Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevention of atherosclerosis from childhood

Abstract

Cardiovascular diseases caused by atherosclerosis do not typically manifest before middle age; however, the disease process begins early in life. Preclinical atherosclerosis can be quantified with imaging methods in healthy populations long before clinical manifestations present. Cohort studies have shown that childhood exposure to risk factors, such as dyslipidaemia, elevated blood pressure and tobacco smoking, are associated with adult preclinical atherosclerotic phenotypes. Importantly, these long-term effects are substantially reduced if the individual becomes free from the risk factor by adulthood. As participants in the cohorts continue to age and clinical end points accrue, the strongest evidence linking exposure to risk factors in early life with cardiovascular outcomes has begun to emerge. Although science has deciphered the natural course of atherosclerosis, discovered its causal risk factors and developed effective means to intervene, we are still faced with an ongoing global pandemic of atherosclerotic diseases. In general, atherosclerosis goes undetected for too long, and preventive measures, if initiated at all, are inadequate and/or come too late. In this Review, we give an overview of the available literature suggesting the importance of initiating the prevention of atherosclerosis in early life and provide a summary of the major paediatric programmes for the prevention of atherosclerotic disease. We also highlight the limitations of current knowledge and indicate areas for future research.

Key points

  • Cohort studies beginning in childhood have shown that children exposed to cardiovascular risk factors are prone to develop preclinical atherosclerosis and cardiovascular events in adulthood.

  • The development of atherosclerosis would probably be prevented by maintaining the concentration of apolipoprotein B-containing lipoproteins in the plasma towards their physiological range from an early age.

  • Statins have been used to treat dyslipidaemia in children with familial hypercholesterolaemia, and data are emerging indicating that this strategy prevents the development of atherosclerosis in this high-risk group.

  • In other paediatric groups, pharmacological treatment as a strategy has not gained wide acceptance due to potential health issues related to the long-term use of pharmaceuticals targeted at children.

  • Non-pharmacological interventions in children have provided evidence of modest benefits of lifestyle counselling on risk markers and remain the cornerstones for promoting cardiovascular health in children at the population level.

  • In addition to those with familial hypercholesterolaemia, other paediatric groups have an equally high risk of future cardiovascular events, and a consensus on effective strategies to identify and manage these individuals is needed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atherogenesis, risk factors and prevention.

Similar content being viewed by others

References

  1. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Keefe, J. H., Cordain, L., Harris, W. H., Moe, R. M. & Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J. Am. Coll. Cardiol. 43, 2142–2146 (2004).

    PubMed  Google Scholar 

  3. Mönckeberg, J. G. Über die Atherosklerose der Kombattanten (nach Obdurtionsbefunden). Zentralbl. Herz Gefässkrankheiten 7, 10–22 (1915).

    Google Scholar 

  4. Zeek, P. Juvenile arteriosclerosis. Arch. Pathol. 10, 417–446 (1930).

    Google Scholar 

  5. Napoli, C. et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J. Clin. Invest. 100, 2680–2690 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Raitakari, O. T. Imaging of subclinical atherosclerosis in children and young adults. Ann. Med. 31, 33–40 (1999).

    PubMed  Google Scholar 

  7. Raitakari, O. T. et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. J. Am. Med. Assoc. 290, 2277–2283 (2003).

    CAS  Google Scholar 

  8. Raitakari, O. et al. Childhood risk factors and cardiovascular disease outcomes in adulthood. Preliminary findings from the International Childhood Cardiovascular Cohort (i3C) Consortium [abstract]. Circulation 139, A005 (2019).

    Google Scholar 

  9. Juonala, M. et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 365, 1876–1885 (2011).

    CAS  PubMed  Google Scholar 

  10. Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).

    CAS  PubMed  Google Scholar 

  11. Cohen, J. C., Boerwinkle, E., Mosley, T. H. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  12. Simell, O. et al. Cohort profile: the STRIP Study (Special Turku Coronary Risk Factor Intervention Project), an infancy-onset dietary and life-style intervention trial. Int. J. Epidemiol. 38, 650–655 (2009).

    PubMed  Google Scholar 

  13. Van Horn, L. et al. A summary of results of the Dietary Intervention Study in Children (DISC): lessons learned. Prog. Cardiovasc. Nurs. 18, 28–41 (2003).

    PubMed  Google Scholar 

  14. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–562 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Borén, J. & Williams, K. J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis. Curr. Opin. Lipidol. 27, 473–483 (2016).

    PubMed  Google Scholar 

  16. Fazio, S. & Shapiro, M. D. Apolipoprotein B-containing lipoproteins and atherosclerotic cardiovascular disease. F1000Research 6, 134 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Öörni, K., Pentikäinen, M. O., Ala-Korpela, M. & Kovanen, P. T. Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. J. Lipid Res. 41, 1703–1714 (2000).

    PubMed  Google Scholar 

  18. Ruuth, M. et al. Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. Eur. Heart J. 39, 2562–2573 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abela, G. S. et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am. J. Cardiol. 103, 959–968 (2009).

    CAS  PubMed  Google Scholar 

  21. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    CAS  PubMed  Google Scholar 

  22. Holmes, M. V. & Ala-Korpela, M. What is ‘LDL cholesterol’? Nat. Rev. Cardiol. 16, 197–198 (2019).

    PubMed  Google Scholar 

  23. Carr, S. S., Hooper, A. J., Sullivan, D. R. & Burnett, J. R. Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology 51, 148–154 (2019).

    CAS  PubMed  Google Scholar 

  24. Raitakari, O. T. et al. Computationally estimated apolipoproteins B and A1 in predicting cardiovascular risk. Atherosclerosis 226, 245–251 (2013).

    CAS  PubMed  Google Scholar 

  25. Gautschi, M., Pavlovic, M. & Nuoffer, J. M. Fatal myocardial infarction at 4.5 years in a case of homozygous familial hypercholesterolaemia. JIMD Rep. 2, 45–50 (2012).

    PubMed  Google Scholar 

  26. Zuber, V. et al. High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease. Int. J. Epidemiol. 50, 893–901 (2021).

    PubMed  Google Scholar 

  27. Wan, E. Y. F. et al. Blood pressure and risk of cardiovascular disease in UK Biobank. Hypertension 77, 367–375 (2021).

    CAS  PubMed  Google Scholar 

  28. Hägg, S. et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int. J. Epidemiol. 44, 578–586 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Nordestgaard, B. G. et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 9, e1001212 (2012).

    PubMed  PubMed Central  Google Scholar 

  30. Levin, M. G. et al. Genetics of smoking and risk of atherosclerotic cardiovascular diseases. JAMA Netw. Open 4, e2034461 (2021).

    PubMed  PubMed Central  Google Scholar 

  31. Tillmann, T. et al. Education and coronary heart disease: Mendelian randomisation study. BMJ 358, j3542 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Perak, A. M. et al. Trends in levels of lipids and apolipoprotein B in US youths aged 6 to 19 years, 1999–2016. J. Am. Med. Assoc. 321, 1895–1905 (2019).

    CAS  Google Scholar 

  33. Law, M. R., Wald, N. J. & Rudnicka, A. R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326, 1423–1427 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiegman, A. et al. Familial hypercholesterolæmia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Raitakari, O. T. Arterial abnormalities in children with familial hypercholesterolaemia. Lancet 363, 342–343 (2004).

    PubMed  Google Scholar 

  36. Wiegman, A. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. J. Am. Med. Assoc. 292, 331–337 (2004).

    CAS  Google Scholar 

  37. Braamskamp, M. J. A. M. et al. Effect of rosuvastatin on carotid intima-media thickness in children with heterozygous familial hypercholesterolemia: the CHARON Study (Hypercholesterolemia in Children and Adolescents Taking Rosuvastatin Open Label). Circulation 136, 359–366 (2017).

    CAS  PubMed  Google Scholar 

  38. Anagnostis, P. et al. Efficacy and safety of statin use in children and adolescents with familial hypercholesterolaemia: a systematic review and meta-analysis of randomized-controlled trials. Endocrine 69, 249–261 (2020).

    CAS  PubMed  Google Scholar 

  39. Khoury, M. & McCrindle, B. W. The rationale, indications, safety, and use of statins in the pediatric population. Can. J. Cardiol. 36, 1372–1383 (2020).

    PubMed  Google Scholar 

  40. Enos, W. F., Holmes, R. H. & Beyer, J. Coronary disease among United States soldiers killed in action in Korea: preliminary report. J. Am. Med. Assoc. 256, 2859–2862 (1986).

    CAS  Google Scholar 

  41. Strong, J. P. The natural history of atherosclerosis in childhood. Ann. NY Acad. Sci. 623, 9–15 (1991).

    CAS  PubMed  Google Scholar 

  42. Holman, R. L., McGill, H. C., Strong, J. P. & Geer, J. C. The natural history of atherosclerosis: the early aortic lesions as seen in New Orleans in the middle of the of the 20th century. Am. J. Pathol. 34, 209–235 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Strong, J. P. & McGill, H. C. The natural history of coronary atherosclerosis. Am. J. Pathol. 40, 37–49 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tejada, C., Strong, J. P., Montenegro, M. R., Restrepo, C. & Solberg, L. A. Distribution of coronary and aortic atherosclerosis by geographic location, race, and sex. Lab. Invest. 18, 509–526 (1968).

    CAS  PubMed  Google Scholar 

  45. Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N. Engl. J. Med. 338, 1650–1656 (1998).

    CAS  PubMed  Google Scholar 

  46. McGill, H. C., McMahan, C. A. & Gidding, S. S. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study. Circulation 117, 1216–1227 (2008).

    PubMed  Google Scholar 

  47. McGill, H. C., McMahan, C. A., Malcom, G. T., Oalmann, M. C. & Strong, J. P. Effects of serum lipoproteins and smoking on atherosclerosis in young men and women. Arterioscler. Thromb. Vasc. Biol. 17, 95–106 (1997).

    PubMed  Google Scholar 

  48. McMahan, C. A., Gidding, S. S. & McGill, H. C. Coronary heart disease risk factors and atherosclerosis in young people. J. Clin. Lipidol. 2, 118–126 (2008).

    PubMed  Google Scholar 

  49. Meershoek, A. et al. Histological evaluation disqualifies IMT and calcification scores as surrogates for grading coronary and aortic atherosclerosis. Int. J. Cardiol. 224, 328–334 (2016).

    PubMed  Google Scholar 

  50. Nakashima, Y., Chen, Y. X., Kinukawa, N. & Sueishi, K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 441, 279–288 (2002).

    PubMed  Google Scholar 

  51. Nakashima, Y., Wight, T. N. & Sueishi, K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc. Res. 79, 14–23 (2008).

    CAS  PubMed  Google Scholar 

  52. Skilton, M. R. et al. Natural history of atherosclerosis and abdominal aortic intima-media thickness: rationale, evidence, and best practice for detection of atherosclerosis in the young. J. Clin. Med. 8, 1201 (2019).

    CAS  PubMed Central  Google Scholar 

  53. Järvisalo, M. J. et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes 51, 493–498 (2002).

    PubMed  Google Scholar 

  54. Järvisalo, M. J. et al. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation 104, 2943–2947 (2001).

    PubMed  Google Scholar 

  55. Tonstad, S. et al. Risk factors related to carotid intima-media thickness and plaque in children with familial hypercholesterolemia and control subjects. Arterioscler. Thromb. Vasc. Biol. 16, 984–991 (1996).

    CAS  PubMed  Google Scholar 

  56. Aggoun, Y. et al. Arterial mechanical changes in children with familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 20, 2070–2075 (2000).

    CAS  PubMed  Google Scholar 

  57. Tounian, P. et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 358, 1400–1404 (2001).

    CAS  PubMed  Google Scholar 

  58. Mikola, H. et al. Cardiometabolic determinants of carotid and aortic distensibility from childhood to early adulthood. Hypertension 70, 452–460 (2017).

    CAS  PubMed  Google Scholar 

  59. Raitakari, O. T. et al. Endothelial function in healthy 11-year-old children after dietary intervention with onset in infancy: the Special Turku Coronary Risk Factor Intervention Project for children (STRIP). Circulation 112, 3786–3794 (2005).

    PubMed  Google Scholar 

  60. Järvisalo, M. J. et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation 109, 1750–1755 (2004).

    PubMed  Google Scholar 

  61. Celermajer, D. S. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 1111–1115 (1992).

    CAS  PubMed  Google Scholar 

  62. Pahkala, K. et al. Association of physical activity with vascular endothelial function and intima-media thickness. Circulation 124, 1956–1963 (2011).

    PubMed  Google Scholar 

  63. Laitinen, T. T. et al. Dietary fats and atherosclerosis from childhood to adulthood. Pediatrics 145, e20192786 (2020).

    PubMed  Google Scholar 

  64. Li, S. et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. J. Am. Med. Assoc. 290, 2271–2276 (2003).

    CAS  Google Scholar 

  65. Davis, P. H., Dawson, J. D., Riley, W. A. & Lauer, R. M. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine Study. Circulation 104, 2815–2819 (2001).

    CAS  PubMed  Google Scholar 

  66. Hartiala, O. et al. Adolescence risk factors are predictive of coronary artery calcification at middle age: the Cardiovascular Risk in Young Finns Study. J. Am. Coll. Cardiol. 60, 1364–1370 (2012).

    PubMed  Google Scholar 

  67. Mahoney, L. T. et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J. Am. Coll. Cardiol. 27, 277–284 (1996).

    CAS  PubMed  Google Scholar 

  68. Armstrong, M. K. et al. Association of non–high-density lipoprotein cholesterol measured in adolescence, young adulthood, and mid-adulthood with coronary artery calcification measured in mid-adulthood. JAMA Cardiol. 6, 661–668 (2021).

    PubMed  PubMed Central  Google Scholar 

  69. Juonala, M. et al. Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 112, 1486–1493 (2005).

    PubMed  Google Scholar 

  70. Ferreira, I., Van De Laar, R. J., Prins, M. H., Twisk, J. W. & Stehouwer, C. D. Carotid stiffness in young adults: a life-course analysis of its early determinants: the Amsterdam Growth and Health Longitudinal Study. Hypertension 59, 54–61 (2012).

    CAS  PubMed  Google Scholar 

  71. Li, S., Chen, W., Srinivasan, S. R. & Berenson, G. S. Childhood blood pressure as a predictor of arterial stiffness in young adults: the Bogalusa Heart Study. Hypertension 43, 541–546 (2004).

    PubMed  Google Scholar 

  72. Juonala, M. et al. Childhood levels of serum apolipoproteins B and A-I predict carotid intima-media thickness and brachial endothelial function in adulthood. The Cardiovascular Risk in Young Finns Study. J. Am. Coll. Cardiol. 52, 293–299 (2008).

    CAS  PubMed  Google Scholar 

  73. Magnussen, C. G. et al. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood. Evidence from the Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study, and the CDAH (Childhood Determinants of Adult Health) Study. J. Am. Coll. Cardiol. 53, 860–869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Koskinen, J. S. et al. Childhood risk factors and carotid atherosclerotic plaque in adulthood: The Cardiovascular Risk in Young Finns Study. Atherosclerosis 293, 18–25 (2020).

    CAS  PubMed  Google Scholar 

  75. Magnussen, C. G. et al. Continuous and dichotomous metabolic syndrome definitions in youth predict adult type 2 diabetes and carotid artery intima media thickness: the Cardiovascular Risk in Young Finns Study. J. Pediatr. 171, 97–103.e3 (2016).

    PubMed  Google Scholar 

  76. Magnussen, C. G. et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation 122, 1604–1611 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Gall, S. et al. Exposure to parental smoking in childhood or adolescence is associated with increased carotid intima-media thickness in young adults: evidence from the Cardiovascular Risk in Young Finns Study and the Childhood Determinants of Adult Health Study. Eur. Heart J. 35, 2484–2491 (2014).

    PubMed  Google Scholar 

  78. West, H. W. et al. Exposure to parental smoking in childhood is associated with increased risk of carotid atherosclerotic plaque in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 131, 1239–1246 (2015).

    CAS  PubMed  Google Scholar 

  79. Van De Laar, R. J. J. et al. Continuing smoking between adolescence and young adulthood is associated with higher arterial stiffness in young adults: the Northern Ireland Young Hearts Project. J. Hypertens. 29, 2201–2209 (2011).

    PubMed  Google Scholar 

  80. Saarikoski, L. A. et al. Low serum adiponectin levels in childhood and adolescence predict increased intima-media thickness in adulthood. the Cardiovascular Risk in Young Finns Study. Ann. Med. 49, 42–50 (2017).

    CAS  PubMed  Google Scholar 

  81. Juonala, M. et al. Childhood psychosocial factors and coronary artery calcification in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA Pediatr. 170, 466–472 (2016).

    PubMed  Google Scholar 

  82. Pälve, K. S. et al. Association of physical activity in childhood and early adulthood with carotid artery elasticity 21 years later: the Cardiovascular Risk in Young Finns Study. J. Am. Heart Assoc. 3, e000594 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Kaikkonen, J. E. et al. Does childhood nutrition influence adult cardiovascular disease risk? –Insights from the Young Finns Study. Ann. Med. 45, 120–128 (2013).

    PubMed  Google Scholar 

  84. van de Laar, R. J. J. et al. Adherence to a Mediterranean dietary pattern in early life is associated with lower arterial stiffness in adulthood: the Amsterdam Growth and Health Longitudinal Study. J. Intern. Med. 273, 79–93 (2013).

    PubMed  Google Scholar 

  85. Pool, L. R. et al. Childhood risk factors and adulthood cardiovascular disease: a systematic review. J. Pediatr. 232, 118–126.e23 (2021).

    PubMed  Google Scholar 

  86. Morrison, J. A., Glueck, C. J. & Wang, P. Childhood risk factors predict cardiovascular disease, impaired fasting glucose plus type 2 diabetes mellitus, and high blood pressure 26 years later at a mean age of 38 years: the Princeton-Lipid Research Clinics Follow-up Study. Metabolism 61, 531–541 (2012).

    CAS  PubMed  Google Scholar 

  87. Twig, G. et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N. Engl. J. Med. 374, 2430–2440 (2016).

    PubMed  Google Scholar 

  88. Leiba, A. et al. Hypertension in late adolescence and cardiovascular mortality in midlife: a cohort study of 2.3 million 16- to 19-year-old examinees. Pediatr. Nephrol. 31, 485–492 (2016).

    PubMed  Google Scholar 

  89. Sinaiko, A. R. et al. The International Childhood Cardiovascular Cohort (i3C) consortium outcomes study of childhood cardiovascular risk factors and adult cardiovascular morbidity and mortality: design and recruitment. Contemp. Clin. Trials 69, 55–64 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Dwyer, T. et al. Cohort profile: the International Childhood Cardiovascular Cohort (i3c) consortium. Int. J. Epidemiol. 42, 86–96 (2013).

    PubMed  Google Scholar 

  91. Juonala, M. et al. Non-HDL cholesterol levels in childhood and carotid intima-media thickness in adulthood. Pediatrics 145, e20192114 (2020).

    PubMed  Google Scholar 

  92. Buscot, M. J. et al. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur. Heart J. 39, 2263–2270 (2018).

    PubMed  Google Scholar 

  93. Juhola, J. et al. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the International Childhood Cardiovascular Cohort consortium. Circulation 128, 217–224 (2013).

    PubMed  Google Scholar 

  94. Domanski, M. J. et al. Time course of LDL cholesterol exposure and cardiovascular disease event risk. J. Am. Coll. Cardiol. 76, 1507–1516 (2020).

    CAS  PubMed  Google Scholar 

  95. Zhang, Y. et al. Association between cumulative low-density lipoprotein cholesterol exposure during young adulthood and middle age and risk of cardiovascular events. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.3508 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Niinikoski, H. et al. Effect of repeated dietary counseling on serum lipoproteins from infancy to adulthood. Pediatrics 129, e704–e713 (2012).

    PubMed  Google Scholar 

  97. Obarzanek, E. et al. Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the Dietary Intervention Study in Children (DISC). Pediatrics 107, 256–264 (2001).

    CAS  PubMed  Google Scholar 

  98. Lakka, T. A. et al. A 2-year physical activity and dietary intervention attenuates the increase in insulin resistance in a general population of children: the PANIC study. Diabetologia 63, 2270–2281 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lauer, R. M. et al. Efficacy and safety of lowering dietary intake of total fat, saturated fat, and cholesterol in children with elevated LDL cholesterol: the Dietary Intervention Study in Children. Am. J. Clin. Nutr. 72, 1332S–1342S (2000).

    CAS  PubMed  Google Scholar 

  100. Dorgan, J. F. et al. Adolescent diet and metabolic syndrome in young women: results of the Dietary Intervention Study in Children (DISC) follow-up study. J. Clin. Endocrinol. Metab. 96, E1999–E2008 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lehtovirta, M. et al. Effect of dietary counseling on a comprehensive metabolic profile from childhood to adulthood. J. Pediatr. 195, 190–198.e3 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Matthews, L. A. et al. Longitudinal effect of 20-year infancy-onset dietary intervention on food consumption and nutrient intake: the randomized controlled STRIP study. Eur. J. Clin. Nutr. 73, 937–949 (2018).

    PubMed  Google Scholar 

  103. Nupponen, M. et al. Metabolic syndrome from adolescence to early adulthood: effect of infancy-onset dietary counseling of low saturated fat: the Special Turku Coronary Risk Factor Intervention Project (STRIP). Circulation 131, 605–613 (2015).

    CAS  PubMed  Google Scholar 

  104. Oranta, O. et al. Infancy-onset dietary counseling of low-saturated-fat diet improves insulin sensitivity in healthy adolescents 15–20 years of age: the Special Turku Coronary Risk Factor Intervention Project (STRIP) study. Diabetes Care 36, 2952–2959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Niinikoski, H. et al. Blood pressure is lower in children and adolescents with a low-saturated-fat diet since infancy the Special Turku Coronary Risk Factor Intervention Project. Hypertension 53, 918–924 (2009).

    CAS  PubMed  Google Scholar 

  106. Rask-Nissila, L. et al. Neurological development of 5-year-old children receiving a low-saturated fat, low-cholesterol diet since infancy: a randomized controlled trial. J. Am. Med. Assoc. 284, 993–1000 (2000).

    CAS  Google Scholar 

  107. Kaseva, K. et al. Psychological wellbeing in 20-year-old adults receiving repeated lifestyle counselling since infancy. Acta Paediatr. 104, 815–822 (2015).

    PubMed  Google Scholar 

  108. Rask-Nissilä, L. et al. Prospective, randomized, infancy-onset trial of the effects of a low-saturated-fat, low-cholesterol diet on serum lipids and lipoproteins before school age: the Special Turku Coronary Risk Factor Intervention Project (STRIP). Circulation 102, 1477–1483 (2000).

    PubMed  Google Scholar 

  109. Laitinen, T. T. et al. Success in achieving the targets of the 20-year infancy-onset dietary intervention: association with insulin sensitivity and serum lipids. Diabetes Care 41, 2236–2244 (2018).

    CAS  PubMed  Google Scholar 

  110. Laitinen, T. T. et al. Attainment of targets of the 20-year infancy-onset dietary intervention and blood pressure across childhood and young adulthood: the Special Turku Coronary Risk Factor Intervention Project (STRIP). Hypertension 76, 1572–1579 (2020).

    CAS  PubMed  Google Scholar 

  111. Pahkala, K. et al. Effects of 20-year infancy-onset dietary counselling on cardiometabolic risk factors in the Special Turku Coronary Risk Factor Intervention Project (STRIP): 6-year post-intervention follow-up. Lancet Child. Adolesc. Health 4, 359–369 (2020).

    CAS  PubMed  Google Scholar 

  112. Perry, C. L. et al. School-based cardiovascular health promotion: the Child and Adolescent Trial for Cardiovascular Health (CATCH). J. Sch. Health 60, 406–413 (1990).

    CAS  PubMed  Google Scholar 

  113. Luepker, R. V. et al. Outcomes of a field trial to improve children’s dietary patterns and physical activity: the Child and Adolescent Trial for Cardiovascular Health (CATCH). J. Am. Med. Assoc. 275, 768–776 (1996).

    CAS  Google Scholar 

  114. Eloranta, A. M. et al. Dietary factors associated with metabolic risk score in Finnish children aged 6–8 years: the PANIC Study. Eur. J. Nutr. 53, 1431–1439 (2014).

    CAS  PubMed  Google Scholar 

  115. Viitasalo, A. et al. The effects of a 2-year individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children. Prev. Med. 87, 81–88 (2016).

    PubMed  Google Scholar 

  116. Eloranta, A. M. et al. The effects of a 2-year physical activity and dietary intervention on plasma lipid concentrations in children: the PANIC Study. Eur. J. Nutr. 60, 425–434 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Penalvo, J. L. et al. The SI! Program for cardiovascular health promotion in early childhood: a cluster-randomized trial. J. Am. Coll. Cardiol. 66, 1525–1534 (2015).

    PubMed  Google Scholar 

  118. Resaland, G. K. et al. The effect of a two-year school-based daily physical activity intervention on a clustered CVD risk factor score – the Sogndal School-Intervention Study. Scand. J. Med. Sci. Sport. 28, 1027–1035 (2018).

    CAS  Google Scholar 

  119. Reed, K. E., Warburton, D. E., Macdonald, H. M., Naylor, P. J. & McKay, H. A. Action Schools! BC: a school-based physical activity intervention designed to decrease cardiovascular disease risk factors in children. Prev. Med. 46, 525–531 (2008).

    PubMed  Google Scholar 

  120. Schwandt, P., Bertsch, T. & Haas, G. M. Sustained lifestyle advice and cardiovascular risk factors in 687 biological child–parent pairs: the PEP Family Heart Study. Atherosclerosis 219, 937–945 (2011).

    CAS  PubMed  Google Scholar 

  121. Leis, R. et al. Effects of nutritional education interventions on metabolic risk in children and adolescents: a systematic review of controlled trials. Nutrients 12, 31 (2019).

    PubMed Central  Google Scholar 

  122. Sun, C. et al. Effects of school-based interventions for direct delivery of physical activity on fitness and cardiometabolic markers in children and adolescents: a systematic review of randomized controlled trials. Obes. Rev. 14, 818–838 (2013).

    CAS  PubMed  Google Scholar 

  123. Rodgers, A. et al. Distribution of major health risks: findings from the Global Burden of Disease Study. PLoS Med. 1, e27 (2004).

    PubMed  PubMed Central  Google Scholar 

  124. Perak, A. M. et al. Associations of maternal cardiovascular health in pregnancy with offspring cardiovascular health in early adolescence. J. Am. Med. Assoc. 325, 658–668 (2021).

    Google Scholar 

  125. Björkegren, J. L. M. et al. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis. PLoS Genet. 10, e1004201 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. de Ferranti, S. D. et al. Cholesterol screening and treatment practices and preferences: a survey of United States pediatricians. J. Pediatr. 185, 99–105.e2 (2017).

    PubMed  Google Scholar 

  128. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: summary report. Pediatrics 128 (Suppl. 5), S213–S256 (2011).

    PubMed Central  Google Scholar 

  130. Bibbins-Domingo, K. et al. Screening for lipid disorders in children and adolescents US Preventive Services Task Force recommendation statement. J. Am. Med. Assoc. 316, 625–633 (2016).

    Google Scholar 

  131. Lauer, R. M. et al. Highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Am. Fam. Phys. 45, 2127–2136 (1992).

    Google Scholar 

  132. Daniels, S. R. & Greer, F. R. Lipid screening and cardiovascular health in childhood. Pediatrics 122, 198–208 (2008).

    PubMed  Google Scholar 

  133. Flynn, J. T. et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140, e20171904 (2017).

    PubMed  Google Scholar 

  134. Krist, A. H. et al. Screening for high blood pressure in children and adolescents: US Preventive Services Task Force recommendation statement. J. Am. Med. Assoc. 324, 1878–1883 (2020).

    Google Scholar 

  135. Kaelber, D. C. et al. Diagnosis and medication treatment of pediatric hypertension: a retrospective cohort study. Pediatrics 138, e20162195 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. [No authors listed] 2015 recommendations for preventive pediatric health care: Committee on Practice and Ambulatory Medicine and Bright Futures Periodicity Schedule Workgroup. Pediatrics 136, e727–e729 (2015).

    Google Scholar 

  137. Grossman, D. C. et al. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. J. Am. Med. Assoc. 317, 2417–2426 (2017).

    Google Scholar 

  138. Woo, J. G. et al. Prediction of adult class II/III obesity from childhood BMI: the i3C consortium. Int. J. Obes. 44, 1164–1172 (2020).

    Google Scholar 

  139. Mattsson, N., Rönnemaa, T., Juonala, M., Viikari, J. S. A. & Raitakari, O. T. Childhood predictors of the metabolic syndrome in adulthood. The Cardiovascular Risk in Young Finns Study. Ann. Med. 40, 542–552 (2008).

    CAS  PubMed  Google Scholar 

  140. Heiskanen, J. S. et al. Influence of early-life body mass index and systolic blood pressure on left ventricle in adulthood–the Cardiovascular Risk in Young Finns Study. Ann. Med. 53, 160–168 (2021).

    PubMed  Google Scholar 

  141. Heiskanen, J. S. et al. Cardiovascular risk factors in childhood and left ventricular diastolic function in adulthood. Pediatrics 147, e2020016691 (2021).

    PubMed  Google Scholar 

  142. Mega, J. L. et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 385, 2264–2271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Nuotio, J. et al. Prediction of adult dyslipidemia using genetic and childhood clinical risk factors: the Cardiovascular Risk in Young Finns Study. Circ. Cardiovasc. Genet. 10, e001604 (2017).

    PubMed  Google Scholar 

  144. Buscot, M.-J. et al. The combined effect of common genetic risk variants on circulating lipoproteins is evident in childhood: a longitudinal analysis of the Cardiovascular Risk in Young Finns Study. PLoS ONE 11, e014081 (2016).

    Google Scholar 

  145. Natarajan, P. Polygenic risk scoring for coronary heart disease: the first risk factor. J. Am. Coll. Cardiol. 72, 1894–1897 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Moncayo, K. E., Vidal, J. J., García, R. & Pereira, D. Surgical management of a mobile floating carotid plaque. Interact. Cardiovasc. Thorac. Surg. 20, 443–444 (2015).

    PubMed  Google Scholar 

  147. Patel, S. S. & Daniels, S. R. Beginning with the end in mind: the case for primordial and primary cardiovascular prevention in youth. Can. J. Cardiol. 36, 1344–1351 (2020).

    PubMed  Google Scholar 

  148. Daniels, S. R. Maternal cardiovascular health: a critical period for offspring lifetime cardiovascular health? J. Am. Med. Assoc. 325, 630–631 (2021).

    Google Scholar 

  149. Daniels, S. R. et al. Promoting cardiovascular health in early childhood and transitions in childhood through adolescence: a workshop report. J. Pediatr. 209, 240–251.e1 (2019).

    PubMed  Google Scholar 

  150. Barton, H. & Grant, M. Urban planning for healthy cities: a review of the progress of the European Healthy Cities Programme. J. Urban. Health 90 (Suppl. 1), 129–141 (2013).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Olli Raitakari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks Matthew Gillman; Michael Shapiro, who co-reviewed with Aziz Hammoud; and Nathan Wong for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raitakari, O., Pahkala, K. & Magnussen, C.G. Prevention of atherosclerosis from childhood. Nat Rev Cardiol 19, 543–554 (2022). https://doi.org/10.1038/s41569-021-00647-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00647-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing