, Pfizer, Servier and Vifor, and departmental research support from Abiomed, CVRx, Vifor and Zoll. M.C.P. has received honoraria from AbbVie, AstraZeneca, Bayer, Boehringer Ingelheim, Cardiorentis, Corvia, Medtronic, Novartis, Novo Nordisk, Pharmacosmos, Roche, Siemens and Takeda, and research funding from 3R LifeSciences, AstraZeneca, Boehringer Ingelheim, Boston Scientific, Medtronic, Novartis, Novo Nordisk, Pharmacosmos, Roche and SQ Innovations. P.v.d.M. has received consultancy fees and/or grants from AstraZeneca, Corvidia, Ionis, Novartis, Pfizer, Pharmacosmos, PharmaNord Servier, Singulex and Vifor Pharma.

Additional information

Peer review information

Nature Reviews Cardiology thanks Uri Elkayam, Kamilu Karaye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoes, M.F., Arany, Z., Bauersachs, J. et al. Pathophysiology and risk factors of peripartum cardiomyopathy. Nat Rev Cardiol 19, 555–565 (2022). https://doi.org/10.1038/s41569-021-00664-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00664-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing