Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transforming growth factor-β in myocardial disease

Abstract

Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.

Key points

  • Ischaemic, mechanical, inflammatory and metabolic injuries induce the synthesis and activation of myocardial transforming growth factor-β (TGFβ) isoforms; generation of bioactive TGFβ requires release of proteases, deposition of matricellular proteins and activation of integrins.

  • In the injured and remodelling myocardium, TGFβs regulate the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells through activation of SMAD-dependent and SMAD-independent pathways.

  • In cardiac pressure overload, activation of TGFβ signalling might preserve the extracellular matrix, preventing the generation of pro-inflammatory matrix fragments.

  • In the healing phase after myocardial infarction, TGFβ regulates repair, suppressing macrophage-driven inflammation and stimulating fibroblast activation; however, prolonged or excessive TGFβ signalling promotes fibrosis and contributes to dysfunction in both myocardial infarction and cardiac pressure overload.

  • TGFβs are involved in the pathogenesis of diabetic cardiomyopathy and in cardiac ageing, and fibrogenic TGFβ actions can stimulate atrial fibrosis, triggering atrial fibrillation, and contribute to genetic cardiomyopathy and inflammatory cardiomyopathy.

  • Targeting TGFβ cascades in failing and remodelling hearts holds therapeutic promise but also poses major challenges related to the pleiotropic actions of TGFβ and the pathophysiological heterogeneity of cardiac diseases.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: TGFβ activation and downstream signalling cascades.
Fig. 2: Effects of TGFβ signalling on ischaemic cardiomyocytes.
Fig. 3: Role of TGFβ in the regulation of the inflammatory response after myocardial infarction.
Fig. 4: TGFβ is a central regulator of fibroblast phenotype during healing of the infarcted myocardium.
Fig. 5: Role of TGFβ in cardiac pressure overload.

References

  1. Wu, M. Y. & Hill, C. S. TGF-β superfamily signaling in embryonic development and homeostasis. Dev. Cell. 16, 329–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frangogiannis, N. G. Transforming growth factor (TGF)-β in tissue fibrosis. J. Exp. Med. 217, e20190103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lodyga, M. & Hinz, B. TGF-β1–a truly transforming growth factor in fibrosis and immunity. Semin. Cell Dev. Biol. 101, 123–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, K. K., Sheppard, D. & Chapman, H. A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 10, a022293 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hanna, A. & Frangogiannis, N. G. The role of the TGF-β superfamily in myocardial infarction. Front. Cardiovasc. Med. 6, 140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dobaczewski, M., Chen, W. & Frangogiannis, N. G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell Cardiol. 51, 600–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Araujo-Jorge, T. C. et al. Pivotal role for TGF-β in infectious heart disease: the case of Trypanosoma cruzi infection and consequent Chagasic myocardiopathy. Cytokine Growth Factor. Rev. 19, 405–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Khan, R. & Sheppard, R. Fibrosis in heart disease: understanding the role of transforming growth factor-β in cardiomyopathy, valvular disease and arrhythmia. Immunology 118, 10–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunker, N. & Krieglstein, K. Targeted mutations of transforming growth factor-β genes reveal important roles in mouse development and adult homeostasis. Eur. J. Biochem. 267, 6982–6988 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Umbarkar, P. et al. Cardiomyocyte SMAD4-dependent TGF-β signaling is essential to maintain adult heart homeostasis. JACC Basic Transl. Sci. 4, 41–53 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang, S. et al. The role of Smad2 and Smad3 in regulating homeostatic functions of fibroblasts in vitro and in adult mice. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118703 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Libby, P., Ridker, P. M. & Hansson, G. K. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 54, 2129–2138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ait-Oufella, H., Taleb, S., Mallat, Z. & Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 969–979 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Gistera, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Mallat, Z. et al. Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Lutgens, E. et al. Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol. 22, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Reifenberg, K. et al. Overexpression of TGF-β1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS ONE 7, e40990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feinberg, M. W. et al. Transforming growth factor-β1 inhibits cytokine-mediated induction of human metalloelastase in macrophages. J. Biol. Chem. 275, 25766–25773 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Robertson, A. K. et al. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gojova, A. et al. Specific abrogation of transforming growth factor-β signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood 102, 4052–4058 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Nurgazieva, D. et al. TGF-β1, but not bone morphogenetic proteins, activates Smad1/5 pathway in primary human macrophages and induces expression of proatherogenic genes. J. Immunol. 194, 709–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, P. Y. et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 1, 912–926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willems, I. E., Havenith, M. G., De Mey, J. G. & Daemen, M. J. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zymek, P. et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J. Am. Coll. Cardiol. 48, 2315–2323 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lefer, A. M., Tsao, P., Aoki, N. & Palladino, M. A. Jr Mediation of cardioprotection by transforming growth factor-β. Science 249, 61–64 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Wenzel, S. et al. TGF-β1 improves cardiac performance via up-regulation of laminin receptor 37/67 in adult ventricular cardiomyocytes. Basic Res. Cardiol. 105, 621–629 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Baxter, G. F., Mocanu, M. M., Brar, B. K., Latchman, D. S. & Yellon, D. M. Cardioprotective effects of transforming growth factor-β1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J. Cardiovasc. Pharmacol. 38, 930–939 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lefer, A. M., Ma, X. L., Weyrich, A. S. & Scalia, R. Mechanism of the cardioprotective effect of transforming growth factor beta 1 in feline myocardial ischemia and reperfusion. Proc. Natl Acad. Sci. USA 90, 1018–1022 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rainer, P. P. et al. Cardiomyocyte-specific transforming growth factor β suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ. Res. 114, 1246–1257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong, P. et al. Opposing actions of fibroblast and cardiomyocyte Smad3 signaling in the infarcted myocardium. Circulation 137, 707–724 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, F. et al. Transforming growth factor-β receptor III is a potential regulator of ischemia-induced cardiomyocyte apoptosis. J. Am. Heart Assoc. 6, e005357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lopez-Casillas, F., Wrana, J. L. & Massague, J. Betaglycan presents ligand to the TGFβ signaling receptor. Cell 73, 1435–1444 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Heldin, C. H. & Moustakas, A. Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 8, a022053 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Frodermann, V. & Nahrendorf, M. Macrophages and cardiovascular health. Physiol. Rev. 98, 2523–2569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Bajpai, G. et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frantz, S. et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 27, 871–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Honold, L. & Nahrendorf, M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122, 113–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Fava, R. A. et al. Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: implications for TGF-beta-driven synovial inflammation and hyperplasia. J. Exp. Med. 173, 1121–1132 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Wahl, S. M. et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc. Natl Acad. Sci. USA 84, 5788–5792 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balazovich, K. J., Fernandez, R., Hinkovska-Galcheva, V., Suchard, S. J. & Boxer, L. A. Transforming growth factor-β1 stimulates degranulation and oxidant release by adherent human neutrophils. J. Leukoc. Biol. 60, 772–777 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Letterio, J. J. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16, 137–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, F. et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294–52306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Werner, F. et al. Transforming growth factor-β1 inhibition of macrophage activation is mediated via Smad3. J. Biol. Chem. 275, 36653–36658 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Feinberg, M. W. et al. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation. Circ. Res. 94, 601–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kitamura, M., Suto, T., Yokoo, T., Shimizu, F. & Fine, L. G. Transforming growth factor-beta 1 is the predominant paracrine inhibitor of macrophage cytokine synthesis produced by glomerular mesangial cells. J. Immunol. 156, 2964–2971 (1996).

    CAS  PubMed  Google Scholar 

  53. Xiao, Y. Q. et al. Oxidants selectively reverse TGF-β suppression of proinflammatory mediator production. J. Immunol. 176, 1209–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Naiki, Y. et al. Transforming growth factor-β differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling. J. Biol. Chem. 280, 5491–5495 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Celada, A. & Maki, R. A. Transforming growth factor-β enhances the M-CSF and GM-CSF-stimulated proliferation of macrophages. J. Immunol. 148, 1102–1105 (1992).

    CAS  PubMed  Google Scholar 

  56. Yu, X. et al. The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity 47, 903–912.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kulkarni, A. B. et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Hollander, M. C. et al. Attenuation of myeloid-specific TGFβ signaling induces inflammatory cerebrovascular disease and stroke. Circ. Res. 121, 1360–1369 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allen, J. B. et al. Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor β. J. Exp. Med. 171, 231–247 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Birdsall, H. H. et al. Complement C5a, TGF-β1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation 95, 684–692 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Ikeuchi, M. et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc. Res. 64, 526–535 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Frangogiannis, N. G. et al. The critical role of endogenous thrombospondin (TSP)-1 in preventing expansion of healing myocardial infarcts. Circulation 111, 2935–2942 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, B. et al. Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ. Res. 125, 55–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ojeda-Fernandez, L. et al. Mice lacking endoglin in macrophages show an impaired immune response. PLoS Genet. 12, e1005935 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Oh, S. A. & Li, M. O. TGF-β: guardian of T cell function. J. Immunol. 191, 3973–3979 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, W. & Konkel, J. E. Development of thymic Foxp3(+) regulatory T cells: TGF-β matters. Eur. J. Immunol. 45, 958–965 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wahl, S. M., Swisher, J., McCartney-Francis, N. & Chen, W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol. 76, 15–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Strainic, M. G., Shevach, E. M., An, F., Lin, F. & Medof, M. E. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3(+) regulatory T cells. Nat. Immunol. 14, 162–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Hofmann, U. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 1652–1663 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Saxena, A. et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol. 307, H1233–H1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Strobl, H. & Knapp, W. TGF-β1 regulation of dendritic cells. Microbes Infect. 1, 1283–1290 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, J. S. et al. Conventional dendritic cells impair recovery after myocardial infarction. J. Immunol. 201, 1784–1798 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Cucoranu, I. et al. NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ. Res. 97, 900–907 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Eghbali, M., Tomek, R., Sukhatme, V. P., Woods, C. & Bhambi, B. Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ. Res. 69, 483–490 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Dobaczewski, M. et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 107, 418–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chua, C. C. et al. Effect of growth factors on collagen metabolism in cultured human heart fibroblasts. Connect. Tissue Res. 26, 271–281 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Bujak, M. et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116, 2127–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Graf, K. et al. Angiotensin II and α(v)β(3) integrin expression in rat neonatal cardiac fibroblasts. Hypertension 35, 978–984 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Horiuchi, K. et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor β. J. Bone Miner. Res. 14, 1239–1249 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, M. M., Lam, A., Abraham, J. A., Schreiner, G. F. & Joly, A. H. CTGF expression is induced by TGF-β in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J. Mol. Cell Cardiol. 32, 1805–1819 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yi, X. et al. Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int. J. Mol. Med. 34, 381–390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Frangogiannis, N. G., Michael, L. H. & Entman, M. L. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48, 89–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Shinde, A. V. & Frangogiannis, N. G. Fibroblasts in myocardial infarction: a role in inflammation and repair. J. Mol. Cell Cardiol. 70C, 74–82 (2014).

    Article  CAS  Google Scholar 

  88. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruiz-Villalba, A. et al. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J. Am. Coll. Cardiol. 65, 2057–2066 (2015).

    Article  PubMed  Google Scholar 

  90. Cleutjens, J. P., Verluyten, M. J., Smiths, J. F. & Daemen, M. J. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147, 325–338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V. & Weber, K. T. Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell Cardiol. 27, 1281–1292 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Dambrink, J. H. et al. Left ventricular dilatation and high-grade ventricular arrhythmias in the first year after myocardial infarction. CATS Investigators. Captopril and Thrombolysis Study. J. Card. Fail. 1, 3–11 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Frantz, S. et al. Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res. Cardiol. 103, 485–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Okada, H. et al. Postinfarction gene therapy against transforming growth factor-β signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111, 2430–2437 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Huang, S. et al. Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. J. Mol. Cell Cardiol. 132, 84–97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brown, K. A., Pietenpol, J. A. & Moses, H. L. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-β signaling. J. Cell Biochem. 101, 9–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, H. J., Lee, J. K., Miyake, S. & Kim, S. J. A novel E1A-like inhibitor of differentiation (EID) family member, EID-2, suppresses transforming growth factor (TGF)-β signaling by blocking TGF-β-induced formation of Smad3-Smad4 complexes. J. Biol. Chem. 279, 2666–2672 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, K., Mehta, J. L., Li, D., Joseph, L. & Joseph, J. Transforming growth factor β receptor endoglin is expressed in cardiac fibroblasts and modulates profibrogenic actions of angiotensin II. Circ. Res. 95, 1167–1173 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kapur, N. K. et al. Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation 125, 2728–2738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, F. et al. Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-β receptor III expression. Br. J. Pharmacol. 172, 3779–3792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pepper, M. S. Transforming growth factor-β: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor. Rev. 8, 21–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, Y. & Yang, X. The roles of TGF-β signaling in cerebrovascular diseases. Front. Cell Dev. Biol. 8, 567682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pardali, E. & ten Dijke, P. Transforming growth factor-β signaling and tumor angiogenesis. Front. Biosci. 14, 4848–4861 (2009).

    Article  CAS  Google Scholar 

  104. Frangogiannis, N. G. Chemokines in ischemia and reperfusion. Thromb. Haemost. 97, 738–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Kumar, A. G. et al. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation 95, 693–700 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Frangogiannis, N. G. The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J. Cardiovasc. Pharmacol. 63, 185–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kempf, T. et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 17, 581–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Virag, J. I. & Murry, C. E. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am. J. Pathol. 163, 2433–2440 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wu, X., Reboll, M. R., Korf-Klingebiel, M. & Wollert, K. C. Angiogenesis after acute myocardial infarction. Cardiovasc. Res. 117, 1257–1273 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Ren, G., Michael, L. H., Entman, M. L. & Frangogiannis, N. G. Morphological characteristics of the microvasculature in healing myocardial infarcts. J. Histochem. Cytochem. 50, 71–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Dobaczewski, M. et al. Vascular mural cells in healing canine myocardial infarcts. J. Histochem. Cytochem. 52, 1019–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Alex, L. & Frangogiannis, N. G. Pericytes in the infarcted heart. Vasc. Biol. 1, H23–H31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Frangogiannis, N. G. et al. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J. 15, 1428–1430 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Gamble, J. R., Khew-Goodall, Y. & Vadas, M. A. Transforming growth factor-β inhibits E-selectin expression on human endothelial cells. J. Immunol. 150, 4494–4503 (1993).

    CAS  PubMed  Google Scholar 

  115. van Laake, L. W. et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114, 2288–2297 (2006).

    Article  PubMed  CAS  Google Scholar 

  116. Lebrin, F. et al. Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J. 23, 4018–4028 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tual-Chalot, S. et al. Loss of endothelial endoglin promotes high-output heart failure through peripheral arteriovenous shunting driven by VEGF signaling. Circ. Res. 126, 243–257 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Khan, S., Joyce, J., Margulies, K. B. & Tsuda, T. Enhanced bioactive myocardial transforming growth factor-β in advanced human heart failure. Circ. J. 78, 2711–2718 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Pauschinger, M. et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99, 2750–2756 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Nagaraju, C. K. et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. J. Am. Coll. Cardiol. 73, 2267–2282 (2019).

    Article  PubMed  Google Scholar 

  121. Felkin, L. E. et al. Expression of extracellular matrix genes during myocardial recovery from heart failure after left ventricular assist device support. J. Heart Lung Transpl. 28, 117–122 (2009).

    Article  Google Scholar 

  122. Bielecka-Dabrowa, A. et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int. J. Cardiol. 221, 1073–1080 (2016).

    Article  PubMed  Google Scholar 

  123. Aziz, T. M., Burgess, M. I., Haselton, P. S., Yonan, N. A. & Hutchinson, I. V. Transforming growth factor β and diastolic left ventricular dysfunction after heart transplantation: echocardiographic and histologic evidence. J. Heart Lung Transpl. 22, 663–673 (2003).

    Article  Google Scholar 

  124. Koitabashi, N. et al. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J. Clin. Invest. 121, 2301–2312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Khalil, H. et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Biernacka, A. et al. Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circ. Heart Fail. 8, 788–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Messerli, F. H., Rimoldi, S. F. & Bangalore, S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 5, 543–551 (2017).

    Article  PubMed  Google Scholar 

  128. Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B. & Ho, K. K. The progression from hypertension to congestive heart failure. JAMA 275, 1557–1562 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Sasayama, S. et al. Adaptations of the left ventricle to chronic pressure overload. Circ. Res. 38, 172–178 (1976).

    Article  CAS  PubMed  Google Scholar 

  130. Boluyt, M. O., Bing, O. H. & Lakatta, E. G. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur. Heart J. 16 (Suppl. N), 19–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Xia, Y. et al. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem. Cell Biol. 131, 471–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Villarreal, F. J. & Dillmann, W. H. Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am. J. Physiol. 262, H1861–H1866 (1992).

    CAS  PubMed  Google Scholar 

  133. Flevaris, P. et al. Plasminogen activator inhibitor type I controls cardiomyocyte transforming growth factor-β and cardiac fibrosis. Circulation 136, 664–679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Takahashi, N. et al. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J. Clin. Invest. 94, 1470–1476 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Meyer, A. et al. Platelet TGF-β1 contributions to plasma TGF-β1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood 119, 1064–1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tokuda, K. et al. Pressure-independent effects of angiotensin II on hypertensive myocardial fibrosis. Hypertension 43, 499–503 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Bujak, M. et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 173, 57–67 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dewald, O. et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Sarrazy, V. et al. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc. Res. 102, 407–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yao, Y. et al. ADAMTS16 activates latent TGF-β, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovasc. Res. 116, 956–969 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Xia, Y. et al. Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension 58, 902–911 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Li, S. et al. Pro-oxidant effect of transforming growth factor-β1 mediates contractile dysfunction in rat ventricular myocytes. Cardiovasc. Res. 77, 107–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Schultz Jel, J. et al. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J. Clin. Invest. 109, 787–796 (2002).

    Article  PubMed  Google Scholar 

  144. Parker, T. G., Packer, S. E. & Schneider, M. D. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J. Clin. Invest. 85, 507–514 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat. Med. 6, 556–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Watkins, S. J., Borthwick, G. M., Oakenfull, R., Robson, A. & Arthur, H. M. Angiotensin II-induced cardiomyocyte hypertrophy in vitro is TAK1-dependent and Smad2/3-independent. Hypertens. Res. 35, 393–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Lim, J. Y. et al. TGF-β1 induces cardiac hypertrophic responses via PKC-dependent ATF-2 activation. J. Mol. Cell Cardiol. 39, 627–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Wenzel, S., Muller, C., Piper, H. M. & Schluter, K. D. p38 MAP-kinase in cultured adult rat ventricular cardiomyocytes: expression and involvement in hypertrophic signalling. Eur. J. Heart Fail. 7, 453–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, J. et al. Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ. Res. 97, 821–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Heger, J., Peters, S. C., Piper, H. M. & Euler, G. SMAD-proteins as a molecular switch from hypertrophy to apoptosis induction in adult ventricular cardiomyocytes. J. Cell Physiol. 220, 515–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Schneiders, D., Heger, J., Best, P., Michael Piper, H. & Taimor, G. SMAD proteins are involved in apoptosis induction in ventricular cardiomyocytes. Cardiovasc. Res. 67, 87–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Russo, I. et al. Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through Smad-dependent activation of a matrix-preserving program. Circ. Res. 124, 1214–1227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kuwahara, F. et al. Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106, 130–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Wei, H. et al. Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-β signaling. Proc. Natl Acad. Sci. USA 109, E841–E850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Engebretsen, K. V. et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J. Mol. Cell Cardiol. 76, 148–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Lucas, J. A. et al. Inhibition of transforming growth factor-β signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. Am. J. Physiol. Heart Circ. Physiol. 298, H424–H432 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Gilbert, R. E. & Krum, H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 385, 2107–2117 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Kannel, W. B., Hjortland, M. & Castelli, W. P. Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 34, 29–34 (1974).

    Article  CAS  PubMed  Google Scholar 

  159. Chadalavada, S. et al. Women with diabetes are at increased relative risk of heart failure compared to men: insights from UK biobank. Front. Cardiovasc. Med. 8, 658726 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Rubler, S. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–602 (1972).

    Article  CAS  PubMed  Google Scholar 

  161. Dillmann, W. H. Diabetic cardiomyopathy. Circ. Res. 124, 1160–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tuleta, I. & Frangogiannis, N. G. Fibrosis of the diabetic heart: clinical significance, molecular mechanisms, and therapeutic opportunities. Adv. Drug Deliv. Rev. 176, 113904 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Nakamura, M. & Sadoshima, J. Cardiomyopathy in obesity, insulin resistance and diabetes. J. Physiol. 598, 2977–2993 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. McHugh, K. et al. Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 602–611 (2019).

    Article  PubMed  Google Scholar 

  165. Westermann, D. et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56, 641–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Doi, K. et al. Alteration of antioxidants during the progression of heart disease in streptozotocin-induced diabetic rats. Free Radic. Res. 34, 251–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Ares-Carrasco, S. et al. Myocardial fibrosis and apoptosis, but not inflammation, are present in long-term experimental diabetes. Am. J. Physiol. Heart Circ. Physiol. 297, H2109–H2119 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, D. et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51, 671–681.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Wu, L. & Derynck, R. Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev. Cell 17, 35–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ko, S. H. et al. High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J. Cell Biochem. 98, 343–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Zhou, Y., Poczatek, M. H., Berecek, K. H. & Murphy-Ullrich, J. E. Thrombospondin 1 mediates angiotensin II induction of TGF-β activation by cardiac and renal cells under both high and low glucose conditions. Biochem. Biophys. Res. Commun. 339, 633–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Westermann, D. et al. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res. Cardiol. 102, 500–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Gonzalez-Quesada, C. et al. Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ. Res. 113, 1331–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Butrous, H. & Hummel, S. L. Heart failure in older adults. Can. J. Cardiol. 32, 1140–1147 (2016).

    Article  PubMed  Google Scholar 

  175. Triposkiadis, F., Xanthopoulos, A. & Butler, J. Cardiovascular aging and heart failure: JACC review topic of the week. J. Am. Coll. Cardiol. 74, 804–813 (2019).

    Article  PubMed  Google Scholar 

  176. Biernacka, A. & Frangogiannis, N. G. Aging and cardiac fibrosis. Aging Dis. 2, 158–173 (2011).

    PubMed  PubMed Central  Google Scholar 

  177. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation 107, 346–354 (2003).

    Article  PubMed  Google Scholar 

  178. Kitzman, D. W. et al. Importance of heart failure with preserved systolic function in patients ≥65 years of age. Am. J. Cardiol. 87, 413–419 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Upadhya, B. & Kitzman, D. W. Heart failure with preserved ejection fraction in older adults. Heart Fail. Clin. 13, 485–502 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lyu, G. et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat. Commun. 9, 2560 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-beta 1. Mol. Endocrinol. 10, 1077–1083 (1996).

    CAS  PubMed  Google Scholar 

  182. Annoni, G. et al. Age-dependent expression of fibrosis-related genes and collagen deposition in the rat myocardium. Mech. Ageing Dev. 101, 57–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  183. Roh, J. D. et al. Activin type II receptor signaling in cardiac aging and heart failure. Sci. Transl Med. 11, eaau8680 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Hu, D. et al. Human kallikrein overexpression alleviates cardiac aging by alternatively regulating macrophage polarization in aged rats. FASEB J. 33, 8436–8452 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Brooks, W. W. & Conrad, C. H. Myocardial fibrosis in transforming growth factor β(1)heterozygous mice. J. Mol. Cell Cardiol. 32, 187–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Derangeon, M. et al. Transforming growth factor β receptor inhibition prevents ventricular fibrosis in a mouse model of progressive cardiac conduction disease. Cardiovasc. Res. 113, 464–474 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sundaresan, N. R. et al. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol. Cell Biol. 36, 678–692 (2015).

    Article  PubMed  CAS  Google Scholar 

  189. Maity, S. et al. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem. 295, 415–434 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Bujak, M. et al. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J. Am. Coll. Cardiol. 51, 1384–1392 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Cieslik, K. A., Trial, J. & Entman, M. L. Mesenchymal stem cell-derived inflammatory fibroblasts promote monocyte transition into myeloid fibroblasts via an IL-6-dependent mechanism in the aging mouse heart. FASEB J. 29, 3160–3170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cieslik, K. A., Trial, J., Crawford, J. R., Taffet, G. E. & Entman, M. L. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. J. Mol. Cell Cardiol. 70, 56–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Marian, A. J. Molecular genetic basis of hypertrophic cardiomyopathy. Circ. Res. 128, 1533–1553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ho, C. Y. et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 363, 552–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vakrou, S. et al. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight 3, e94493 (2018).

    Article  PubMed Central  Google Scholar 

  196. Liu, Y. et al. Differences in microRNA-29 and pro-fibrotic gene expression in mouse and human hypertrophic cardiomyopathy. Front. Cardiovasc. Med. 6, 170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li, G. et al. Elevated insulin-like growth factor-I and transforming growth factor-beta 1 and their receptors in patients with idiopathic hypertrophic obstructive cardiomyopathy. A possible mechanism. Circulation 98, II144–II149 (1998). discussion II149-150.

    CAS  PubMed  Google Scholar 

  198. Li, G. et al. Regional overexpression of insulin-like growth factor-I and transforming growth factor-β1 in the myocardium of patients with hypertrophic obstructive cardiomyopathy. J. Thorac. Cardiovasc. Surg. 123, 89–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  199. Li, R. K. et al. Overexpression of transforming growth factor-β1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96, 874–881 (1997).

    Article  CAS  PubMed  Google Scholar 

  200. Shimada, Y. J. et al. Comprehensive proteomics profiling reveals circulating biomarkers of hypertrophic cardiomyopathy. Circ. Heart Fail. 14, e007849 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Teekakirikul, P. et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J. Clin. Invest. 120, 3520–3529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Meng, Q. et al. Myofibroblast-specific TGFβ receptor II signaling in the fibrotic response to cardiac myosin binding protein C-induced cardiomyopathy. Circ. Res. 123, 1285–1297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ayca, B. et al. Increased transforming growth factor-β levels associated with cardiac adverse events in hypertrophic cardiomyopathy. Clin. Cardiol. 38, 371–377 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Tandri, H. et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 98–103 (2005).

    Article  PubMed  Google Scholar 

  205. Lombardi, R. et al. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ. Res. 119, 41–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dubash, A. D. et al. Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J. Cell Biol. 212, 425–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tschope, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 18, 169–193 (2021).

    Article  PubMed  CAS  Google Scholar 

  208. Blyszczuk, P. et al. Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ. Res. 105, 912–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Myers, J. M. et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1, e85851 (2016).

    Article  PubMed Central  Google Scholar 

  210. Lang, C. et al. Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis. J. Mol. Med. 86, 49–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. Kania, G. et al. Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor β-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ. Res. 105, 462–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Blyszczuk, P. et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur. Heart J. 38, 1413–1425 (2017).

    CAS  PubMed  Google Scholar 

  213. Nunes, M. C. P. et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation 138, e169–e209 (2018).

    Article  PubMed  Google Scholar 

  214. Pino-Marin, A. et al. Chagas cardiomyopathy: from Romaña sign to heart failure and sudden cardiac death. Pathogens 10, 505 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Cruz, J. S., Machado, F. S., Ropert, C. & Roman-Campos, D. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: role of TNF and TGF-β. Trends Cardiovasc. Med. 27, 81–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Ferreira, R. R. et al. Proteins involved on TGF-β pathway are up-regulated during the acute phase of experimental chagas disease. Immunobiology 221, 587–594 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Samudio, M. et al. Local and systemic cytokine expression during experimental chronic Trypanosoma cruzi infection in a Cebus monkey model. Parasite Immunol. 21, 451–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  218. Araujo-Jorge, T. C. et al. Implication of transforming growth factor-β1 in Chagas disease myocardiopathy. J. Infect. Dis. 186, 1823–1828 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Saraiva, R. M. et al. Predictive value of transforming growth factor-β1 in Chagas disease: towards a biomarker surrogate of clinical outcome. Trans. R. Soc. Trop. Med. Hyg. 107, 518–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Waghabi, M. C. et al. SB-431542, a transforming growth factor β inhibitor, impairs Trypanosoma cruzi infection in cardiomyocytes and parasite cycle completion. Antimicrob. Agents Chemother. 51, 2905–2910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Waghabi, M. C. et al. Pharmacological inhibition of transforming growth factor β signaling decreases infection and prevents heart damage in acute Chagas’ disease. Antimicrob. Agents Chemother. 53, 4694–4701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ferreira, R. R. et al. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas’ heart disease. PLoS Negl. Trop. Dis. 13, e0007602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Babapoor-Farrokhran, S., Tarighati Rasekhi, R., Gill, D., Alzubi, J. & Mainigi, S. K. How transforming growth factor contributes to atrial fibrillation? Life Sci. 266, 118823 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Gramley, F. et al. Atrial fibrosis and atrial fibrillation: the role of the TGF-β1 signaling pathway. Int. J. Cardiol. 143, 405–413 (2010).

    Article  PubMed  Google Scholar 

  225. Tian, Y., Wang, Y., Chen, W., Yin, Y. & Qin, M. Role of serum TGF-β1 level in atrial fibrosis and outcome after catheter ablation for paroxysmal atrial fibrillation. Medicine 96, e9210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wu, C. H. et al. Transforming growth factor-β1 level and outcome after catheter ablation for nonparoxysmal atrial fibrillation. Heart Rhythm 10, 10–15 (2013).

    Article  PubMed  Google Scholar 

  227. Verheule, S. et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ. Res. 94, 1458–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Rahmutula, D. et al. Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-β1. Cardiovasc. Res. 99, 769–779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nakajima, H. et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ. Res. 86, 571–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  230. Chang, S. H. et al. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res. Cardiol. 112, 58 (2017).

    Article  PubMed  CAS  Google Scholar 

  231. Regouski, M. et al. Spontaneous atrial fibrillation in transgenic goats with TGF (transforming growth factor)-β1 induced atrial myopathy with endurance exercise. Circ. Arrhythm. Electrophysiol. 12, e007499 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Kunamalla, A. et al. Constitutive expression of a dominant-negative TGF-β type II receptor in the posterior left atrium leads to beneficial remodeling of atrial fibrillation substrate. Circ. Res. 119, 69–82 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Slawik, J. et al. Irregular pacing of ventricular cardiomyocytes induces pro-fibrotic signalling involving paracrine effects of transforming growth factor β and connective tissue growth factor. Eur. J. Heart Fail. 21, 482–491 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Yeh, Y. H. et al. Transforming growth factor-β and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes. Cardiovasc. Res. 91, 62–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Nguyen, M. N., Kiriazis, H., Gao, X. M. & Du, X. J. Cardiac fibrosis and arrhythmogenesis. Compr. Physiol. 7, 1009–1049 (2017).

    Article  PubMed  Google Scholar 

  236. John, B. T. et al. Global remodeling of the ventricular interstitium in idiopathic myocardial fibrosis and sudden cardiac death. Heart Rhythm 1, 141–149 (2004).

    Article  PubMed  Google Scholar 

  237. Salvarani, N. et al. TGF-β1 (transforming growth factor-β1) plays a ivotal rRole in cardiac myofibroblast arrhythmogenicity. Circ. Arrhythm. Electrophysiol. 10, e004567 (2017).

    Article  CAS  PubMed  Google Scholar 

  238. Liu, S., Ren, J. & Ten Dijke, P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct. Target. Ther. 6, 8 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. van den Bulk, J., de Miranda, N. & Ten Dijke, P. Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clin. Sci. 135, 35–52 (2021).

    Article  Google Scholar 

  240. Akhurst, R. J. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb. Perspect. Biol. 9, a022301 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Lachapelle, P., Li, M., Douglass, J. & Stewart, A. Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol. Ther. 187, 98–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    Article  CAS  PubMed  Google Scholar 

  244. Stauber, A. J., Credille, K. M., Truex, L. L., Ehlhardt, W. J. & Young, J. K. Nonclinical safety evaluation of a transforming growth factor β receptor I kinase inhibitor in Fischer 344 rats and beagle dogs. J. Clin. Pract. 4, 1000196 (2014).

    Google Scholar 

  245. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    Article  CAS  PubMed  Google Scholar 

  246. Kovacs, R. J. et al. Cardiac safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc. Toxicol. 15, 309–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Matsa, E., Sallam, K. & Wu, J. C. Cardiac stem cell biology: glimpse of the past, present, and future. Circ. Res. 114, 21–27 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Plackett, B. Cells or drugs? The race to regenerate the heart. Nature 594, S16–S17 (2021).

    Article  CAS  Google Scholar 

  252. Massague, J. & Xi, Q. TGF-β control of stem cell differentiation genes. FEBS Lett. 586, 1953–1958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Sorensen, D. W. & van Berlo, J. H. The role of TGF-β signaling in cardiomyocyte proliferation. Curr. Heart Fail. Rep. 17, 225–233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Behfar, A. et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J. 16, 1558–1566 (2002).

    Article  PubMed  Google Scholar 

  255. Goumans, M. J. et al. TGF-β1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 1, 138–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  256. Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development 139, 1921–1930 (2012).

    Article  CAS  PubMed  Google Scholar 

  257. Li, T. S. et al. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-β-preprogrammed bone marrow stem cells. Circulation 111, 2438–2445 (2005).

    Article  CAS  PubMed  Google Scholar 

  258. Hodges, M. M. et al. Differential expression of transforming growth factor-β1 is associated with fetal regeneration after myocardial infarction. Ann. Thorac. Surg. 108, 59–66 (2019).

    Article  PubMed  Google Scholar 

  259. Willems, E. et al. Small molecule-mediated TGF-β type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11, 242–252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Mohamed, T. M. A. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104–116.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Chen, W. P., Liu, Y. H., Ho, Y. J. & Wu, S. M. Pharmacological inhibition of TGFβ receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovasc. Res. 105, 44–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  262. Keepers, B., Liu, J. & Qian, L. What’s in a cardiomyocyte–and how do we make one through reprogramming? Biochim. Biophys. Acta Mol. Cell Res. 1867, 118464 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. Riching, A. S. et al. Suppression of canonical TGF-β signaling enables GATA4 to interact with H3K27me3 demethylase JMJD3 to promote cardiomyogenesis. J. Mol. Cell Cardiol. 153, 44–59 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Lafyatis, R. Transforming growth factor β–at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10, 706–719 (2014).

    Article  CAS  PubMed  Google Scholar 

  266. Murphy-Ullrich, J. E. & Suto, M. J. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biol. 68–69, 28–43 (2018).

    Article  PubMed  CAS  Google Scholar 

  267. Wang, Y., Hou, X. & Li, Y. Association between transforming growth factor β1 polymorphisms and atrial fibrillation in essential hypertensive subjects. J. Biomed. Sci. 17, 23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zheng, W. et al. The TGFB1 functional polymorphism rs1800469 and susceptibility to atrial fibrillation in two Chinese Han populations. PLoS ONE 8, e83033 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. He, X. et al. Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circ. Res. 108, 164–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  270. Lian, R., Chen, Y., Xu, Z. & Zhang, X. Soluble transforming growth factor-β1 receptor II might inhibit transforming growth factor-β-induced myofibroblast differentiation and improve ischemic cardiac function after myocardial infarction in rats. Coron. Artery Dis. 21, 369–377 (2010).

    Article  PubMed  Google Scholar 

  271. Tan, S. M., Zhang, Y., Connelly, K. A., Gilbert, R. E. & Kelly, D. J. Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 298, H1415–H1425 (2010).

    Article  CAS  PubMed  Google Scholar 

  272. Chen, H., Li, D., Saldeen, T. & Mehta, J. L. TGF-β1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. Am. J. Physiol. Heart Circ. Physiol. 284, H1612–H1617 (2003).

    Article  CAS  PubMed  Google Scholar 

  273. Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Maeda, S., Dean, D. D., Gomez, R., Schwartz, Z. & Boyan, B. D. The first stage of transforming growth factor β1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3). Calcif. Tissue Int. 70, 54–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  275. Abe, M., Oda, N. & Sato, Y. Cell-associated activation of latent transforming growth factor-β by calpain. J. Cell Physiol. 174, 186–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  276. Lyons, R. M., Keski-Oja, J. & Moses, H. L. Proteolytic activation of latent transforming growth factor-β from fibroblast-conditioned medium. J. Cell Biol. 106, 1659–1665 (1988).

    Article  CAS  PubMed  Google Scholar 

  277. Khalil, N., Corne, S., Whitman, C. & Yacyshyn, H. Plasmin regulates the activation of cell-associated latent TGF-beta 1 secreted by rat alveolar macrophages after in vivo bleomycin injury. Am. J. Respir. Cell Mol. Biol. 15, 252–259 (1996).

    Article  CAS  PubMed  Google Scholar 

  278. Guo, M., Mathieu, P. A., Linebaugh, B., Sloane, B. F. & Reiners, J. J. Jr Phorbol ester activation of a proteolytic cascade capable of activating latent transforming growth factor-β: a process initiated by the exocytosis of cathepsin B. J. Biol. Chem. 277, 14829–14837 (2002).

    Article  CAS  PubMed  Google Scholar 

  279. Bourd-Boittin, K. et al. Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatology 54, 2173–2184 (2011).

    Article  CAS  PubMed  Google Scholar 

  280. Munger, J. S. et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  281. Hakkinen, L. et al. Increased expression of β6-integrin in skin leads to spontaneous development of chronic wounds. Am. J. Pathol. 164, 229–242 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Mu, D. et al. The integrin α(v)β8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J. Cell Biol. 157, 493–507 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Wipff, P. J. & Hinz, B. Integrins and the activation of latent transforming growth factor β1–an intimate relationship. Eur. J. Cell Biol. 87, 601–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  284. Margadant, C. & Sonnenberg, A. Integrin-TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 11, 97–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Klingberg, F. et al. The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J. Cell Sci. 131, jcs201293 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Serini, G. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142, 873–881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Schultz-Cherry, S., Ribeiro, S., Gentry, L. & Murphy-Ullrich, J. E. Thrombospondin binds and activates the small and large forms of latent transforming growth factor-β in a chemically defined system. J. Biol. Chem. 269, 26775–26782 (1994).

    Article  CAS  PubMed  Google Scholar 

  289. Ribeiro, S. M., Poczatek, M., Schultz-Cherry, S., Villain, M. & Murphy-Ullrich, J. E. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-β. J. Biol. Chem. 274, 13586–13593 (1999).

    Article  CAS  PubMed  Google Scholar 

  290. Dewald, O. et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 164, 665–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Bhandary, B. et al. Cardiac fibrosis in proteotoxic cardiac disease is dependent upon myofibroblast TGF-β signaling. J. Am. Heart Assoc. 7, e010013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Massague, J. How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  293. Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci. USA 97, 2626–2631 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    Article  CAS  PubMed  Google Scholar 

  295. Goumans, M. J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 1743–1753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  297. Funaba, M., Zimmerman, C. M. & Mathews, L. S. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J. Biol. Chem. 277, 41361–41368 (2002).

    Article  CAS  PubMed  Google Scholar 

  298. Kretzschmar, M., Doody, J., Timokhina, I. & Massague, J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev. 13, 804–816 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Furukawa, F. et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 38, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  300. Yoshida, K. et al. Transforming growth factor-β and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am. J. Pathol. 166, 1029–1039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Seay, U. et al. Transforming growth factor-β-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J. Pharmacol. Exp. Ther. 315, 1005–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  302. You, H. J., Bruinsma, M. W., How, T., Ostrander, J. H. & Blobe, G. C. The type III TGF-β receptor signals through both Smad3 and the p38 MAP kinase pathways to contribute to inhibition of cell proliferation. Carcinogenesis 28, 2491–2500 (2007).

    Article  CAS  PubMed  Google Scholar 

  303. Tazat, K., Hector-Greene, M., Blobe, G. C. & Henis, Y. I. TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Mol. Biol. Cell 26, 3535–3545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Schwartze, J. T. et al. Glucocorticoids recruit Tgfbr3 and Smad1 to shift transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis to the Acvrl1/Smad1 axis in lung fibroblasts. J. Biol. Chem. 289, 3262–3275 (2014).

    Article  CAS  PubMed  Google Scholar 

  305. Duncan, M. R. et al. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J. 13, 1774–1786 (1999).

    Article  CAS  PubMed  Google Scholar 

  306. Abreu, J. G., Ketpura, N. I., Reversade, B. & De Robertis, E. M. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat. Cell Biol. 4, 599–604 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Mori, T. et al. Role and interaction of connective tissue growth factor with transforming growth factor-β in persistent fibrosis: a mouse fibrosis model. J. Cell Physiol. 181, 153–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  308. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  309. Aoyagi-Ikeda, K. et al. Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-β-Smad3 pathway. Am. J. Respir. Cell Mol. Biol. 45, 136–144 (2011).

    CAS  PubMed  Google Scholar 

  310. Leivonen, S. K., Hakkinen, L., Liu, D. & Kahari, V. M. Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transforming growth factor-β-induced expression of connective tissue growth factor in human fibroblasts. J. Invest. Dermatol. 124, 1162–1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  311. Dolivo, D. M., Larson, S. A. & Dominko, T. Crosstalk between mitogen-activated protein kinase inhibitors and transforming growth factor-β signaling results in variable activation of human dermal fibroblasts. Int. J. Mol. Med. 43, 325–335 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.G.F.’s laboratory is supported by NIH grants R01 HL76246, R01 HL85440 and R01 HL149407 and by US Department of Defense grant PR181464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks M.J. Goumans, J. Sadoshima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frangogiannis, N.G. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol 19, 435–455 (2022). https://doi.org/10.1038/s41569-021-00646-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00646-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing